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Abstract. In this paper, proved the famous Cauchy theorem in q-series, also we give some special roles
of the Cauchy companion operator E(a, b; θ) and apply these roles to represent the Cauchy polynomials
Pn(x, y) and the finite q-shifted factorial (a; q)n to derive generating function, Mehler’s formula and three
Rogers formulas for Pn(x, y) and (a; q)n.
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1. Introduction, Definitions and Preliminaries

In 1998, Chen and Liu [16] have developped a method named “parameter augmentation" of deriving

hypergeometric identities. Recently, Fang [19] introduced the q-exponential operator 1Φ0


b;

0;

q;−cθ


and give some properties of q-series. Thismethod hasmore realizations as in [2,3,6,9,10,12–16,24,31,32].
In this paper, we use this method and give easy proofs of results on q-series.

Let us review some common notation and terminology in [20] for basic hypergeometric series.
Assume that q is a fixed nonzero real or complex number and 0 < q < 1. The q-shifted factorial [17,20]
is defined for any real or complex parameter a by:

(a; q)0 = 1, (a; q)n =

n−1∏
k=0

(1− aqk), (a; q)∞ =

∞∏
k=0

(1− aqk), (1.1)
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where

(a; q)n =
n∑

k=0

n
k


q

(−1)kq(
k
2)ak. (1.2)

The q-binomial coefficient is defined by

n
k

 =


(q;q)n

(q;q)k(q;q)n−k
if k ≤ n,

0 if k > n.

(1.3)

We also adopt the following notation for multiple q-shifted factorial

(a1, a2, · · · , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n (m ∈ N := {1, 2, 3, · · · }; n ∈ N0 := N ∪ {0}).

and
(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ . . . (am; q)∞.

The basic (or q-) hypergeometric function of the variable z is defined as follows [15,22,30,34] (see also
the monographs by Slater [29, Chapter 3] and by Srivastava and Karlsson [33, p. 347, Eq. (272)]):

rΦs


a1, a2, · · · , ar;

b1, b2, · · · , bs;

q; z

 :=
∞∑
n=0

[
(−1)n q(

n
2)
]1+s−r (a1, a2, · · · , ar; q)n

(b1, b2, · · · , bs; q)n
zn

(q; q)n
. (1.4)

The series in (1.4) converges absolutely for all z if r 5 s. For s = r + 1, we also note that

r+1Φr

−
a1, a2, · · · , ar+1;

b1, b2, · · · , br;

q; z

 =

∞∑
n=0

(a1, a2, · · · , ar+1; q)n
(b1, b2, · · · , br; q)n

zn

(q; q)n
.

The Cauchy theorem [20] is given as
∞∑
n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

, |z| < 1, (1.5)

which can derive the following two identities
∞∑
n=0

zn

(q; q)n
=

1

(z; q)∞
, |z| < 1. (1.6)

∞∑
n=0

q(
n
2)

(q; q)n
zn = (−z; q)∞. (1.7)

The Cauchy polynomials is defined by [25,26, 28]:

Pn(x, y) =
n∑

k=0

n
k


q

(−1)kq(
k
2)ykxn−k = (y/x; q)nx

n (1.8)
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which has the following generating function [7,8, 13]
∞∑
n=0

Pn(x, y)
tn

(q; q)n
=

(yt; q)∞
(xt; q)∞

, |xt| < 1. (1.9)

The Cauchy companion operator [11, 19] is defined as follows

E(a, b; θ) :=

∞∑
n=0

(a; q)n
(q; q)n

(−bθ)n, (1.10)

where [21,23, 27]

θ{f(x)} =
f(xq−1)− f(x)

q−1x
. (1.11)

Lemma 1.1. Suppose that θ acts on the variable x. Form ∈ {0, 1, 2, · · · }, the following operational formula

holds true:

θk{xn} =
(q, q)n

(q, q)n−k
q−nk+(k+1

2 )xn−k, n = k. (1.12)

Assume that the operator E(a, b; θ) acts on the parameter c, the following identities are given in [19]:

Proposition 1.1. [19]. We have:

E(a, b; θ){(ct; q)∞} =
(abt, ct; q)∞

(bt; q)∞
; (1.13)

E(a, b; θ)

{
(ct; q)∞
(cv; q)∞

}
=

(ct; q)∞
(cv; q)∞

2Φ1


a, t/v;

q/cv;

q; bq/c

 , |bq/c| < 1; (1.14)

E(a, b; θ)

{
(cs, ct; q)∞

(cv; q)∞

}
=

(cs, ct, abt; q)∞
(cv, bt; q)∞

3Φ2


a, s/v, q/ct;

q/bt, q/cv;

q; q

 , (1.15)

provided that s/v = q−n and |bst/v| < 1.

Also, the following operator identity was derived in [1] by using the q-difference method:

Proposition 1.2.

E(a, b; θ){(cs, ct; q)∞} =
(cs, ct, abt; q)∞

(bt; q)∞
2Φ1


a, q/ct;

q/bt;

q; cs

 , (1.16)

provided that a = q−n and max{|bt|, |abt|} < 1.
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In 2011, Abdlhussein [1] gave the following q-exponential operator as a special case of the Cauchy
companion operator (1.10) when a = 0

T (bθ) =
∞∑
n=0

(bθ)n

(q; q)n
(1.17)

and derive the following operator identity [1] by setting a = 0 in (1.10):

Proposition 1.3. We have:

T (bθ){(ct; q)∞} =
(ct; q)∞
(bt; q)∞

, |bt| < 1. (1.18)

2. Operator Identities

In this section, we prove the identity (1.16) without using q-difference method and give some roles
for the q-exponential operator T (bθ) by special substitutions in the previous identities of the Cauchy
companion operator.

Theorem 2.1. It is asserted that

E(a, b; θ){(cs, ct; q)∞} =
(cs, ct, abt; q)∞

(bt; q)∞
2Φ1


a, q/ct;

q/bt;

q; cs

 , (2.1)

provided that a = q−n and max{|bt|, |cs|} < 1.

Proof. Rewrite (1.15) as

E(a, b; θ)

{
(cs, ct; q)∞

(cv; q)∞

}
=

(cs, ct, abt; q)∞
(cv, bt; q)∞

∞∑
k=0

(a, s/v, q/ct; q)k q
k

(q/bt, q/cv; q)k
. (2.2)

Since

(s/v; q)k =
Pk(v, s)

vk
, (2.3)

we have

(q/cv; q)k =
Pk(cv, q)

(cv)k
. (2.4)

Next, substituting (2.3) and (2.4) in (2.2), we obtain:

E(a, b; θ)

{
(cs, ct; q)∞

(cv; q)∞

}
=

(cs, ct, abt; q)∞
(cv, bt; q)∞

∞∑
k=0

(a, q/ct; q)k q
k

(q/bt; q)k

ckPk(v, s)

Pk(cv, q)
. (2.5)

Taking v = 0, we get

E(a, b; θ) {(cs, ct; q)∞} =
(cs, ct, abt; q)∞

(bt; q)∞

∞∑
k=0

(a, q/ct; q)k (cs)k

(q/bt; q)k
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=
(cs, ct, abt; q)∞

(cv, bt; q)∞
2Φ1


a, q/ct;

q/bt;

q; cs

 (2.6)

which achieves the proof. �

In the following theorems, we give some new roles for the q-exponential operator T (bθ) as follows:

Theorem 2.2. Suppose that T (bθ) acts on the variable c, then we have:

T (bθ)

{
(cs; q)∞
(cv; q)∞

}
=

(cs; q)∞
(cv; q)∞

2Φ1


s/v, 0;

q/cv;

q; bq/c

 , (2.7)

where |bq/c| < 1.

Proof. Taking a = 0 in (1.14), we get the result. �

Theorem 2.3. Suppose that θ acts on the variable c, then the following assertion holds true:

T (bθ)

{
(cs, ct; q)∞

(cv; q)∞

}
=

(cs, ct; q)∞
(cv; q)∞

3Φ2


s/v, q/ct, 0;

q/bt, q/cv;

q; q

 , (2.8)

provided that s/v = q−n and |bst/v| < 1.

Proof. Taking a = 0 in (1.15), we get the result. �

Theorem 2.4. Suppose that θ acts on the variable c, then the following assertion holds true:

T (bθ) {(cs, ct; q)∞} =
(cs, ct; q)∞

(bt; q)∞
2Φ1


q/ct, 0;

q/b;

q; cs

 , max{|bt|, |cs|} < 1. (2.9)

Proof. Taking a = 0 in (2.1), we get the result. �

3. Operator Applications

In this section, we use the q-exponential operator T (bθ) to represent the Cauchy polynomials Pn(x, y)

and the finite q-shifted factorial (a; q)n, we use this representations and the operator roles in the
previous section to derive the generating function, Mehler’s formula and three types of Rogers formula
for Pn(x, y) and (a; q)n, also we give an operator proof of the famous Cauchy theorem.

In the following proposition, we represent the Cauchy polynomials (1.8) by the q-exponential
operator.
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Theorem 3.1. Suppose that the q-exponential operator T (bθ) acts on the variable y, then we have:

Ty(xθ)
{

(−1)nq(
n
2)yn

}
= Pn(x, y). (3.1)

Proof. By the definition of the q-exponential operator Ty(xθ) and identity (1.12), we get:

Ty(xθ)
{

(−1)nq(
n
2)yn

}
=
∞∑
k=0

(−xθ)k

(q; q)k
θk{yn}

=
n∑

k=0

(−1)nq(
n
2)
q−nk+(k+1

2 )

(q; q)k

(q, q)n
(q, q)n−k

(−x)kyn−k.

Changing the order of summation n− k by k, we get the desire result. �

Taking x = 1 and y = a, the q-exponential operator acts on a, we can give the following representation
for the finite q-shifted factorial or finite q-binomial

Proposition 3.2. Suppose that the q-exponential operator T (bθ) acts on the variable y, then we have:

Ta(θ)
{

(−1)nq(
n
2)an

}
= (a; q)n. (3.2)

Now, we derive the generating function for the Cauchy polynomials by using our representation
(3.1) and identity (1.18) as follows

Theorem 3.3 (Generating function for Pn(x, y)). We have:
∞∑
n=0

Pn(x, y)
tn

(q; q)n
=

(yt; q)∞
(xt; q)∞

, |xt| < 1. (3.3)

Proof. Upon using (3.1), we have
∞∑
n=0

Pn(x, y)
tn

(q; q)n
=
∞∑
n=0

Ty(xθ)
{

(−1)nq(
n
2)yn

} tn

(q; q)n

= Ty(xθ)

{ ∞∑
n=0

(−1)nq(
n
2)yn

tn

(q; q)n

}

= Ty(xθ) {(yt; q)∞} =
(yt; q)∞
(xt; q)∞

,

where we have used the identity (1.18). �

So that, the generating function for the finite q-shifted factorial can be introduce by using our
representation (3.2) and identity (1.18), or by setting y = a and x = 1 in (3.4). The following proof can
be set as a new proof for the famous Cauchy theorem (1.5).

Theorem 3.4 (Cauchy Theorem). We have:
∞∑
n=0

(a; q)n
(q; q)n

tn =
(at; q)∞
(t; q)∞

, |t| < 1. (3.4)
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Proof. Using (3.2), we have
∞∑
n=0

(a; q)n
(q; q)n

tn =
∞∑
n=0

Ta(θ)
{

(−1)nq(
n
2)an

} tn

(q; q)n

= Ta(θ)

{ ∞∑
n=0

(−1)nq(
n
2)an

tn

(q; q)n

}
= Ta(θ) {(at; q)∞}

=
(at; q)∞
(t; q)∞

,

where we have used the identity (1.18). �

Remark 3.1. Taking a = 0, the equation (3.4) reduce to the Euler’s identity (1.6).

We derive Mehler’s formula for the Cauchy polynomials by using the operator representation (3.1)
and identity (2.7) of the q-exponential operator

Theorem 3.5 (Mehler’s formula for Pn(x, y)).

∞∑
n=0

Pn(x, y)Pn(z, w)
(−1)nq−(n2)tn

(q; q)n
=

(ywt; q)∞
(yzt; q)∞

2Φ1


w/z, 0;

q/yzt;

q;xq/y

 , |xq/z| < 1. (3.5)

Proof.

∞∑
n=0

Pn(x, y)Pn(z, w)
(−1)nq−(n2)tn

(q; q)n
=

∞∑
n=0

Ty(xθ)
{

(−1)nq(
n
2)yn

}
Pn(z, w)

(−1)nq−(n2)tn

(q; q)n

= Ty(xθ)

{ ∞∑
n=0

Pn(z, w)
(yt)n

(q; q)n

}

= Ty(xθ)

{
(ywt; q)∞
(yzt; q)∞

}

=
(ywt; q)∞
(yzt; q)∞

2Φ1


w/z, 0;

q/yzt;

q;xq/y

 .
�

The following Mehler’s formula for the finite q-shifted factorial can be derived by the same way of
(3.12) when we use representation (3.2) and identity (2.7), or directly by setting y = a, w = b and
x = z = 1 in (3.12).
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Theorem 3.6 (Mehler’s formula for (a; q)n).

∞∑
n=0

(a, b; q)n
(−1)nq−(n2)tn

(q; q)n
=

(abt; q)∞
(at; q)∞

2Φ1


b, 0;

q/at;

q; q/a

 , |q/a| < 1. (3.6)

Proposition 3.7. We have the following identity

2Φ0


a, b;

−;

q; z

 =
(abz; q)∞
(az; q)∞

2Φ1


b, 0;

q/az;

q;
q

a

 . (3.7)

Proof. Comparing both sides of (3.6) and taking t = z, we get the desire result. �

Next, we derive extended Mehler’s formula for the Cauchy polynomials by using the operator
representation (3.1) and identity (2.7) of the q-exponential operator.

Theorem 3.8 (Extended Mehler’s formula for Pn(x, y)). Form, n ∈ N, we have
∞∑
k=0

(−1)kq−(k2)−nk−mkPm+k(x, y)Pn+k(z, w)
tk

(q; q)k

= Pm(x, y)Pn(z, w)
(ywt; q)∞

(yztq−n; q)∞
2Φ1


wqn/z, 0;

q1+n/yzt;

q;xq1−m/y

 , (3.8)

provided both sides of (3.8) are convergent.

Remark 3.2. Taking n = m = 0 in Theorem 3.8, we get Theorem 3.6.

Proof. Upon using the fact that Pk+j(a, b) = Pj(a, b)Pk(a, qjb),we have
∞∑
k=0

(−1)kq−(k2)−nk−mkPm+k(x, y)Pn+k(z, w)
tk

(q; q)k

= Pm(x, y)Pn(z, w)

{ ∞∑
k=0

(−1)kq−(k2)Pk(x, qmy)Pk(z, qnw)
(tq−n−m)k

(q; q)k

}
. (3.9)

Setting y = yqm, w = wqn and t = tq−n−m in Theorem 3.6, the right hand side of (3.9) reads

Pm(x, y)Pn(z, w)
(ywt; q)∞

(yztq−n; q)∞
2Φ1


wqn/z, 0;

q1+n/yzt;

q;xq1−m/y

 .
Summarizing the above calculations, we get the desire result. �

The following Mehler’s formula for the finite q-shifted factorial can be derived directly by setting
y = a, w = b and x = z = 1 in (3.8).
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Theorem 3.9 (Extended Mehler’s formula for (a; q)n). Form, n ∈ N, we have
∞∑
k=0

(−1)kq−(k2)−nk−mk(a; q)m+k(b; q)n+k
tk

(q; q)k

= (a; q)m(b; q)n
(abt; q)∞

(atq−n; q)∞
2Φ1


bqn, 0;

q1+n/bt;

q; q1−m/b

 , (3.10)

provided both sides of (3.10) are convergent.

Proposition 3.10. Form, n ∈ N, the following identity holds true:

2Φ0


aqm, bqn;

−;

q; cq−m−n

 =
(abc; q)∞

(acq−n; q)∞
2Φ1


bqn, 0;

q1+n/bt;

q; q1−m/b

 . (3.11)

Remark 3.3. Settingm = n = 0 in (3.11), we get (3.7).

Proof. Comparing both sides of equation (3.10), we get equation (3.11). �

Now, we give the Rogers formula for the Cauchy polynomials by using representation (3.1) and
identity (2.7) of the q-exponential operator

Theorem 3.11 (Rogers formula for Pn(x, y)).

∞∑
m,n=0

Pn+m(x, y)(−1)mq−(m2 ) tn

(q; q)n

sm

(q; q)m
=

(yt; q)∞
(ys; q)∞

2Φ1


t/s, 0;

q/ys;

q;xq/y

 , (3.12)

where max{|ys|, |xq/y|} < 1.

Proof.
∞∑

m,n=0

Pn+m(x, y)(−1)mq−(m2 )−nm tn

(q; q)n

sm

(q; q)m

=
∞∑

m,n=0

Ty(xθ)
{

(−1)n+mq(
n+m

2 )yn+m
}

(−1)mq−(m2 )−nm tn

(q; q)n

sm

(q; q)m

= Ty(xθ)

{ ∞∑
n=0

(−1)nq(
n
2)(yt)n

(q; q)n

∞∑
m=0

(ys)m

(q; q)m

}

= Ty(xθ)

{
(yt; q)∞
(ys; q)∞

}

=
(yt; q)∞
(ys; q)∞

2Φ1


t/s, 0;

q/ys;

q;xq/y

 .
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�

The Rogers formula for the finite q-shifted factorial can be easily obtained from the above theorem
by setting y = a and x = 1, or by using representation (3.2) and identity (2.7) of the q-exponential
operator

Theorem 3.12 (Rogers formula for (a; q)n).

∞∑
m,n=0

(a; q)n+m(−1)mq−(m2 )−nm tn

(q; q)n

sm

(q; q)m
=

(at; q)∞
(as; q)∞

2Φ1


t/s, 0;

q/as;

q; q/a

 , (3.13)

where max{|as|, |q/a|} < 1.

Here, we derive another Rogers formula for the Cauchy polynomials by using representation (3.1)
and identity (2.9) as follows:

Theorem 3.13 (The second Rogers formula for Pn(x, y)).

∞∑
m,n=0

Pn+m(x, y)q−nm
tn

(q; q)n

sm

(q; q)m
=

(yt; ys; q)∞
(xt; q)∞

2Φ1


q/yt, 0;

q/xt;

q; ys

 , (3.14)

where max{|ys|, |xt|} < 1.

Proof.
∞∑

m,n=0

Pn+m(x, y)q−nm
tn

(q; q)n

sm

(q; q)m

=

∞∑
m,n=0

Ty(xθ)
{

(−1)n+mq(
n+m

2 )yn+m
}
q−nm

tn

(q; q)n

sm

(q; q)m

= Ty(xθ)

{ ∞∑
n=0

(−1)nq(
n
2)(yt)n

(q; q)n

∞∑
m=0

(−1)mq(
m
2 )(ys)m

(q; q)m

}
= Ty(xθ) {(yt, ys; q)∞}

=
(yt, ys; q)∞

(xt; q)∞
2Φ1


q/yt, 0;

q/xt;

q; ys

 .
�

Also, the following second Rogers formula for the finite q-shifted factorial can be proved from the
above theorem by setting y = a and x = 1 directly, or by using representation (3.2) and identity (2.9).
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Theorem 3.14 (The second Rogers formula for (a; q)n).

∞∑
m,n=0

(a; q)n+mq
−nm tn

(q; q)n

sm

(q; q)m
=

(at; as; q)∞
(t; q)∞

2Φ1


q/at, 0;

q/t;

q; as

 , (3.15)

where max{|as|, |t|} < 1.

Finally, we give the third Rogers formula or the extended Rogers formula for the Cauchy polynomials
Pn(x, y) by using our representation (3.1) and identity (2.8), as follows:

Theorem 3.15 (The third Rogers formula for Pn(x, y)).
∞∑

m,n,k=0

Pn+m+k(x, y)(−1)kq−(k2)−nm−nk−mk tn

(q; q)n

sm

(q; q)m

vk

(q; q)k

=
(yt; ys; q)∞
(yv, xt; q)∞

3Φ2


q/yt, s/v, 0;

q/xt, q/yv;

q; q

 , (3.16)

provided that s/v = qn and |xst/v| < 1.

Proof.
∞∑

m,n,k=0

Pn+m+k(x, y)(−1)kq−(k2)−nm−nk−mk tn

(q; q)n

sm

(q; q)m

vk

(q; q)k

=

∞∑
m,n,k=0

Ty(xθ)
{

(−1)n+m+kq(
n+m+k

2 )yn+m+k
}

(−1)kq−(k2)−nm−nk−mk tn

(q; q)n

sm

(q; q)m

vk

(q; q)k

= Ty(xθ)

{ ∞∑
n=0

(−1)nq(
n
2)(yt)n

(q; q)n

∞∑
m=0

(−1)mq(
m
2 )(ys)m

(q; q)m

∞∑
k=0

(yv)k

(q; q)k

}

= Ty(xθ)

{
(yt, ys; q)∞

(yv; q)∞

}

=
(yt, ys; q)∞
(yv, xt; q)∞

3Φ2


q/yt, s/v, 0;

q/xt, q/yv;

q; q

 ,
which achieves the proof. �

So that, the third Rogers formula for the finite q-shifted factorial can be given from the above theorem
by setting y = a and x = 1, or by using our representation (3.2) and identity (2.8).

Theorem 3.16 (The third Rogers formula for (a; q)n).
∞∑

m,n,k=0

(a; q)n+m+k (−1)kq−(k2)−nm−nk−mk tn

(q; q)n

sm

(q; q)m

vk

(q; q)k



Asia Pac. J. Math. 2024 11:80 12 of 14

=
(at; as; q)∞
(av, t; q)∞

3Φ2


q/at, s/v, 0;

q/t, q/av;

q; q

 , (3.17)

provided that s/v = qn and |st/v| < 1.

4. Conclusions

In this paper, we have given some special roles of Cauchy companion operator E(a, b; θ) and apply
these roles to represent the Cauchy polynomials Pn(x, y) and the finite q-shifted factorial (a; q)n. Finally,
we have derived generating function, Mehler’s formula and three Rogers formulas for Pn(x, y) and
(a; q)n.
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