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Abstract. We introduce 1-primary bi-ideals, 2-primary bi-ideals, and 3-primary bi-ideals of non-commutative
rings. We also interact with several properties of the different semiprimary bi-ideals. We discuss the
2-primary bi-ideals and 3-primary bi-ideals, which are generalizations of 1-primary bi-ideals and 2-primary
bi-ideals, respectively. We discuss themp1,mp2,mp3-systems and generators of bi-ideals. A generalization
of the mp1-system is the mp2-system, and a generalization of the mp2-system is the mp3-system. Given
that Φ is a primary bi-ideal of R, it is proved that Φ is a primary bi-ideal of R if and only if R \ Φ is an
mp1-system (mp2-system, mp3-system) of R. To prove that if ∆ is a primary bi-ideal in R and if M is an
mp3-system of R with ∆ ∩M = ∅, then there exists a 3-primary bi-ideal Φ of R such that ∆ ⊆ Φ with
Φ ∩M = ∅. Let H∆ be a primary ideal of R. To prove that a primary bi-ideal ∆ is a 3-primary bi-ideal
of R and the converse is also valid. LetH∆ be a primary ideal of R, a primary bi-ideal ∆ is a 1-primary
bi-ideal (2-primary bi-ideal) in R. ∆ doesn’t need to be a 1-primary bi-ideal. A 3-primary bi-ideal Φ with
a primary bi-ideal ∆ that fails to satisfy the mp3-system is guaranteed. Examples are provided to illustrate
our results.
2020 Mathematics Subject Classification. 16Y60.
Keywords and phrases: 1-primary bi-ideal; 2-primary bi-ideal; 3-primary bi-ideal;mp1 -system;mp2 -system;
mp3 -system.

1. Introduction

Non-commutative rings started to be systematically studied in the 20th century. Another naturally
occurring non-commutative entity is a matrix. Cayley introduced them, along with their addition and
multiplication principles. Pierce claims that square matrices adhere to the well-known ring axioms.
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With his Wedderburns Theorem, which states that every finite division ring is commutative, Scottish
mathematician Wedderburn made fundamental contributions to the science of non-commutative rings.
Commutative and non-commutative ring theories came together and impacted one another in the 18th
century. The basic findings for primary ideals and prime radicals in commutative rings are expanded
in this study to non-commutative rings. Basic findings on non-commutative rings by Lam are [7]
along with a few findings on radicals [21]. Numerous studies have examined various sorts of ideals in
mathematical structures like rings and semirings [5, 9], respectively. Dedekind established the concept
of ideals, which comprised associative rings, in the theory of algebraic numbers. Algebraic numbers
were added to the concept in this way. Additionally, it is a specific instance of Lajos’ (m,n)-ideal. Lajos
could analyse regular and intra-regular semigroups using quasi-ideals and generalized bi-ideals. A
bi-ideal to quote [6] while describing various classes of semigroups. In some ways, it is arbitrary, but
it is specified in terms of bi-ideals and associative rings. An expansion of LIs and RIs, particularly
examples of bi-ideals, is a quasi-ideal. Steinfeld introduced semigroups and rings, which are now
known as quasi-ideals. Semirings offer a variety of techniques to explain prime ideals, according to
quote [5]. The prime ideal theory has been widely applied to commutative ring theory. Compared to
commutative rings, it has not been applied to non-commutative rings as much. In non-commutative
partial rings, distinct prime partial BIss were studied by Palanikumar et al. [12].

Van derWalt [20] investigated the prime and semiprimate BIs of associative ringswith unity. Roux [8]
extended associative rings devoid of unity to prime and semiprime BIs. Flaska et al. [3] described BIs in
basic semirings. A few findings in the ideal theory of commutative semirings with non-zero identities
were also described by Atani [1]. In general rings, McCoy provides some information regarding prime
ideals [9]. In [2, 5, 17] provided information on the PID for rings and semirings. The terms prime
bi-ideals and semiprime bi-ideals were established by Van der Walt [20]. The subsets X1 and X2

of R and the product X1 · X2, what we mean is that the subring of R is generated by the set of all
products x1 · x2, where x1 ∈ X1 and x2 ∈ X2. By a bi-ideal ∆1 of a ring R, we mean a subring ∆1 of R

satisfying ∆1R∆1 ⊆ ∆1. An ID Φ of a ring R is PID if and only if whenever ∆∆1 ⊆ Φ, for ideals ∆

and ∆1 of R implies ∆ ⊆ Φ or ∆1 ⊆ Φ [9]. Recently, Palanikumar et al. discussed the new algebraic
structures [10,11, 13]. This paper is divided into five sections, each organized differently. In Section 2,
basic definitions will be briefly described. We discuss the different types of primary BIDs and their
extensions in Section 3. The semiprimary BIDs are discussed in Section 4. The conclusion is drawn in
Section 5. This study hopes to accomplish a number of fundamental objectives, including:

(1) A 1-primary bi-ideal implies a 2-primary bi-ideal implies a 3-primary bi-ideal and an opposite
direction does not hold.

(2) Anmpb1-system implies anmpb2-system implies anmpb3-system and opposite direction does
not hold with Example.



Asia Pac. J. Math. 2024 11:81 3 of 13

(3) A 1-semi primary bi-ideal implies a 2-semi primary bi-ideal implies a 3-semi primary bi-ideal,
and the reverse implication does not match.

(4) An npb1-system implies an npb2-system implies an npb3-system and opposite direction does not
hold with example.

List of Abbreviations

RID right ideal
LID left ideal
ID ideal
BID bi-ideal
PID prime ideal

primary BID primary bi-ideal
primary ID primary ideal
TID two sided ideal
semi primary BID semi primary bi-ideal
semi primary ID semi primary ideal

2. Basic concepts

Here are a few definitions necessary for the remainder of our study.

Definition 2.1. (i) A non-empty subsets Γ of a ring (R,+, ·) is said to be an LID (RID) of R if Γ is a
subring of R and RΓ ⊆ Γ (respectively, ΓR ⊆ Γ). If Γ is an LID and RID of R, then Γ is called an ID
of R.
(ii) A subring Γ of R is said to be a BID if ΓRΓ ⊆ Γ.
(iii) A subring Γ of R is said to be a QID if ΓR ∩RΓ ⊆ Γ.

Definition 2.2. [8] (i) The BID Γ of R is a prime BID if δ1Rδ2 ⊆ Γ implies δ1 ∈ Γ or δ2 ∈ Γ.
(ii) The BID Γ of R is a semiprime BID if δ1Rδ1 ⊆ Γ implies δ1 ∈ Γ.

Theorem 2.3. [8] (i) The BID Γ of R is prime BID if and only if Γ1Γ2 ⊆ Γ, with Γ1 is an RID of R and Γ2 is

an LID of R implies Γ1 ⊆ Γ or Γ2 ⊆ Γ.

(ii) The BID Γ of R is semiprime BID if and only if Γ2
1 ⊆ Γ (or Γ2

2 ⊆ Γ) implies Γ1 ⊆ Γ (or Γ2 ⊆ Γ) for any

LID Γ1 (or RID Γ2) of R.

Lemma 2.4. [9] A non-empty subset Γ of R β ∈ Γ. Then

(β)r = {nβ + βR|n ∈ Z+} is an RID generated by β.

(β)l = {nβ + Rβ|n ∈ Z+} is an LID generated by β.

(β) = {nβ + Rβ + βR + RβR|n ∈ Z+} is a ID generated by β.

(β)b = {nβ +mβ2 + βRβ|n ∈ Z+} is a BID generated by β.

Definition 2.5. An ID Φ of R is said to be primary if for any IDs Γ1 and Γ2 of R, Γ1Γ2 ⊆ Φ implies that
Γ1 ⊆ Φ or Γ2 ⊆

√
Φ.
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Definition 2.6. [4] Let R be a non-commutative ring. For an ID Γ of R, the radical of Γ is defined
as follows:

√
Γ = {ψ ∈ R| everym-system containing ψ intersects Γ} ⊆ radical Γ. That is,

√
Γ = {ψ ∈

R|M(ψ) ∩ Γ 6= ∅}.

Lemma 2.7. [4, 8] (i) Let Γ and Γ1 be two IDs of R. If Γ ⊆ Γ1, then
√

Γ ⊆
√

Γ1.

(ii) If ψ ∈
√

Γ, then there exists a positive integer n such that ψn ∈ Γ.

(iii) Let Γ be any BID of a ring R and let LΓ = {τ ∈ Γ|Rτ ⊆ Γ} and HΓ = {σ ∈ LΓ|σR ⊆ LΓ}.

3. Characterization of primary BIDs

Here, we introduce three types of primary BIDs.

Definition 3.1. (i) A BID Φ of R is called 1-primary if ∆1∆2 ⊆ Φ implies ∆1 ⊆ Φ or ∆2 ⊆
√

Φ for any
BIDs ∆1 and ∆2 of R.
(ii) A BID Φ of R is called 2-primary if βRδ ⊆ Φ implies β ∈ Φ or δ ∈

√
Φ .

(iii) A BID Φ of R is called 3-primary if Γ1Γ2 ⊆ Φ implies Γ1 ⊆ Φ or Γ2 ⊆
√

Φ for any IDs Γ1 and Γ2 of
R.

Theorem 3.2. Every 1-primary BID is a 2-primary BID.

Proof. Let Φ be a 1-prime BID of R. Let β, δ ∈ R and βRδ ⊆ Φ. Now, (βR) · (Rδ) ⊆ βRδ ⊆ Φ, since
βR and Rδ are BIDs. Hence, βR ⊆ Φ or Rδ ⊆

√
Φ. Suppose that βR ⊆ Φ. Consider < β >b · <

β >b⊆ βR ⊆ Φ. Then β ∈ Φ. Similarly, if Rδ ⊆
√

Φ, then δ ∈
√

Φ. Thus, Φ is a 2-primary BID of R. �

The converse of the Theorem 3.2 does not hold.

Example 3.3. Consider the ring R = M2(Z2) and Φ =

{0 0

0 0

} is a 2-primary BID, but not a

1-primary BID. Now, ∆1 =

{0 0

0 0

 ,

1 0

0 0

}, ∆2 =

{0 0

0 0

 ,

0 0

0 1

} and

√
Φ =

{0 0

0 0

 ,

0 1

0 0

 ,

0 0

1 0

 ,

1 1

1 1

}. Since ∆1 ·∆2 ⊆ Φ, but ∆1 6⊆ Φ and ∆2 6⊆
√

Φ.

Theorem 3.4. Every 2-primary BID is a 3-primary BID.

Proof. Let Φ be an 2-prime BID of R. For the IDs Γ1 and Γ2 of R such that Γ1 ·Γ2 ⊆ Φ. Assume Γ1 6⊆ Φ,
let β ∈ Γ1 \ Φ. For any δ ∈ Γ2, βRδ ⊆< β > · < δ >⊆ Γ1 · Γ2 ⊆ Φ. Hence, δ ∈

√
Φ. Then Γ2 ⊆

√
Φ.

Thus, Φ is a 3-primary BID of R. �

The converse of Theorem 3.4 does not hold.
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Example 3.5. Consider the ring R = M2(Z2), β =

{1 0

1 0

}, δ =

{0 0

0 1

},
Φ =

{0 0

0 0

 ,

0 1

0 1

}, √Φ =

{0 0

0 0

 ,

0 1

0 0

 ,

0 0

1 0

 ,

0 1

0 1

1 1

1 1

}. Here Φ is a

3-primary BID but not a 2-primary BID. Now, β /∈ Φ, δ /∈
√

Φ and βRδ ⊆ Φ imply Φ is not a 2-primary
BID of R.

Definition 3.6. (i) A subsetM ofR is called anmp1-system if for any β, δ ∈M , there exists β1 ∈< β >b

and δ1 < δ >b such that β1δ1 ∈M .
(ii) A subsetM ofR is called anmp2-system if for any β, δ ∈M , there exists β1 ∈< β >r and δ1 ∈< δ >l

such that β1δ1 ∈M .
(iii) A subset M of R is called anmp3-system if for any β, δ ∈M , there exists β1 ∈< β > and δ1 ∈< δ >

such that β1δ1 ∈M .

Theorem 3.7. If Φ is a BID of R, then Φ is a 1-primary (2-primary, 3-primary) BID if and only if R \ Φ is an

mp1-system (mp2-system,mp3-system) of R.

Proof. Let Φ be a 1-primary BID of R. To show that R \ Φ is anmp1-system. Let τ, σ ∈ R \ Φ. Hence,
τ, σ ∈ R but τ, σ /∈ Φ. So < τ >b · < σ >b 6⊆ Φ. There exists τ ′ ∈< τ >b and σ′ ∈< σ >b such that
τ
′ · σ′ /∈ Φ. Hence, τ ′ · σ′ ∈ R \Φ. So we have proved that for τ, σ ∈ R \Φ, there exists τ ′ ∈< τ >b and
σ
′ ∈< σ >b such that τ ′ · σ′ ∈ R \ Φ. So R \ Φ is anmp1-system.
Conversely, let R \ Φ be anmp1-system. We show that Φ is a 1-primary BID of R. Let ∆1 ·∆2 ⊆ Φ

for the BIDs ∆1 and ∆2 of R. Let us shows that ∆1 ⊆ Φ or ∆2 ⊆
√

Φ. Let us arrive at a contradiction.
If ∆1 6⊆ Φ and ∆2 6⊆

√
Φ, let δ1 ∈ ∆1 \ Φ and let δ2 ∈ ∆2 \

√
Φ. Since δ2 /∈

√
Φ, so there exists an

mp1-system R \ Φ in R such that δ2 ∈ R \ Φ and (R \ Φ) ∩ Φ = ∅. Thus, δ1, δ2 ∈ R \ Φ implies
< δ1 >b · < δ2 >b 6⊆ Φ, which is a contradiction. Thus, ∆1 ⊆ Φ or ∆2 ⊆

√
Φ. Hence, Φ is a 1-primary

BID of R. �

Lemma 3.8. Everymp1-system is anmp2-system.

Proof. Given that M be anmp1-system of R. For any β, δ ∈M , there exists β1 ∈< β >b and δ1 ∈< δ >b

such that β1 · δ1 ∈M . Let us shows that M is anmp2-system. For β, δ ∈M , there exists β1 ∈< β >r

and δ1 ∈< δ >l. Since RIDs and LIDs are BIDs, we have β1 · δ1 ∈M . Hence, M is anmp2-system of
R. �

As shown in the following example, the converse is need not be true.
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Example 3.9. Consider the ring R = M2(Z2) and M = R \

{0 0

0 0

} is anmp2- system, but notmp1-

system. For
0 0

1 0

 and
0 0

1 1

 ∈M , but there is no β1 ∈

〈0 0

1 0

〉
b

and no δ1 ∈

〈0 0

1 1

〉
b

such that β1δ1 ∈M because
〈0 0

1 0

〉
b

·

〈0 0

1 1

〉
b

=

{0 0

0 0

}.
Lemma 3.10. Everymp2-system is anmp3-system.

Proof. Given that M be anmp2-system of R. For any β, δ ∈M , there exists β1 ∈< β >r and δ1 ∈< δ >l

such that β1δ1 ∈M . Let us shows that M is anmp3-system. For β, δ ∈M , there exists β1 ∈< β > and
δ1 ∈< δ >. Since IDs are RIDs and LIDs, we have β1δ1 ∈M . Hence, M is anmp3-system of R. �

However, the converse is not hold by the example.

Example 3.11. R = M2(Z2) andM = R\

{0 0

0 0

 ,

0 1

0 1

} is anmp3- system, but notmp2-system.

For
1 1

1 1

 and
0 0

0 1

 ∈M , but there is no β1 ∈

〈1 1

1 1

〉
r

and no δ1 ∈

〈0 0

0 1

〉
l

such that

β1 · δ1 ∈M because
〈1 1

1 1

〉
r

·

〈0 0

0 1

〉
l

=

{0 0

0 0

 ,

0 1

0 1

}.
Remark 3.12. Let

√
∆ be any BID of a ring R. Then

√
L∆ = {τ ∈

√
∆|Rτ ⊆

√
∆} and

√
H∆ = {σ ∈

√
L∆|σR ⊆

√
L∆}.

Lemma 3.13. Let
√

∆ be a BID of R. Then
√
L∆ is an LID of R such that

√
L∆ ⊆

√
∆.

Proof. Let τ, σ ∈
√
L∆. Then τ, σ ∈

√
∆ and Rτ ⊆

√
∆ and Rσ ⊆

√
∆. Since

√
∆ is a BID of R,

τ − σ ∈
√

∆ and τσ ∈
√

∆. Now, R(τ − σ) ⊆ Rτ − Rσ ⊆
√

∆. Thus, τ − σ ∈
√
L∆. Now,

R(τσ) ⊆ (Rτ)(Rσ) ⊆
√

∆. Thus, τσ ∈
√
L∆. Hence,

√
L∆ is a subring of R. Let τ ∈

√
L∆ and ψ ∈ R.

Since ψτ ∈ Rτ ⊆
√

∆, we have ψτ ∈
√

∆ and Rψτ ⊆ RRτ ⊆ Rτ ⊆
√

∆. Thus, ψτ ∈
√
L∆. Hence,

√
L∆ is an LID of R and

√
L∆ ⊆

√
∆. �

Lemma 3.14. Let
√

∆ be a BID of R. Then
√
H∆ is a subring of R.

Proof. Let τ, σ ∈
√
H∆. Then τ, σ ∈

√
L∆ and τR ⊆

√
L∆ and σR ⊆

√
L∆. Since τ ∈

√
L∆, τ ∈

√
∆

and Rτ ⊆
√

∆. Since σ ∈
√
L∆, σ ∈

√
∆ and Rσ ⊆

√
∆. Since τ, σ ∈

√
∆ and

√
∆ is a subring of

R. We have τ − σ ∈
√

∆ and τσ ∈
√

∆. Now, R(τ − σ) ⊆ Rτ − Rσ ⊆
√

∆ implies τ − σ ∈
√
L∆.

Now, (τ − σ)R ⊆ τR − σR ⊆
√
L∆. Hence, τ − σ ∈

√
H∆. Now, R(τσ) ⊆ (Rτ)(Rσ) ⊆

√
∆ implies

τσ ∈
√
L∆ and (τσ)R ⊆ (τR)(σR) ⊆

√
L∆. That is τσ ∈

√
H∆. Hence,

√
H∆ is a subring of R. �
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Lemma 3.15. Let
√

∆ be an LID of R. Then
√
L∆ =

√
∆.

Proof. Clearly,
√
L∆ ⊆

√
∆. Let τ ∈

√
∆, since

√
∆ is an LID of R. We have Rτ ⊆

√
∆ implies τ ∈

√
L∆.

Thus,
√

∆ ⊆
√
L∆. Hence,

√
L∆ =

√
∆. �

Theorem 3.16. Let
√

∆ is a BID of R. Then
√
H∆ is the unique largest TID of R contained in

√
∆.

Proof. Let
√

∆ is any BID ofR. To prove that
√
H∆ is the TID ofR. Since

√
L∆ ⊆

√
∆ and

√
H∆ ⊆

√
L∆.

Therefore,
√
H∆ ⊆

√
L∆ ⊆

√
∆. Let τ ∈

√
H∆ and χ ∈ R. Then τ ∈

√
H∆ ⊆

√
∆ implies that τ ∈

√
∆.

Since τ is an element of
√
L∆. We have Rτ ⊆

√
∆ and τR ⊆

√
L∆. Then χτ ∈ Rτ ⊆

√
∆ implies χτ ∈

√
∆ and Rχτ ⊆ RRτ ⊆ Rτ ⊆

√
∆ implies that χτ ∈

√
L∆. Now, τχ ∈ τR ⊆

√
L∆. Hence, τχ ∈

√
L∆

and χτ ∈
√
L∆. First to prove that τχ ∈

√
H∆ and χτ ∈

√
H∆. Now, τχR ⊆ τRR ⊆ τR ⊆

√
L∆.

Hence, τχR ⊆
√
L∆ implies τχ ∈

√
H∆. Now, χτR ⊆ RτR ⊆ R

√
L∆ ⊆

√
L∆. Since

√
L∆ is an LID

of R, χτ ∈
√
H∆. Hence,

√
H∆ is a TID of R. It enough to prove

√
H∆ is a largest two sided ID of R.

Let
√

S be any ID of R and
√

S ⊆
√

∆. Let % ∈
√

S . Then % ∈
√

∆ and R% ⊆
√

S ⊆
√

∆. Hence,
R% ⊆

√
∆ implies % ∈

√
L∆. Hence,

√
S ⊆

√
L∆. Next, % ∈

√
L∆ and %R ⊆

√
S ⊆

√
L∆. Therefore,

%R ⊆
√
L∆. Thus, % ∈

√
H∆. Hence,

√
S ⊆

√
H∆. �

Theorem 3.17. A BID ∆ of a ring R is 2-primary BID if and only if Γ1Γ2 ⊆ ∆, with Γ1 is an RID of R and

Γ2 is an LID of R implies Γ1 ⊆ ∆ or Γ2 ⊆
√

∆.

Proof. Let ∆ be a 2-primary BID and Γ1Γ2 ⊆ ∆. Suppose Γ1 6⊆ ∆. For all δ ∈ Γ2 and β ∈ Γ1 \∆, we
have βRδ ⊆ Γ1Γ2 ⊆ ∆. Since ∆ is primary and β 6∈ ∆, we have δ ∈

√
∆ for all δ ∈ Γ2. So Γ2 ⊆

√
∆.

Conversely, suppose that βRδ ⊆ ∆. Now, (βR)(Rδ) ⊆ βRδ implies βR ⊆ ∆ or Rδ ⊆
√

∆.
If βR ⊆ ∆, then < β >r< δ >l= {nβ + βR|n ∈ Z+} · {mδ + Rδ|m ∈ Z+} = nβmδ + nβRδ +

βRmδ + βRRδ ⊆ βR ⊆ ∆. Thus, β ∈ ∆ or δ ∈
√

∆. Similarly, suppose that Rδ ⊆
√

∆ implies that
< β >r< δ >l⊆ Rδ ⊆

√
∆. Thus, β ∈ ∆ or δ ∈

√
∆. �

Theorem 3.18. A BID ∆ is a 3-primary BID of R if and only if H∆ is a primary ID of R.

Proof. Let ∆ be an 3-primary BID of R. To show that H∆ is a primary ID of R. Let Γ1 and Γ2 be the
IDs of R such that Γ1 · Γ2 ⊆ H∆. By Theorems 3.16 and 3.17 and Proposition 6 [8], H∆ and

√
H∆ are

unique largest TID contained in ∆ and
√

∆ respectively. Thus, Γ1 ⊆ H∆ or Γ2 ⊆
√
H∆.

Conversely, suppose that Γ1 and Γ2 are IDs of R such that Γ1 · Γ2 ⊆ ∆. Then Γ1 · Γ2 ⊆ H∆ implies
Γ1 ⊆ H∆ ⊆ ∆ or Γ2 ⊆

√
H∆ ⊆

√
∆. Hence, ∆ is a 3-primary BIDs of R. �

Corollary 3.19. If ∆ is a 1-primary BID of R, then H∆ is a primary ID of R.

Proof. Let ∆ be a 1-primary BID of R. Let us show that H∆ is a primary ID of R. Let Γ1 and Γ2 be an
IDs of R such that Γ1Γ2 ⊆ H∆. To show that Γ1 ⊆ H∆ or Γ2 ⊆

√
H∆. SinceH∆ ⊆ ∆ and

√
H∆ ⊆

√
∆.



Asia Pac. J. Math. 2024 11:81 8 of 13

Hence, Γ1Γ2 ⊆ ∆. Since Γ1 and Γ2 are IDs of R, it is a BIDs and ∆ is a 1-primary BID of R. Hence,
Γ1 ⊆ ∆ or Γ2 ⊆

√
∆. By Proposition 6 [8],H∆ is the largest ID of R such thatH∆ ⊆ ∆ and by Theorem

3.16,
√
H∆ is the largest ID of R such that

√
H∆ ⊆

√
∆. Thus, Γ1 ⊆ H∆ or Γ2 ⊆

√
H∆. Hence,H∆ is a

primary ID of R. �

Based on the following example, it is evident that the converse of the corollary 3.19 cannot hold.

Example 3.20. Let R = M2(Z2), ∆ =

{0 0

0 0

 ,

1 1

0 0

} is a BID and H∆ =

{0 0

0 0

} is

a primary ID, but ∆ is not a 1-primary BID of R. For the BIDs ∆1 =

{0 0

0 0

 ,

1 0

1 0

} and

∆2 =

{0 0

0 0

 ,

0 0

0 1

}. Since ∆1 ·∆2 ⊆ ∆, but ∆1 6⊆ ∆ and ∆2 6⊆
√

∆.

Corollary 3.21. If ∆ is a 2-primary BID of R, then H∆ is a primary ID of R.

Proof. Let ∆ be an 2-primary BID of R. Let us show thatH∆ is a primary ID of R. Let Γ1 and Γ2 be an
IDs of R such that Γ1Γ2 ⊆ H∆. To show that Γ1 ⊆ H∆ or Γ2 ⊆

√
H∆. SinceH∆ ⊆ ∆ and

√
H∆ ⊆

√
∆.

Hence, Γ1Γ2 ⊆ ∆. Since Γ1 is an ID of R, it is an RID and since Γ2 is an ID of R, it is an LID. Since ∆

is an 2-primary BID of R, we have Γ1 ⊆ ∆ or Γ2 ⊆
√

∆. By Proposition 6 [8], H∆ is the largest ID of
R such that H∆ ⊆ ∆ and by Theorem 3.16,

√
H∆ is the largest ID of R such that

√
H∆ ⊆

√
∆. Thus,

Γ1 ⊆ H∆ or Γ2 ⊆
√
H∆. Hence, H∆ is a primary ID of R. �

The converse of Corollary 3.21 does not hold by the example.

Example 3.22. Consider the ring R = M2(Z2). Let ∆ =

{0 0

0 0

 ,

1 1

0 0

} is a BID and

H∆ =

{0 0

0 0

} is a primary ID. Now, βRδ =

1 0

0 0

R

0 0

0 0

 ⊆ ∆ but a 6∈ ∆ and b 6∈
√

∆.

Thus, ∆ is not a 2-primary BID of R.

Theorem 3.23. Let M be anmp3- system and ∆ be a BID of R with ∆∩M = ∅. Then there exists a 3-primary

BID Φ of R containing ∆ with Φ ∩M = ∅.

Proof. Let X =
{

Γ2|Γ2 is a BID with ∆ ⊆ Γ2 and Γ2 ∩M = ∅
}
. Clearly X is non-empty. By Zorn’s

lem, there exists a maximal element Φ in X . We claim Φ is a 3-primary BID of R. In view of the
Theorem 3.18, it is enough if we show that HΦ is a primary ID in R. Since HΦ ⊆ Φ and Φ ∩M = ∅,
this implies that HΦ ∩M = ∅. Then HΦ is a largest ID in R such that HΦ ∩M = ∅. We claim that
< β >< δ >⊆ HΦ. Then < β >⊆ H(Q) or < δ >⊆ H(Q). By proving a contradiction. If < β > 6⊆ HΦ

and < δ >6⊆
√
HΦ, then τ ∈< β > \HΦ and σ ∈< δ > \

√
HΦ. Then < τ >⊆< β > and < σ >⊆< δ >.
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If < β >< δ >⊆ HΦ, then < τ >< σ >⊆< β >< δ >⊆ HΦ. Since < δ > 6⊆
√
HΦ and hence

(< δ >)n 6⊆ HΦ implies that < δ >6⊆ HΦ. Then (HΦ+ < τ >) ∩M 6= ∅ and (HΦ+ < σ >) ∩M 6= ∅.
Thus, (HΦ+ < τ >)(HΦ+ < σ >) ⊆ HΦ. Then the BID (H(Q) + τ) contains an element mp1 of M .
Then there exist$1 ∈ (HΦ+ < τ >)∩M . Similarly the BID (H(Q) + σ) contains an elementmp2 of M .
Then there exists$2 ∈ (HΦ+ < σ >)∩M . SinceM ismp3-system ofA,$1

′ ∈< $1 > and$2
′ ∈< $2 >

$1
′
$2
′ ∈ M for some $1

′ ∈< $1 >⊆ (HΦ+ < τ >) and $2
′ ∈< $2 >⊆ (HΦ+ < σ >). Hence,

$1
′
$2
′ ∈ (HΦ+ < τ >)(HΦ+ < σ >) ⊆ HΦ. Which is a contradiction. Thus, < β >< δ >6⊆ HΦ.

Hence, HΦ is a primary ID of R. By Theorem 3.18, Φ is a 3-primary BID of R. If HΦ is not largest
element in X , then there is an maximal ID Φ′ in R such that HΦ ⊆ Φ′ and Φ′ ∩M = ∅. It can be easily
seen that Φ′ is a primary ID; hence, Φ′ is the required BID of R. �

4. Characterization of semiprimary BIDs

Here, we introduce three types of semiprimary BIDs.

Definition 4.1. (i) A BID Φ of R is called a 1-semiprimary if ∆2 ⊆ Φ implies ∆ ⊆ Φ or ∆ ⊆
√

Φ for
any BID ∆ of R.
(ii) A BID Φ of R is called a 2-semiprimary if βRβ ⊆ Φ implies β ∈ Φ or β ∈

√
Φ.

(iii) A BID Φ of R is called a 3-semiprimary if Γ2
1 ⊆ Φ implies Γ1 ⊆ Φ or Γ1 ⊆

√
Φ for any ID Γ1 of R.

Theorem 4.2. Every 1-semiprimary BID is a 2-semiprimary BID of R.

Proof. Let Φ is a 1-semiprimary BID of R. Let β ∈ R and βRβ ⊆ Φ. Now, (βR) · (Rβ) ⊆ βRβ ⊆ Φ,
since βR and Rβ are BIDs. Hence, βR ⊆ Φ or Rβ ⊆

√
Φ. Suppose that βR ⊆ Φ. Consider < β >b · <

β >b⊆ βR ⊆ Φ. Then β ∈ Φ. Similarly, if Rβ ⊆
√

Φ, then β ∈
√

Φ. Thus, Φ is a 2-semiprimary BID of
R. �

The converse of Theorem 4.2 cannot be true.

Example 4.3. Consider the ring R = M2(Z2). Let Φ =

{0 0

0 0

 ,

0 1

0 0

} is a 2-semiprimary BID,

but not a 1-semiprimary BID. For the BID ∆ =

{0 0

0 0

 ,

0 0

1 1

}. Since ∆2 ⊆ Φ, but ∆ 6⊆ Φ or

∆ 6⊆
√

Φ.

Theorem 4.4. Every 2-semiprimary (2-primary) BID is a 3-semiprimary BID of R.

Proof. Suppose that Φ is a 2-semiprimary BID and Γ2 ⊆ Φ for an ID Γ of R. To show that Γ ⊆ Φ or
Γ ⊆
√

Φ. IfΓ 6⊆ Φ andΓ 6⊆
√

Φ. For β ∈ Γ, but β /∈ Φ and β /∈
√

Φ. Now βRβ ⊆< β > · < β >⊆ Γ2 ⊆ Φ.
Since Φ is a 2-semiprimary BID of R, then β ∈ Φ or β ∈

√
Φ. Which is contradiction, hence Γ ⊆ Φ or

Γ ⊆
√

Φ. Thus, Φ is a 3-semiprimary BID of R. �
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The converse of Theorem 4.4 is false.

Example 4.5. Consider the ring R = M2(Z2) and Φ =

{0 0

0 0

 ,

1 1

0 0

} is a 3-semiprimary BID

of R. Now
1 0

0 0

 /∈ Φ,

0 0

1 1

 /∈
√

Φ and
1 0

0 0

R

0 0

1 1

 ⊆ Φ imply Φ is not a 2-primary BID

of R.

Definition 4.6. (i) A subset N of R is called np1-system if for any β ∈ N , there exist β1, β2 ∈< β >b

such that β1β2 ∈ N .
(ii) A subset N of R is called np2-system if for any β ∈ N , there exist β1, β2 ∈< β >r (β1, β2 ∈< β >l)

such that β1β2 ∈ N .
(iii) A subsetN of R is called np3-system if for any β ∈ N , there exist β1, β2 ∈< β > such that β1β2 ∈ N .

Theorem 4.7. If Φ is a BID of R, then Φ is a 1-semiprimary BID (2-semiprimary, 3-semiprimary) if and only

if R \ Φ is an np1-system (np2-system, np3-system).

Proof. Let Φ be a 1-semiprimary BID of R. To show that R \ Φ is an np1-system. Let β ∈ R \ Φ. Hence,
β ∈ R but β /∈ Φ. So < β >b · < β >b 6⊆ Φ. There exists β′ , β′′ ∈< β >b such that β′ · β′′ /∈ Φ. Hence,
β
′ ·β′′ ∈ R \Φ. So we have proved that for β ∈ R \Φ there exists β′ , β′′ ∈< β >b such that β′ ·β′′ ∈ R \Φ.

So R \ Φ is an np1-system.
Conversely, let R \ Φ is an np1-system. We show that Φ is a 1-semiprimary BID of R. Let ∆2 ⊆ Φ

for the BID ∆ of R. Let us shows that ∆ ⊆ Φ or ∆ ⊆
√

Φ. Let us arrive at a contradiction. If ∆ 6⊆ Φ

and ∆ 6⊆
√

Φ, let δ1 ∈ ∆ \ Φ and δ1 ∈ ∆ \
√

Φ. Since δ1 /∈
√

Φ, so there exists an np1-system R \ Φ in R

such that δ1 ∈ R \ Φ and (R \ Φ) ∩ Φ = ∅. Thus, δ1 ∈ R \ Φ implies < δ1 >b · < δ1 >b 6⊆ Φ, which is
a contradiction. Thus, ∆ ⊆ Φ or ∆ ⊆

√
Φ. Hence, Φ is a 1-semiprimary BID of R. Similarly, we can

prove the other two cases. �

Lemma 4.8. Every np1-system is an np2-system.

Proof. Given that N be an np1-system of R. For any β ∈ N , there exists β1, β2 ∈< β >b such that
β1 · β2 ∈ N. Let us shows that N is an np2-system. For β ∈ N , there exists β1, β2 ∈< β >r (β1, β2 ∈<

β >l). Since RIDs and LIDs are BIDs, we have β1 · β2 ∈ N . Hence, N is an np2-system of R. �

Here is an example demonstrating that the converse of the above Lemma is false.

Example 4.9. Consider the ring R = M2(Z2). Let N = R \

{0 0

0 0

 ,

0 1

0 0

} is an np2- system,

but not np1- system. For
0 0

1 0

 ∈ N , but there is no β1, β2 ∈

〈0 0

1 0

〉
b

such that β1 · β2 ∈ N .
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Since
〈0 0

1 0

〉
b

.

〈0 0

1 0

〉
b

=

{0 0

0 0

} /∈ N .

Theorem 4.10. Let ∆ be a 2-semiprimary BID of a ring R. Then Γ2 ⊆ ∆ implies Γ ⊆ ∆ or Γ ⊆
√

∆ for any

LID (RID)Γ of R.

Proof. Let ∆ be a 2-semiprimary and Γ2 ⊆ ∆ for any LID Γ of R . To show that Γ ⊆ ∆ or Γ ⊆
√

∆. If
not, Γ 6⊆ ∆ and Γ 6⊆

√
∆. then there exists β ∈ Γ, but β 6∈ ∆ and β 6∈

√
∆. Now, βRβ ⊆ ΓRΓ ⊆ Γ2 ⊆ ∆.

Since ∆ is 2-semiprimary implies that β ∈ ∆ or β ∈
√

∆. Which is a contradiction hence Γ ⊆ ∆ or
Γ ⊆
√

∆.
Conversely, suppose that βRβ ⊆ ∆. Now, (βR)(Rβ) ⊆ βRβ implies βR ⊆ ∆ or Rβ ⊆

√
∆. If

βR ⊆ ∆, then < β >r< β >l= {nβ + βR|n ∈ Z+} · {β + Rβ|m ∈ Z+} ⊆ βR ⊆ ∆. Thus, β ∈ ∆ or
β ∈
√

∆. Similarly, suppose that Rβ ⊆
√

∆ implies that < β >r< β >l⊆ Rβ ⊆
√

∆. Thus, β ∈ ∆ or
β ∈
√

∆. �

Theorem 4.11. A BID ∆ is a 3-semiprimary BID of R if and only if H∆ is a semiprimary ID of R.

Proof. Let ∆ be an 3-semiprimary BID of R. To show that H∆ is a semiprimary ID of R. Let Γ be a ID
of R such that Γ2 ⊆ H∆. By Theorems 3.16 and 4.10H∆ and

√
H∆ are unique largest TID contained in

∆ and
√

∆ respectively. Thus, Γ ⊆ H∆ or Γ ⊆
√
H∆.

Conversely, suppose that H∆ is a semiprimary ID of R and Γ is a ID of R such that Γ2 ⊆ ∆. To
show that Γ ⊆ ∆ or Γ ⊆

√
∆. Now, Γ2 ⊆ H∆ implies Γ ⊆ H∆ ⊆ ∆ or Γ ⊆

√
H∆ ⊆

√
∆. Hence, ∆ is a

3-semiprimary BID of R. �

Corollary 4.12. If ∆ is a 1-semiprimary (2-semiprimary) BID of R, then H∆ is a semiprimary ID of R.

Here is an example demonstrating that the converse of Corollary 4.12 is false.

Example 4.13. Let R = M2(Z2), H∆ =

{0 0

0 0

} and ∆ =

{0 0

0 0

 ,

0 0

1 1

}. Now, H∆

is a semiprimary ID, but ∆ is not a 1-semiprimary BID of R. Since
0 1

0 0

 ·
0 1

0 0

 ⊆ ∆, but0 1

0 0

 6⊆ ∆.

5. Conclusions

This paper introduces various primary BIDs of non-commutative rings and identifies prime BIDs
and semiprime BIDs. In addition to this, we introduced threem-systems and characterized them. Also,
1-primary BID implies 2-primary BID implies 3-primary BID. When it comes to exist, the reverse does
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not apply. Using semirings, ternary semirings, partial semirings and ordered semirings as the basis for
the extension of various ideals, such as quasi-ideals, tri-ideals, and bi-quasi-ideals, will be the next
direction of the work.
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