

## SPECIAL CASES AND APPLICATIONS OF THE CAUCHY COMPANION OPERATOR

# MOHAMMED A. ABDLHUSEIN<sup>1,\*</sup>, NADA M. AYAY<sup>2</sup>, SAMA ARJIKA<sup>3</sup>, HUSAM L. SAAD<sup>4</sup>

<sup>1</sup>College of Education for Women, Shatrah University, Thi-Qar, 64001, Iraq
<sup>2</sup>College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq
<sup>3</sup>Department of Mathematics and Informatics, University of Agadez, Post Office Box 199, Agadez, Niger
<sup>4</sup>Department of Mathematics, University of Basrah, Basrah, Iraq
\*Corresponding author: mmhd@shu.edu.iq

Received Jun. 13, 2024

ABSTRACT. In this paper, proved the famous Cauchy theorem in q-series, also we give some special roles of the Cauchy companion operator  $E(a, b; \theta)$  and apply these roles to represent the Cauchy polynomials  $P_n(x, y)$  and the finite q-shifted factorial  $(a; q)_n$  to derive generating function, Mehler's formula and three Rogers formulas for  $P_n(x, y)$  and  $(a; q)_n$ .

2020 Mathematics Subject Classification. 05A30; 33D45.

Key words and phrases. Cauchy companion operator; Cauchy polynomials; generating function; Mehler's formula; Rogers formula.

#### 1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

In 1998, Chen and Liu [16] have developped a method named "parameter augmentation" of deriving hypergeometric identities. Recently, Fang [19] introduced the *q*-exponential operator  $_{1}\Phi_{0}\begin{bmatrix}b;\\q;-c\theta\\0;\end{bmatrix}$  and give some properties of *q*-series. This method has more realizations as in [2,3,6,9,10,12–16,24,31,32].

In this paper, we use this method and give easy proofs of results on *q*-series.

Let us review some common notation and terminology in [20] for basic hypergeometric series. Assume that q is a fixed nonzero real or complex number and 0 < q < 1. The q-shifted factorial [17,20] is defined for any real or complex parameter a by:

$$(a;q)_0 = 1, \quad (a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k), \quad (a;q)_\infty = \prod_{k=0}^{\infty} (1 - aq^k),$$
 (1.1)

DOI: 10.28924/APJM/11-80

where

$$(a;q)_n = \sum_{k=0}^n {n \brack k}_q (-1)^k q^{\binom{k}{2}} a^k.$$
(1.2)

The *q*-binomial coefficient is defined by

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{cases} \frac{(q;q)_n}{(q;q)_k(q;q)_{n-k}} & \text{if } k \le n, \\ 0 & \text{if } k > n. \end{cases}$$
(1.3)

We also adopt the following notation for multiple *q*-shifted factorial

$$(a_1, a_2, \cdots, a_m; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_m; q)_n \quad (m \in \mathbb{N} := \{1, 2, 3, \cdots\}; \ n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}).$$

and

$$(a_1, a_2, \ldots, a_m; q)_{\infty} = (a_1; q)_{\infty} (a_2; q)_{\infty} \ldots (a_m; q)_{\infty}$$

The basic (or q-) hypergeometric function of the variable z is defined as follows [15, 22, 30, 34] (see also the monographs by Slater [29, Chapter 3] and by Srivastava and Karlsson [33, p. 347, Eq. (272)]):

$${}_{\mathfrak{r}}\Phi_{\mathfrak{s}}\left[\begin{array}{c}a_{1},a_{2},\cdots,a_{\mathfrak{r}};\\\\a_{1},b_{2},\cdots,b_{\mathfrak{s}};\end{array}\right] := \sum_{n=0}^{\infty} \left[(-1)^{n} q^{\binom{n}{2}}\right]^{1+\mathfrak{s}-\mathfrak{r}} \frac{(a_{1},a_{2},\cdots,a_{\mathfrak{r}};q)_{n}}{(b_{1},b_{2},\cdots,b_{\mathfrak{s}};q)_{n}} \frac{z^{n}}{(q;q)_{n}}.$$
(1.4)

The series in (1.4) converges absolutely for all z if  $\mathfrak{r} \leq \mathfrak{s}$ . For  $\mathfrak{s} = \mathfrak{r} + 1$ , we also note that

$${}_{\mathfrak{r}+1}\Phi_{\mathfrak{r}}\left[-\begin{array}{c}a_{1},a_{2},\cdots,a_{\mathfrak{r}+1};\\ \\ b_{1},b_{2},\cdots,b_{\mathfrak{r}};\end{array}\right]=\sum_{n=0}^{\infty}\frac{(a_{1},a_{2},\cdots,a_{\mathfrak{r}+1};q)_{n}}{(b_{1},b_{2},\cdots,b_{\mathfrak{r}};q)_{n}}\frac{z^{n}}{(q;q)_{n}}.$$

The Cauchy theorem [20] is given as

$$\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n} z^n = \frac{(az;q)_{\infty}}{(z;q)_{\infty}}, \quad |z| < 1,$$
(1.5)

which can derive the following two identities

$$\sum_{n=0}^{\infty} \frac{z^n}{(q;q)_n} = \frac{1}{(z;q)_{\infty}}, \quad |z| < 1.$$
(1.6)

$$\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}}{(q;q)_n} z^n = (-z;q)_{\infty}.$$
(1.7)

The Cauchy polynomials is defined by [25,26,28]:

$$P_n(x,y) = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix}_q (-1)^k q^{\binom{k}{2}} y^k x^{n-k} = (y/x;q)_n x^n$$
(1.8)

which has the following generating function [7,8,13]

$$\sum_{n=0}^{\infty} P_n(x,y) \frac{t^n}{(q;q)_n} = \frac{(yt;q)_{\infty}}{(xt;q)_{\infty}}, \quad |xt| < 1.$$
(1.9)

The Cauchy companion operator [11,19] is defined as follows

$$E(a,b;\theta) := \sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n} (-b\theta)^n,$$
(1.10)

where [21, 23, 27]

$$\theta\{f(x)\} = \frac{f(xq^{-1}) - f(x)}{q^{-1}x}.$$
(1.11)

**Lemma 1.1.** Suppose that  $\theta$  acts on the variable x. For  $m \in \{0, 1, 2, \dots\}$ , the following operational formula holds true:

$$\theta^k \{x^n\} = \frac{(q,q)_n}{(q,q)_{n-k}} q^{-nk + \binom{k+1}{2}} x^{n-k}, \quad n \ge k.$$
(1.12)

Assume that the operator  $E(a, b; \theta)$  acts on the parameter *c*, the following identities are given in [19]:

**Proposition 1.1.** [19]. We have:

$$E(a,b;\theta)\{(ct;q)_{\infty}\} = \frac{(abt,ct;q)_{\infty}}{(bt;q)_{\infty}};$$
(1.13)

$$E(a,b;\theta)\left\{\frac{(ct;q)_{\infty}}{(cv;q)_{\infty}}\right\} = \frac{(ct;q)_{\infty}}{(cv;q)_{\infty}} {}_{2}\Phi_{1} \left| \begin{array}{c} a,t/v; \\ q;bq/c \\ q/cv; \end{array} \right|, \quad |bq/c| < 1; \quad (1.14)$$

$$E(a,b;\theta)\left\{\frac{(cs,ct;q)_{\infty}}{(cv;q)_{\infty}}\right\} = \frac{(cs,ct,abt;q)_{\infty}}{(cv,bt;q)_{\infty}} \,_{3}\Phi_{2}\left[\begin{array}{c}a,s/v,q/ct;\\q;q\\q/bt,q/cv;\end{array}\right],\tag{1.15}$$

provided that  $s/v = q^{-n}$  and |bst/v| < 1.

Also, the following operator identity was derived in [1] by using the *q*-difference method:

### **Proposition 1.2.**

$$E(a,b;\theta)\{(cs,ct;q)_{\infty}\} = \frac{(cs,ct,abt;q)_{\infty}}{(bt;q)_{\infty}} {}_{2}\Phi_{1} \begin{bmatrix} a,q/ct; \\ q;cs \\ q/bt; \end{bmatrix},$$
(1.16)

provided that  $a = q^{-n}$  and  $\max\{|bt|, |abt|\} < 1$ .

In 2011, Abdlhussein [1] gave the following *q*-exponential operator as a special case of the Cauchy companion operator (1.10) when a = 0

$$T(b\theta) = \sum_{n=0}^{\infty} \frac{(b\theta)^n}{(q;q)_n}$$
(1.17)

and derive the following operator identity [1] by setting a = 0 in (1.10):

**Proposition 1.3.** *We have:* 

$$T(b\theta)\{(ct;q)_{\infty}\} = \frac{(ct;q)_{\infty}}{(bt;q)_{\infty}}, \quad |bt| < 1.$$
(1.18)

### 2. Operator Identities

In this section, we prove the identity (1.16) without using *q*-difference method and give some roles for the *q*-exponential operator  $T(b\theta)$  by special substitutions in the previous identities of the Cauchy companion operator.

**Theorem 2.1.** It is asserted that

$$E(a,b;\theta)\{(cs,ct;q)_{\infty}\} = \frac{(cs,ct,abt;q)_{\infty}}{(bt;q)_{\infty}} {}_{2}\Phi_{1} \begin{bmatrix} a,q/ct; \\ q;cs \\ q/bt; \end{bmatrix},$$
(2.1)

provided that  $a = q^{-n}$  and  $\max\{|bt|, |cs|\} < 1$ .

*Proof.* Rewrite (1.15) as

$$E(a,b;\theta)\left\{\frac{(cs,ct;q)_{\infty}}{(cv;q)_{\infty}}\right\} = \frac{(cs,ct,abt;q)_{\infty}}{(cv,bt;q)_{\infty}}\sum_{k=0}^{\infty}\frac{(a,s/v,q/ct;q)_{k}\,q^{k}}{(q/bt,q/cv;q)_{k}}.$$
(2.2)

Since

$$(s/v;q)_k = \frac{P_k(v,s)}{v^k},$$
 (2.3)

we have

$$(q/cv;q)_k = \frac{P_k(cv,q)}{(cv)^k}.$$
 (2.4)

Next, substituting (2.3) and (2.4) in (2.2), we obtain:

$$E(a,b;\theta)\left\{\frac{(cs,ct;q)_{\infty}}{(cv;q)_{\infty}}\right\} = \frac{(cs,ct,abt;q)_{\infty}}{(cv,bt;q)_{\infty}}\sum_{k=0}^{\infty}\frac{(a,q/ct;q)_{k}\,q^{k}}{(q/bt;q)_{k}}\frac{c^{k}P_{k}(v,s)}{P_{k}(cv,q)}.$$
(2.5)

Taking v = 0, we get

$$E(a,b;\theta)\left\{(cs,ct;q)_{\infty}\right\} = \frac{(cs,ct,abt;q)_{\infty}}{(bt;q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a,q/ct;q)_k (cs)^k}{(q/bt;q)_k}$$

$$= \frac{(cs, ct, abt; q)_{\infty}}{(cv, bt; q)_{\infty}} {}_{2}\Phi_{1} \begin{bmatrix} a, q/ct; \\ q; cs \\ q/bt; \end{bmatrix}$$
(2.6)

F

which achieves the proof.

In the following theorems, we give some new roles for the *q*-exponential operator  $T(b\theta)$  as follows: **Theorem 2.2.** Suppose that  $T(b\theta)$  acts on the variable *c*, then we have:

$$T(b\theta)\left\{\frac{(cs;q)_{\infty}}{(cv;q)_{\infty}}\right\} = \frac{(cs;q)_{\infty}}{(cv;q)_{\infty}} {}_{2}\Phi_{1} \begin{bmatrix} s/v,0; \\ q;bq/c \\ q/cv; \end{bmatrix},$$
(2.7)

where |bq/c| < 1.

*Proof.* Taking a = 0 in (1.14), we get the result.

**Theorem 2.3.** Suppose that  $\theta$  acts on the variable c, then the following assertion holds true:

$$T(b\theta)\left\{\frac{(cs,ct;q)_{\infty}}{(cv;q)_{\infty}}\right\} = \frac{(cs,ct;q)_{\infty}}{(cv;q)_{\infty}} \,_{3}\Phi_{2} \begin{bmatrix} s/v,q/ct,0;\\q;q\\q/bt,q/cv; \end{bmatrix},$$
(2.8)

provided that  $s/v = q^{-n}$  and |bst/v| < 1.

*Proof.* Taking a = 0 in (1.15), we get the result.

**Theorem 2.4.** Suppose that  $\theta$  acts on the variable c, then the following assertion holds true:

$$T(b\theta) \{ (cs, ct; q)_{\infty} \} = \frac{(cs, ct; q)_{\infty}}{(bt; q)_{\infty}} {}_{2}\Phi_{1} \begin{bmatrix} q/ct, 0; \\ q; cs \\ q/b; \end{bmatrix}, \quad \max\{|bt|, |cs|\} < 1.$$
(2.9)

*Proof.* Taking a = 0 in (2.1), we get the result.

### **3. Operator Applications**

-

In this section, we use the q-exponential operator  $T(b\theta)$  to represent the Cauchy polynomials  $P_n(x, y)$ and the finite q-shifted factorial  $(a;q)_n$ , we use this representations and the operator roles in the previous section to derive the generating function, Mehler's formula and three types of Rogers formula for  $P_n(x, y)$  and  $(a; q)_n$ , also we give an operator proof of the famous Cauchy theorem.

In the following proposition, we represent the Cauchy polynomials (1.8) by the q-exponential operator.

**Theorem 3.1.** Suppose that the q-exponential operator  $T(b\theta)$  acts on the variable y, then we have:

$$T_{y}(x\theta)\left\{(-1)^{n}q^{\binom{n}{2}}y^{n}\right\} = P_{n}(x,y).$$
(3.1)

*Proof.* By the definition of the *q*-exponential operator  $T_y(x\theta)$  and identity (1.12), we get:

$$T_{y}(x\theta)\left\{(-1)^{n}q^{\binom{n}{2}}y^{n}\right\} = \sum_{k=0}^{\infty} \frac{(-x\theta)^{k}}{(q;q)_{k}} \theta^{k}\{y^{n}\}$$
$$= \sum_{k=0}^{n} (-1)^{n}q^{\binom{n}{2}} \frac{q^{-nk+\binom{k+1}{2}}}{(q;q)_{k}} \frac{(q,q)_{n}}{(q,q)_{n-k}} (-x)^{k}y^{n-k}.$$

Changing the order of summation n - k by k, we get the desire result.

Taking x = 1 and y = a, the *q*-exponential operator acts on *a*, we can give the following representation for the finite *q*-shifted factorial or finite *q*-binomial

**Proposition 3.2.** Suppose that the *q*-exponential operator  $T(b\theta)$  acts on the variable y, then we have:

$$T_a(\theta) \left\{ (-1)^n q^{\binom{n}{2}} a^n \right\} = (a;q)_n.$$
(3.2)

Now, we derive the generating function for the Cauchy polynomials by using our representation (3.1) and identity (1.18) as follows

**Theorem 3.3** (Generating function for  $P_n(x, y)$ ). We have:

$$\sum_{n=0}^{\infty} P_n(x,y) \frac{t^n}{(q;q)_n} = \frac{(yt;q)_{\infty}}{(xt;q)_{\infty}}, \quad |xt| < 1.$$
(3.3)

*Proof.* Upon using (3.1), we have

$$\sum_{n=0}^{\infty} P_n(x,y) \frac{t^n}{(q;q)_n} = \sum_{n=0}^{\infty} T_y(x\theta) \left\{ (-1)^n q^{\binom{n}{2}} y^n \right\} \frac{t^n}{(q;q)_n}$$
$$= T_y(x\theta) \left\{ \sum_{n=0}^{\infty} (-1)^n q^{\binom{n}{2}} y^n \frac{t^n}{(q;q)_n} \right\}$$
$$= T_y(x\theta) \left\{ (yt;q)_\infty \right\} = \frac{(yt;q)_\infty}{(xt;q)_\infty},$$

where we have used the identity (1.18).

So that, the generating function for the finite *q*-shifted factorial can be introduce by using our representation (3.2) and identity (1.18), or by setting y = a and x = 1 in (3.4). The following proof can be set as a new proof for the famous Cauchy theorem (1.5).

Theorem 3.4 (Cauchy Theorem). We have:

$$\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n} t^n = \frac{(at;q)_{\infty}}{(t;q)_{\infty}}, \quad |t| < 1.$$
(3.4)

*Proof.* Using (3.2), we have

$$\begin{split} \sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n} t^n &= \sum_{n=0}^{\infty} T_a(\theta) \left\{ (-1)^n q^{\binom{n}{2}} a^n \right\} \frac{t^n}{(q;q)_n} \\ &= T_a(\theta) \left\{ \sum_{n=0}^{\infty} (-1)^n q^{\binom{n}{2}} a^n \frac{t^n}{(q;q)_n} \right\} \\ &= T_a(\theta) \left\{ (at;q)_{\infty} \right\} \\ &= \frac{(at;q)_{\infty}}{(t;q)_{\infty}}, \end{split}$$

where we have used the identity (1.18).

**Remark 3.1.** Taking a = 0, the equation (3.4) reduce to the Euler's identity (1.6).

We derive Mehler's formula for the Cauchy polynomials by using the operator representation (3.1) and identity (2.7) of the *q*-exponential operator

**Theorem 3.5** (Mehler's formula for  $P_n(x, y)$ ).

$$\sum_{n=0}^{\infty} P_n(x,y) P_n(z,w) \frac{(-1)^n q^{-\binom{n}{2}} t^n}{(q;q)_n} = \frac{(ywt;q)_{\infty}}{(yzt;q)_{\infty}} \,_2 \Phi_1 \begin{bmatrix} w/z,0; \\ q;xq/y \\ q/yzt; \end{bmatrix}, \quad |xq/z| < 1.$$
(3.5)

Proof.

$$\begin{split} \sum_{n=0}^{\infty} P_n(x,y) P_n(z,w) \frac{(-1)^n q^{-\binom{n}{2}} t^n}{(q;q)_n} &= \sum_{n=0}^{\infty} T_y(x\theta) \left\{ (-1)^n q^{\binom{n}{2}} y^n \right\} P_n(z,w) \frac{(-1)^n q^{-\binom{n}{2}} t^n}{(q;q)_n} \\ &= T_y(x\theta) \left\{ \sum_{n=0}^{\infty} P_n(z,w) \frac{(yt)^n}{(q;q)_n} \right\} \\ &= T_y(x\theta) \left\{ \frac{(ywt;q)_\infty}{(yzt;q)_\infty} \right\} \\ &= \frac{(ywt;q)_\infty}{(yzt;q)_\infty} \, _2\Phi_1 \left[ \begin{array}{c} w/z,0; \\ q;xq/y \\ q/yzt; \end{array} \right]. \end{split}$$

The following Mehler's formula for the finite q-shifted factorial can be derived by the same way of (3.12) when we use representation (3.2) and identity (2.7), or directly by setting y = a, w = b and x = z = 1 in (3.12).

**Theorem 3.6** (Mehler's formula for  $(a; q)_n$ ).

$$\sum_{n=0}^{\infty} (a,b;q)_n \frac{(-1)^n q^{-\binom{n}{2}} t^n}{(q;q)_n} = \frac{(abt;q)_{\infty}}{(at;q)_{\infty}} \,_2 \Phi_1 \begin{bmatrix} b,0;\\ q;q/a\\ q/at; \end{bmatrix}, \quad |q/a| < 1.$$
(3.6)

**Proposition 3.7.** We have the following identity

$${}_{2}\Phi_{0}\begin{bmatrix}a,b;\\&qz\\&-;\end{bmatrix} = \frac{(abz;q)_{\infty}}{(az;q)_{\infty}} {}_{2}\Phi_{1}\begin{bmatrix}b,0;\\&q\frac{q}{a}\\&q\frac{q}{a}\end{bmatrix}.$$
(3.7)

*Proof.* Comparing both sides of (3.6) and taking t = z, we get the desire result.

Next, we derive extended Mehler's formula for the Cauchy polynomials by using the operator representation (3.1) and identity (2.7) of the *q*-exponential operator.

**Theorem 3.8** (Extended Mehler's formula for  $P_n(x, y)$ ). For  $m, n \in \mathbb{N}$ , we have

$$\sum_{k=0}^{\infty} (-1)^{k} q^{-\binom{k}{2}-nk-mk} P_{m+k}(x,y) P_{n+k}(z,w) \frac{t^{k}}{(q;q)_{k}}$$
$$= P_{m}(x,y) P_{n}(z,w) \frac{(ywt;q)_{\infty}}{(yztq^{-n};q)_{\infty}} {}_{2}\Phi_{1} \begin{bmatrix} wq^{n}/z,0; \\ q;xq^{1-m}/y \\ q^{1+n}/yzt; \end{bmatrix},$$
(3.8)

provided both sides of (3.8) are convergent.

**Remark 3.2.** Taking n = m = 0 in Theorem 3.8, we get Theorem 3.6.

*Proof.* Upon using the fact that  $P_{k+j}(a, b) = P_j(a, b)P_k(a, q^jb)$ , we have

$$\sum_{k=0}^{\infty} (-1)^{k} q^{-\binom{k}{2} - nk - mk} P_{m+k}(x, y) P_{n+k}(z, w) \frac{t^{k}}{(q; q)_{k}}$$
$$= P_{m}(x, y) P_{n}(z, w) \left\{ \sum_{k=0}^{\infty} (-1)^{k} q^{-\binom{k}{2}} P_{k}(x, q^{m}y) P_{k}(z, q^{n}w) \frac{(tq^{-n-m})^{k}}{(q; q)_{k}} \right\}.$$
(3.9)

Setting  $y = yq^m$ ,  $w = wq^n$  and  $t = tq^{-n-m}$  in Theorem 3.6, the right hand side of (3.9) reads

$$P_{m}(x,y)P_{n}(z,w)\frac{(ywt;q)_{\infty}}{(yztq^{-n};q)_{\infty}} {}_{2}\Phi_{1} \left[ \begin{array}{c} wq^{n}/z,0; \\ q;xq^{1-m}/y \\ q^{1+n}/yzt; \end{array} \right].$$

Summarizing the above calculations, we get the desire result.

The following Mehler's formula for the finite *q*-shifted factorial can be derived directly by setting y = a, w = b and x = z = 1 in (3.8).

**Theorem 3.9** (Extended Mehler's formula for  $(a;q)_n$ ). For  $m, n \in \mathbb{N}$ , we have

$$\sum_{k=0}^{\infty} (-1)^{k} q^{-\binom{k}{2} - nk - mk} (a;q)_{m+k} (b;q)_{n+k} \frac{t^{k}}{(q;q)_{k}}$$
$$= (a;q)_{m} (b;q)_{n} \frac{(abt;q)_{\infty}}{(atq^{-n};q)_{\infty}} {}_{2} \Phi_{1} \begin{bmatrix} bq^{n},0; \\ q;q^{1-m}/b \\ q^{1+n}/bt; \end{bmatrix},$$
(3.10)

provided both sides of (3.10) are convergent.

**Proposition 3.10.** For  $m, n \in \mathbb{N}$ , the following identity holds true:

$${}_{2}\Phi_{0}\begin{bmatrix}aq^{m}, bq^{n}; \\ q; cq^{-m-n} \\ -; \end{bmatrix} = \frac{(abc; q)_{\infty}}{(acq^{-n}; q)_{\infty}} {}_{2}\Phi_{1}\begin{bmatrix}bq^{n}, 0; \\ q; q^{1-m}/b \\ q^{1+n}/bt; \end{bmatrix}.$$
 (3.11)

**Remark 3.3.** Setting m = n = 0 in (3.11), we get (3.7).

*Proof.* Comparing both sides of equation (3.10), we get equation (3.11).

Now, we give the Rogers formula for the Cauchy polynomials by using representation (3.1) and identity (2.7) of the *q*-exponential operator

**Theorem 3.11** (Rogers formula for  $P_n(x, y)$ ).

$$\sum_{m,n=0}^{\infty} P_{n+m}(x,y)(-1)^m q^{-\binom{m}{2}} \frac{t^n}{(q;q)_n} \frac{s^m}{(q;q)_m} = \frac{(yt;q)_{\infty}}{(ys;q)_{\infty}} \,_2\Phi_1 \begin{bmatrix} t/s,0;\\q;xq/y\\q/ys; \end{bmatrix},$$
(3.12)

where  $\max\{|ys|, |xq/y|\} < 1$ .

Proof.

$$\begin{split} \sum_{m,n=0}^{\infty} P_{n+m}(x,y)(-1)^m q^{-\binom{m}{2}-nm} \frac{t^n}{(q;q)_n} \frac{s^m}{(q;q)_m} \\ &= \sum_{m,n=0}^{\infty} T_y(x\theta) \left\{ (-1)^{n+m} q^{\binom{n+m}{2}} y^{n+m} \right\} (-1)^m q^{-\binom{m}{2}-nm} \frac{t^n}{(q;q)_n} \frac{s^m}{(q;q)_m} \\ &= T_y(x\theta) \left\{ \sum_{n=0}^{\infty} \frac{(-1)^n q^{\binom{n}{2}} (yt)^n}{(q;q)_n} \sum_{m=0}^{\infty} \frac{(ys)^m}{(q;q)_m} \right\} \\ &= T_y(x\theta) \left\{ \frac{(yt;q)_\infty}{(ys;q)_\infty} \right\} \\ &= \frac{(yt;q)_\infty}{(ys;q)_\infty} \,_2 \Phi_1 \left[ \begin{array}{c} t/s,0; \\ q/ys; \end{array} \right]. \end{split}$$

The Rogers formula for the finite *q*-shifted factorial can be easily obtained from the above theorem by setting y = a and x = 1, or by using representation (3.2) and identity (2.7) of the *q*-exponential operator

**Theorem 3.12** (Rogers formula for  $(a;q)_n$ ).

$$\sum_{m,n=0}^{\infty} (a;q)_{n+m} (-1)^m q^{-\binom{m}{2}-nm} \frac{t^n}{(q;q)_n} \frac{s^m}{(q;q)_m} = \frac{(at;q)_\infty}{(as;q)_\infty} \,_2 \Phi_1 \begin{bmatrix} t/s,0;\\q;q/a\\q/as; \end{bmatrix},$$
(3.13)

where  $\max\{|as|, |q/a|\} < 1$ .

Here, we derive another Rogers formula for the Cauchy polynomials by using representation (3.1) and identity (2.9) as follows:

**Theorem 3.13** (The second Rogers formula for  $P_n(x, y)$ ).

$$\sum_{m,n=0}^{\infty} P_{n+m}(x,y)q^{-nm} \frac{t^n}{(q;q)_n} \frac{s^m}{(q;q)_m} = \frac{(yt;ys;q)_{\infty}}{(xt;q)_{\infty}} \,_2\Phi_1 \begin{bmatrix} q/yt,0;\\q;ys\\q/xt; \end{bmatrix},$$
(3.14)

where  $\max\{|ys|, |xt|\} < 1$ .

Proof.

$$\begin{split} \sum_{m,n=0}^{\infty} P_{n+m}(x,y) q^{-nm} \frac{t^n}{(q;q)_n} \frac{s^m}{(q;q)_m} \\ &= \sum_{m,n=0}^{\infty} T_y(x\theta) \left\{ (-1)^{n+m} q^{\binom{n+m}{2}} y^{n+m} \right\} q^{-nm} \frac{t^n}{(q;q)_n} \frac{s^m}{(q;q)_m} \\ &= T_y(x\theta) \left\{ \sum_{n=0}^{\infty} \frac{(-1)^n q^{\binom{n}{2}} (yt)^n}{(q;q)_n} \sum_{m=0}^{\infty} \frac{(-1)^m q^{\binom{m}{2}} (ys)^m}{(q;q)_m} \right\} \\ &= T_y(x\theta) \left\{ (yt, ys;q)_{\infty} \right\} \\ &= \frac{(yt, ys;q)_{\infty}}{(xt;q)_{\infty}} \, _2\Phi_1 \left[ \begin{array}{c} q/yt, 0; \\ q/xt; \end{array} \right]. \end{split}$$

Also, the following second Rogers formula for the finite *q*-shifted factorial can be proved from the above theorem by setting y = a and x = 1 directly, or by using representation (3.2) and identity (2.9).

**Theorem 3.14** (The second Rogers formula for  $(a; q)_n$ ).

$$\sum_{m,n=0}^{\infty} (a;q)_{n+m} q^{-nm} \frac{t^n}{(q;q)_n} \frac{s^m}{(q;q)_m} = \frac{(at;as;q)_{\infty}}{(t;q)_{\infty}} \,_2 \Phi_1 \begin{bmatrix} q/at,0; \\ q;as \\ q/t; \end{bmatrix},$$
(3.15)

where  $\max\{|as|, |t|\} < 1$ .

Finally, we give the third Rogers formula or the extended Rogers formula for the Cauchy polynomials  $P_n(x, y)$  by using our representation (3.1) and identity (2.8), as follows:

**Theorem 3.15** (The third Rogers formula for  $P_n(x, y)$ ).

$$\sum_{m,n,k=0}^{\infty} P_{n+m+k}(x,y)(-1)^{k} q^{-\binom{k}{2}-nm-nk-mk} \frac{t^{n}}{(q;q)_{n}} \frac{s^{m}}{(q;q)_{m}} \frac{v^{k}}{(q;q)_{k}}$$
$$= \frac{(yt;ys;q)_{\infty}}{(yv,xt;q)_{\infty}} \,_{3}\Phi_{2} \begin{bmatrix} q/yt,s/v,0;\\q/xt,q/yv; \end{bmatrix}, \qquad (3.16)$$

provided that  $s/v = q^n$  and |xst/v| < 1.

Proof.

$$\begin{split} \sum_{m,n,k=0}^{\infty} P_{n+m+k}(x,y)(-1)^{k} q^{-\binom{k}{2}-nm-nk-mk} \frac{t^{n}}{(q;q)_{n}} \frac{s^{m}}{(q;q)_{m}} \frac{v^{k}}{(q;q)_{k}} \\ &= \sum_{m,n,k=0}^{\infty} T_{y}(x\theta) \left\{ (-1)^{n+m+k} q^{\binom{n+m+k}{2}} y^{n+m+k} \right\} (-1)^{k} q^{-\binom{k}{2}-nm-nk-mk} \frac{t^{n}}{(q;q)_{n}} \frac{s^{m}}{(q;q)_{m}} \frac{v^{k}}{(q;q)_{k}} \\ &= T_{y}(x\theta) \left\{ \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\binom{n}{2}} (yt)^{n}}{(q;q)_{n}} \sum_{m=0}^{\infty} \frac{(-1)^{m} q^{\binom{m}{2}} (ys)^{m}}{(q;q)_{m}} \sum_{k=0}^{\infty} \frac{(yv)^{k}}{(q;q)_{k}} \right\} \\ &= T_{y}(x\theta) \left\{ \frac{(yt,ys;q)_{\infty}}{(yv;q)_{\infty}} \right\} \\ &= \frac{(yt,ys;q)_{\infty}}{(yv,xt;q)_{\infty}} \,_{3}\Phi_{2} \left[ \begin{array}{c} q/yt,s/v,0;\\ q/xt,q/yv; \end{array} \right], \end{split}$$

which achieves the proof.

So that, the third Rogers formula for the finite *q*-shifted factorial can be given from the above theorem by setting y = a and x = 1, or by using our representation (3.2) and identity (2.8).

**Theorem 3.16** (The third Rogers formula for  $(a; q)_n$ ).

$$\sum_{m,n,k=0}^{\infty} (a;q)_{n+m+k} \, (-1)^k q^{-\binom{k}{2}-nm-nk-mk} \frac{t^n}{(q;q)_n} \frac{s^m}{(q;q)_m} \frac{v^k}{(q;q)_k}$$

$$= \frac{(at; as; q)_{\infty}}{(av, t; q)_{\infty}} {}_{3}\Phi_{2} \begin{bmatrix} q/at, s/v, 0; \\ q; q \\ q/t, q/av; \end{bmatrix},$$
(3.17)

provided that  $s/v = q^n$  and |st/v| < 1.

#### 4. Conclusions

In this paper, we have given some special roles of Cauchy companion operator  $E(a, b; \theta)$  and apply these roles to represent the Cauchy polynomials  $P_n(x, y)$  and the finite *q*-shifted factorial  $(a; q)_n$ . Finally, we have derived generating function, Mehler's formula and three Rogers formulas for  $P_n(x, y)$  and  $(a; q)_n$ .

#### Authors' Contributions

All authors have read and approved the final version of the manuscript. The authors contributed equally to this work.

#### **CONFLICTS OF INTEREST**

The authors declare that there are no conflicts of interest regarding the publication of this paper.

#### References

- [1] S.A. Abdul Hussein, The *q*-operators and the *q*-difference equation, M.Sc. Thesis, Basrah University, Basrah, Iraq, 2010.
- [2] M.A. Abdlhusein, The basic and extended identities for certain *q*-polynomials, J. Educ. Pure Sci.- Univ. Thi-Qar. 2 (2012), 11–23.
- [3] M.A. Abdlhusein, Two operator representations for the trivariate *q*-polynomials and Hahn polynomials, Ramanujan J. 40 (2015), 491–509. https://doi.org/10.1007/s11139-015-9731-7.
- [4] M.A. Abdlhusein, The generalized Hahn polynomials, TWMS J. Appl. Eng. Math. 5 (2015), 231–248.
- [5] M.A. Abdlhusein, The Euler operator for basic hypergeometric series, Int. J. Adv. Appl. Math. Mech. 2 (2014), 42–52.
- [6] M.A. Abdlhusein, A.J. Hussein, The *q*-exponential operator and the bivariate Carlitz polynomial with numerical applications, J. Educ. Pure Sci.- Univ. Thi-Qar. 10 (2020), 258–175.
- [7] S.A. Abdul-Ghani, H.L. Saad, Applications of *q*-difference equation and homogeneous *q*-shift operator  ${}_{r}\Phi_{s}(D_{xy})$  in *q*-polynomials, Part. Diff. Equ. Appl. Math. 8 (2023), 100536. https://doi.org/10.1016/j.padiff.2023.100536.
- [8] S.A. Abdul-Ghani, H.L. Saad, The generalized homogeneous q-shift operator  $_{r}\Phi_{s}(D_{xy})$  for q-identities and q-integrals, Iraqi J. Sci. 64 (2023), 5815–5829. https://doi.org/10.24996/ijs.2023.64.11.29.
- [9] S.A. Abdul-Ghani, M.A. Abdlhusein, H.L. Saad, Different operators for the polynomials  $S_n(\delta, \zeta, \lambda | q)$ , Asia Pac. J. Math. 11 (2024), 53. https://doi.org/10.28924/APJM/11-53.
- [10] S. Arjika, *q*-Difference equation for homogeneous *q*-difference operators and their applications, J. Diff. Equ. Appl. 26 (2020), 987–999. https://doi.org/10.1080/10236198.2020.1804888.
- [11] R. Askey, Two integrals of Ramanujan, Proc. Amer. Math. Soc. 85 (1982), 192–194. https://doi.org/10.2307/2044279.
- [12] J. Cao, H.L. Zhou, S. Arjika, Generalized q-difference equations for (q, c)-hypergeometric polynomials and some applications, Ramanujan J. 60 (2022), 1033–1067. https://doi.org/10.1007/s11139-022-00634-9.

- [13] W.Y.C. Chen, A.M. Fu, B. Zhang, The homogeneous q-difference operator, Adv. Appl. Math. 31 (2003), 659–668. https://doi.org/10.1016/s0196-8858(03)00040-x.
- [14] V.Y.B. Chen, N.S.S. Gu, The Cauchy operator for basic hypergeometric series, Adv. Appl. Math. 41 (2008), 177–196. https://doi.org/10.1016/j.aam.2007.08.001.
- [15] W.Y.C. Chen, Z.G. Liu, Parameter augmentation for basic hypergeometric series, II, J. Comb. Theory, Ser. A 80 (1997), 175–195. https://doi.org/10.1006/jcta.1997.2801.
- [16] W.Y.C. Chen, Z.G. Liu, Parameter augmentation for basic hypergeometric series, I, in: B.E. Sagan, R.P. Stanley (Eds.), Mathematical Essays in Honor of Gian-Carlo Rota, Birkhäuser Boston, Boston, MA, 1998: pp. 111–129. https://doi. org/10.1007/978-1-4612-4108-9\_5.
- [17] W.Y.C. Chen, H.L. Saad, On the Gosper–Petkovšek representation of rational functions, J. Symb. Comput. 40 (2005), 955–963. https://doi.org/10.1016/j.jsc.2005.01.007.
- [18] J. Cigler, Elementare q-identitäten, Publication de L'Institute de Recherche Mathématique Avancée, pp. 23–57, 1982.
- [19] J.P. Fang, q-Differential operator identities and applications, J. Math. Anal. Appl. 332 (2007), 1393–1407. https://doi. org/10.1016/j.jmaa.2006.10.087.
- [20] G. Gasper, M. Rahman, Basic hypergeometric series, 2<sup>nd</sup> ed., Cambridge University Press, Cambridge, MA, 2004.
- [21] R.H. Jaber, H.L. Saad, Applications of the finite Operator  $_{3\mathscr{E}_{2}}\begin{pmatrix} q^{-N}, a, b \\ c, d \end{pmatrix}$  for the polynomials  $B_{n}(a, b, c, d, f, x, y|q)$ , Iraqi J. Sci. 64 (2023), 783–797. https://doi.org/10.24996/ijs.2023.64.2.24.
- [22] R. Koekock, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its *q*-analogue, Report No. 98-17, Delft University of Technology, Delft, The Netherlands, 1998.
- [23] F.A. Reshem and H.L. Saad, Generalized *q*-difference equation of the generalized *q*-operator  ${}_{r}\Phi_{s}(\theta)$  and its application in *q*-integrals, Part. Diff. Equ. Appl. Math. 7 (2023), 100517. https://doi.org/10.1016/j.padiff.2023.100517.
- [24] H.L. Saad, M.A. Abdlhusein, New application of the Cauchy operator on the homogeneous Rogers-Szegö polynomials, Ramanujan J. 56 (2021), 347–367. https://doi.org/10.1007/s11139-021-00432-9.
- [25] H.L. Saad, H.J. Hassan, Applications of the operator  $_{r}\Phi_{s}$  in *q*-polynomials, TWMS J. Appl. Eng. Math. 13 (2023), 696–709.
- [26] H.L. Saad and R.H. Jaber, Application of the operator  $\phi \begin{pmatrix} a, b, c \\ d, e \end{pmatrix}$  for the polynomials  $Y_n(a, b, c; d, e; x, y|q)$ , TWMS J. Appl. Eng. Math. 12 (2022), 691–702.
- [27] H.L. Saad, S.M. Khalaf, The generalized *q*-operator  $_{r}\Phi_{s}$  and its applications in *q*-identities, TWMS J. Appl. Eng. Math. 13 (2023), 1137–1149.
- [28] H.L. Saad, F.A. Reshem, The operator  $S(a, b; \theta_x)$  for the polynomials  $Z_n(x, y, a, b|q)$ , Iraqi J. Sci. 63 (2022), 4397–4409. https://doi.org/10.24996/ijs.2022.63.10.26.
- [29] L.J. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966.
- [30] H.M. Srivastava, Certain q-polynomial expansions for functions of several variables, IMA J. Appl. Math. 30 (1983), 315–323. https://doi.org/10.1093/imamat/30.3.315.
- [31] H.M. Srivastava, M.A. Abdlhusein, New forms of the Cauchy operator and some of their applications, Russ. J. Math. Phys. 23 (2016), 124–134. https://doi.org/10.1134/s1061920816010118.
- [32] H.M. Srivastava, S. Arjika, A.S. Kelil, Some homogeneous *q*-difference operators and the associated generalized Hahn polynomials, Appl. Set-Valued Anal. Optim. 1 (2019), 187–201.
- [33] H.M. Srivastava, P.W. Karlsson, Multiple Gaussian hypergeometric series, Halsted Press/Ellis Horwood, 1985. https: //cir.nii.ac.jp/crid/1130282270820911360.

[34] Y. Vyas, H.M. Srivastava, S. Pathak, K. Fatawat, General summation formulas contiguous to the *q*-Kummer summation theorems and their applications, Symmetry. 13 (2021), 1102. https://doi.org/10.3390/sym13061102.