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Abstract. This paper investigates fixed point properties of partially nonexpansive mappings in geodesic
spaces. The class of mappings considered herein is independent of the class of quasi-nonexpansive
mappings. We obtain certain theorems regarding ∆ and strong convergence. Additionally, we obtain a
common fixed point theorem of a countable family of commuting partially nonexpansive self-mappings
under certain conditions.
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1. Introduction

Let (X , ‖.‖) be a Banach space and Z a nonempty subset of X . A mapping Φ : Z → Z is considered
nonexpansive if it satisfies the condition ‖Φ(ζ) − Φ(%)‖ ≤ ‖ζ − %‖ for every ζ, % ∈ Z . A point z ∈ Z
is considered a fixed point of Φ if Φ(z) = z. It is well-known that in a general Banach space, a
nonexpansive mapping may not necessarily possess a fixed point. However, in 1965, Browder [3],
Göhde [9], and Kirk [10] independently established fixed point theorems for nonexpansive mappings
that satisfy specific geometric conditions, such as uniform convexity or normal structure. This category
ofmappings holds significant relevance in variousmathematical contexts, including transition operators
for initial value problems (of differential inclusion), accretive operators, monotone operators, variational
inequality problems and equilibrium problems.

In 2008, Suzuki [26] introduced a condition on mappings, called condition (C),

Definition 1.1. [26]. Let X be a Banach space and Z a nonempty subset of X . A mapping Φ : Z → Z

is said to satisfy condition (C) if
1

2
‖ζ − Φ(ζ)‖ ≤ ‖ζ − ϑ‖ implies ‖Φ(ζ)− Φ(ϑ)‖ ≤ ‖ζ − ϑ‖ ∀ ζ, ϑ ∈ Z.
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This condition is less stringent than nonexpansiveness but stronger than quasi-nonexpansiveness.
Furthermore, he derived some intriguing fixed point theorems and convergence results for such
mappings. Dhompongsa et al. [5] quickly observed that the same conclusion is reached if the domainZ
of Φ is a bounded closed and convex subset of a Banach space, and every asymptotic center of a bounded
sequence relative to Z is nonempty and compact. Additionally, Dhompongsa and Kaewcharoen [6]
expandedBetiuk-Pilarska andPrus’s result [2] on theweak fixed point property to continuousmappings
satisfying condition (C) on an order uniformly noncreasy (OUNC) Banach lattice.

In 2011, García-Falset et al. [7] further generalized condition (C) into the following class of mappings.

Definition 1.2. [7]. Let Z be a nonempty subset of a Banach space X . Amapping Φ : Z → Z is said to
fulfill condition (Eµ) if there exists µ ≥ 1 such that

‖ζ − Φ(ϑ)‖ ≤ µ‖ζ − Φ(ζ)‖+ ‖ζ − ϑ‖ ∀ ζ, ϑ ∈ Z.

We say that Φ satisfies condition (E) if it satisfies (Eµ) for some µ ≥ 1.

Takahashi [27] introduced convex structure to the metric space and derived theorems regarding the
existence of fixed points for nonexpansive mappings. Goebel and Kirk [8] employed the Krasnosel’skiı̆-
Mann iterative method to approximate fixed points of nonexpansive mappings in nonlinear spaces.
In recent years, several papers have been published focusing on significant fixed point results within
the framework of geodesic spaces, as documented in [1, 13, 14, 16–18,21–24]. For instance, Ariza-Ruiz
et al. [1] extended well-known theorems regarding firmly nonexpansive mappings, including the
asymptotic behavior of the Picard iterative method, from linear spaces to geodesic spaces. Leuştean [14]
broadened celebrated fixed point theory results in geodesic spaces, such as the monotone modulus of
uniform convexity and asymptotic regularity for the Ishikawa iterative method. Nanjaras et al. [16]
expanded Suzuki’s findings on fixed point theorems and convergence theorems to a specific type of
metric spaces, known as CAT(0) spaces.

Inspired by the aforementioned advancements, we aim to approximate fixed points of partially
nonexpansive mappings within nonlinear spaces, specifically in geodesic spaces. We broaden the
scope of partially nonexpansive mappings from Banach spaces to geodesic spaces and establish ∆ and
strong convergence theorems under specific conditions. Our findings serve to generalize, extend, and
complement various results outlined in [7, 15, 16].

2. Preliminaries

Let (M,Ω) denote a metric space and [0, l] ⊂ R. Considering a pair of points ζ, ϑ ∈ M, a path
Θ : [0, 1]→M joins ζ and ϑ if it satisfies

Θ(0) = ζ and Θ(1) = ϑ.
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Such a path Θ is termed a geodesic if it adheres to the condition:

Ω(Θ(s),Θ(t)) = Ω(Θ(0),Θ(1))|s− t|, for all s, t ∈ [0, 1].

Ametric space (M,Ω) is deemed a geodesic space if every pair of points ζ, ϑ ∈M can be connected by
a geodesic. It’s important to note that the geodesic segment linking ζ and ϑmay not be unique. The
precise formulation of hyperbolic spaces, as described by Kohlenbach [11], adheres to this framework.

Definition 2.1. [11]. A triplet (M,Ω,W ) is called a hyperbolic metric space (orW -hyperbolic space)
if (M,Ω) is a metric space and functionW :M×M× [0, 1]→M satisfies the following conditions
for all ζ, ϑ, z, w ∈M and s, t ∈ [0, 1]

(W1) Ω(z,W (ζ, ϑ, s)) ≤ (1− s)Ω(z, ζ) + sΩ(z, ϑ);

(W2) Ω(W (ζ, ϑ, s),W (ζ, ϑ, t)) = |s− t|Ω(ζ, ϑ);

(W3) W (ζ, ϑ, s) = W (ϑ, ζ, 1− s);

(W4) Ω(W (ζ, z, s),W (ϑ,w, s)) ≤ (1− s)Ω(ζ, ϑ) + sΩ(z, w).

Every Busemann space is uniquely geodesic, meaning that for any pair of points ζ, ϑ ∈ M, there
exists precisely one geodesic segment connecting ζ and ϑ, as outlined in [4]. In other words, for all
ζ, ϑ ∈M and any s ∈ [0, 1], there is an element w ∈Mwhich is unique (say w = W (ζ, ϑ, s)) such that

Ω(ζ, w) = sΩ(ζ, ϑ) and Ω(ϑ,w) = (1− s)Ω(ζ, ϑ). (2.1)

Notably, the following spaces serve as prominent examples ofW -hyperbolic spaces: all normed spaces,
Hadamard manifolds, CAT(0)-spaces, and the Hilbert open unit ball equipped with the hyperbolic
metric (cf. [1, 11]).

Remark 2.2. Given thatW (ζ, ϑ, s) = (1−s)ζ+sϑ for all ζ, ϑ ∈M and s ∈ [0, 1], it consequently implies
that all normed linear spaces exhibitW -hyperbolic characteristics.

We will employ the notation

W (ζ, ϑ, s) := (1− s)ζ ⊕ sϑ

to represent a pointW (ζ, ϑ, s) within aW -hyperbolic space. For any ζ, ϑ ∈M, we define

[ζ, ϑ] = {(1− s)ζ ⊕ sϑ : s ∈ [0, 1]}

as a geodesic segment. A nonempty subset Z of theW -hyperbolic space (M,Ω,W ) is termed convex if
[ζ, ϑ] ⊂ Z for all ζ, ϑ ∈ Z .
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Definition 2.3. [13]. AW -hyperbolic space (M,Ω) is considered uniformly convex (UCW -hyperbolic
space) if, for every ε ∈ (0, 2] and any b > 0, there exists a δ ∈ (0, 1] such that

Ω(ζ, z) ≤ b

Ω(ϑ, z) ≤ b

Ω(ζ, ϑ) ≥ εb

⇒ Ω

(
1

2
ζ ⊕ 1

2
ϑ, z

)
≤ (1− δ)b

for all ζ, ϑ, z ∈M.

Remark 2.4. Leuştean [14] demonstrated that complete CAT(0) spaces are complete uniformly convex
hyperbolic spaces, denoted as UCW -hyperbolic spaces.

Let {ζn} be a bounded sequence in a hyperbolic space (M,Ω,W ) and Z a nonempty subset ofM. A
functional r( . , {ζn}) :M→ [0,+∞) can be defined as follows:

r(ϑ, {ζn}) = lim sup
n→+∞

Ω(ϑ, ζn).

The asymptotic radius of {ζn}with respect to (in short, wrt) Z is described as

r(Z, {ζn}) = inf{r(ϑ, {ζn}) : ϑ ∈ Z}.

A point ζ in Z is called as an asymptotic center of {ζn}wrt Z if

r(ζ, {ζn}) = r(Z, {ζn}).

A(Z, {ζn}) is denoted as set of all asymptotic centers of {ζn}wrt Z.

Definition 2.5. [25]. Consider a bounded sequence {ζn}within aW -hyperbolic space (M,Ω). The
sequence {ζn}∆-converges to ζ if ζ serves as the unique asymptotic center for every subsequence {ρn}
derived from {ζn}.

Consider aW -hyperbolic space (M,Ω) and let Z ⊂Mwith Z 6= ∅. A sequence {ζn} inM is termed
Fejér monotone with respect to Z if

Ω(ζ†, ζn+1) ≤ Ω(ζ†, ζn), for all n ≥ 0, for all ζ† ∈ Z.

Let Φ :M→M be a mapping, we denote F (Φ) := {ζ ∈M : Φ(ζ) = ζ}.

Definition 2.6. [19]. A mapping Φ : Z → Z , where F (Φ) 6= ∅, adheres to Condition (I) if there exists
another function f : [0,+∞)→ [0,+∞) satisfying the following conditions:

(1) f(r) > 0 for r ∈ (0,+∞) and f(0) = 0.

(2) Ω(ζ,Φ(ζ)) ≥ f(Ω(ζ, F (Φ))) for all ζ ∈ Z ,
where Ω(ζ, F (Φ)) = inf{Ω(ζ, ϑ) : ϑ ∈ F (Φ)}.
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Definition 2.7. Consider a metric space (M,Ω) and let Z ⊂Mwhere Z 6= ∅. A mapping Φ : Z → Z

is deemed compact if the closure of Φ(Z) is compact.

Proposition 2.8. [14]. Let (M,Ω,W ) be a complete UCW -hyperbolic space, Z ⊂M such that Z 6= ∅ and Z

be closed convex. If a sequence {ζn} inM is bounded. Then {ζn} has a unique asymptotic center wrt Z.

Lemma 2.9. [14]. Consider {ζn} as a bounded sequence in (M,Ω,W ), where A(Z, ζn) = {z}. Let {rn} and

{sn} be two sequences in R, with rn ∈ [0,+∞) for all n ∈ N, lim sup rn ≤ 1, and lim sup sn ≤ 0. Assuming

ϑ ∈ Z and the existence ofm,N ∈ N such that

Ω(ϑ, ζn+m) ≤ rnΩ(z, ζn) + sn, for all n ≥ N.

Then ϑ = z.

Lemma 2.10. [1]. Let (M,Ω,W ) be aW -hyperbolic space,Z ⊂M such thatZ 6= ∅. If {ζn} is Fejér monotone

wrt Z , A(Z, {ζn}) = {ζ} and A(M, {ρn}) ⊆ Z for every subsequence {ρn} of {ζn}. Then the sequence {ζn}

∆-converges to ζ ∈ Z.

Motivated by Definition 1.2, the following definition can be defined:

Definition 2.11. Let (M,Ω) be a metric space and Z ⊂M such that Z 6= ∅. Amapping Φ : Z → Z is
said to satisfy condition (E) if there exists µ ∈ [1,∞) such that

Ω(ζ,Φ(ϑ)) ≤ µΩ(ζ,Φ(ζ)) + Ω(ζ, ϑ) ∀ ζ, ϑ ∈ Z.

Proposition 2.12. Let (M,Ω) be a metric space and Z ⊂M such that Z 6= ∅. Let Φ : Z → Z be a mapping

satisfying condition (E). Then Φ is a quasi-nonexpansive mapping.

Lemma 2.13. [12, 20] Let X be a complete UCW -hyperbolic space, then the intersection of any decreasing

sequence of nonempty bounded closed convex subsets of X is nonempty.

Lemma 2.14. [8] Let X be a UCW -hyperbolic space. Let {ζn} and {ϑn} be two bounded sequences in X

and λ ∈ (0, 1). Assume that ζn+1 = λϑn ⊕ (1− λ)ζn and d (ϑn+1, ϑn) ≤ d (ζn+1, ζn), for any n ∈ N. Then

lim
n→∞

d (ζn, ϑn) = 0 holds.

3. Main Results

Llorens-Fuster [15] explored a novel class of mappings as described below:

Definition 3.1. Let Φ : Z → Z be a mapping. A mapping Φ is called as partially nonexpansive, (in
short, PNE), if ∥∥∥∥Φ

(
1

2
(ζ + Φ(ζ))

)
− Φ(ζ)

∥∥∥∥ ≤ 1

2
‖ζ − Φ(ζ)‖

for all ζ ∈ Z .
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Remark 3.2. • Having fixed points for a mapping is not necessarily implied by either condition
PNE or condition (E).
• Every mapping Φ : Z → Z satisfying condition (C) is partially nonexpansive. However, it
should be noted that the converse of above Proposition is not necessarily true.
• The class of partially nonexpansivemappingswith fixedpoint and the class of quasi-nonexpansive
mappings are independent in nature.

The concept of partially nonexpansive (PNE) mappings can be extended to nonlinear spaces in the
following manner:

Definition 3.3. Let (M,Ω,W ) be a UCW -hyperbolic space and Z ⊂M such that Z 6= ∅, Z be convex.
A mapping Φ : Z → Z is said to be partially nonexpansive (PNE) if

Ω

(
Φ

(
1

2
ζ ⊕ 1

2
Φ(ζ)

)
,Φ(ζ)

)
≤ 1

2
Ω(ζ,Φ(ζ))

for all ζ ∈ Z .

Partially nonexpansive mappings enjoy an approximate fixed point property in Banach spaces. We
have a similar conclusion for partially nonexpansive mappings in geodesic spaces.

Lemma 3.4. Let (M,Ω,W ) be a UCW -hyperbolic space. Let Z ⊂M such that Z 6= ∅, Z be a bounded, convex

and Φ : Z → Z be a PNE mapping. Let ζ0 ∈ Z and define the sequence {ζn} by the successive iteration

ζn+1 =
1

2
ζn ⊕

1

2
Φ (ζn) (3.1)

for any n ∈ N ∪ {0}}. Then lim
n→∞

Ω(ζn,Φ (ζn)) = 0 holds, i.e., {ζn} is an approximate fixed point sequence of

Φ.

Proof. From (2.1) and (3.1), we have
1

2
Ω (ζn,Φ (ζn)) = Ω(ζn, ζn+1),

Using the fact that, Φ is PNE mapping implies that

Ω (Φ (ζn+1) ,Φ (ζn)) = Ω

(
Φ

(
1

2
ζn ⊕

1

2
Φ (ζn)

)
,Φ (ζn)

)
≤ 1

2
Ω (ζn,Φ (ζn))

= Ω (ζn, ζn+1)

for any n ∈ N. Using Lemma 2.14, we conclude that lim
n→∞

Ω(ζn,Φ (ζn)) = 0. �

Theorem 3.5. Let (M,Ω,W ) be a complete UCW -hyperbolic space and Z ⊂ M such that Z 6= ∅, Z be a

bounded closed convex. Let Φ : Z → Z be a PNE mapping satisfying condition (E). Then Φ has a fixed point in

Z.
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Proof. Let ζ0 ∈ Z and define a sequence {ζn} as follows:

ζn+1 =
1

2
ζn ⊕

1

2
Φ(ζn)

for all n ∈ N ∪ {0}}. By Proposition 2.8, the sequence {ζn} has a unique asymptotic center wrt Z . Let
{z} = A(Z, {ζn}) and by definition of A(Z, {ζn}), z ∈ Z. By Lemma 3.4. we have

lim
n→∞

Ω (Φ(ζn), ζn) = 0 (3.2)

and Φ satisfies condition (E)

Ω (ζn,Φ(z)) ≤ µΩ (Φ(ζn), ζn) + Ω (ζn, z) .

From (3.2), we have
lim sup
n→∞

Ω (ζn,Φ(z)) ≤ lim sup
n→∞

Ω (ζn, z) .

That is
r (Φ(z), {ζn}) ≤ r (z, {ζn}) .

Since the asymptotic center of {ζn} is unique it follows that z = Φ(z). �

By leveraging Theorem 3.5 in conjunction with [1, Lemma 6.2], we derive the subsequent corollary.

Corollary 3.6. Let (M,Ω,W ) be a complete UCW -hyperbolic space and Z ⊂ M such that Z 6= ∅, Z be

bounded closed convex. Let Φ : Z → Z be a PNE mapping satisfying condition (E). Then F (Φ) is nonempty

closed and convex.

Next, we present a common fixed-point theorem for a countable family of commuting partially
nonexpansive self-mappings on a given set that satisfies condition (E).

Theorem 3.7. Let (M,Ω,W ) be a complete UCW -hyperbolic space and Z ⊂ M such that Z 6= ∅, Z be a

bounded closed convex. Let {Φj}∞j=1 be a countable family of commuting partially nonexpansive self-mappings

on Z satisfying condition (E). Then {Φj}∞j=1 has a common fixed point.

Proof. For each n ∈ N, we define
Zn :=

n
∩
j=1

F (Φj) .

Thus, Z1 = F (Φ1). By Corollary 3.6, Z1 is nonempty, closed and convex subset ofM. Since Z1 ⊂ Z , Z1

is bounded. Let k ∈ N such that k ≥ 2 and assume that Zk−1 is nonempty, closed, bounded and convex.
We claim that the set Zk is nonempty, closed, bounded and convex. Since Zk−1 6= ∅, take ζ ∈ Zk−1 and
j ∈ N with 1 ≤ j < k. Since {Φj}∞j=1 is a family of commuting mappings, Φk and Φj commute,

Φk(ζ) = Φk ◦ Φj(ζ) = Φj ◦ Φk(ζ).
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Thus Φk(ζ) is a fixed point of Φj , it follows that Φk(ζ) ∈ Zk−1. Therefore we obtain Φk (Zk−1) ⊂ Zk−1.
In view of Theorem 3.5, Φk has a fixed point in Zk−1,

Zk = Zk−1 ∩F (Φk) 6= ∅.

Using Corollary 3.6, Zk is closed and convex. By induction, the set Zn is nonempty closed bounded
and convex ∀ n ∈ N. Since Zn ⊂ Zn−1 ∀ n ∈ N. Using Lemma 2.13, we obtain

∞
∩
j=1

F (Φj) =
∞
∩
n=1
Zn 6= ∅.

This completes the proof. �

Before delving into the proofs of the ∆ and strong convergence theorems, we establish the following
lemma.

Lemma 3.8. Let (M,Ω,W ) be a complete UCW -hyperbolic space and Z ⊂M such that Z 6= ∅, Z be bounded

closed convex. Let ζ0 ∈ Z and define the sequence {ζn} by the successive iteration

ζn+1 =
1

2
ζn ⊕

1

2
Φ (ζn) (3.3)

for any n ∈ N ∪ {0}}. Then lim
n→∞

Ω (ζn, p) exists ∀ p ∈ F (Φ).

Proof. In view of Theorem 3.5, F (Φ) 6= ∅. Let p ∈ F (Φ), from (W1) and Proposition 2.12, we have

Ω (ζn+1, p) = Ω

(
1

2
ζn ⊕

1

2
Φ(ζn), p

)
≤ 1

2
Ω (ζn, p) +

1

2
Ω (Φ(ζn), p)

≤ Ω (ζn, p) .

That is
Ω (ζn+1, p) ≤ Ω (ζn, p) .

Thus, sequence {Ω (ζn, p)} is bounded and monotone ∀ p ∈ F (Φ). Therefore we obtain the desired
result. �

Now we prove our ∆ convergence theorem.

Theorem 3.9. Let (M,Ω,W ) be a complete UCW -hyperbolic space and Z ⊂ M such that Z 6= ∅, Z be

bounded closed convex. Let Φ : Z → Z be a PNE mapping satisfying condition (E). Let ζ0 ∈ Z and consider

the sequence {ζn} by the successive iteration

ζn+1 =
1

2
ζn ⊕

1

2
Φ (ζn) (3.4)

for any n ∈ N ∪ {0}}. Then the sequence {ζn}∆-converges to a point in F (Φ).
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Proof. In view of Theorem 3.5, F (Φ) 6= ∅, let z† ∈ F (Φ). By Lemma 3.8, we have the following property
for sequence {Ω(ζn, z

†)},
Ω
(
ζn+1, z

†
)
≤ Ω

(
ζn, z

†
)

for all z† ∈ F (Φ). Therefore, sequence {ζn} is Fejér monotone wrt F (Φ). From Corollary 3.6, F (Φ)

is closed and convex. In view of Proposition 2.8, the sequence {ζn} has unique asymptotic center w†

wrt F (Φ). Assume that {ρn} is a subsequence of {ζn}, again from Proposition 2.8, {ρn} has a unique
asymptotic center ρ† wrt F (Φ). Now, by the condition (E)

Ω(ρn,Φ(ρ†)) ≤ µΩ(Φ(ρn), ρn) + Ω(ρn, ρ
†).

Using the fact that lim
n→+∞

Ω(ζn,Φ(ζn)) = 0, we have

Ω(ρn,Φ(ρ†)) ≤ Ω(ρn, ρ
†).

In view of Lemma 2.9, we have Φ(ρ†) = ρ†. Using Lemma 2.10, we can conclude that the sequence {ζn}
∆-converges to a point in F (Φ). �

Theorem 3.10. SupposeM, Z , Φ, and {ζn} are as defined in Theorem 3.9. If Φ is a compact mapping, then the

sequence {ζn} strongly converges to a point in F (Φ).

Proof. Considering Lemma 3.8, it is evident that the sequence {ζn} is bounded. Furthermore, referring
to Lemma 3.4, we have

lim
n→∞

Ω(ζn,Φ(ζn)) = 0. (3.5)

Given the definition of a compact mapping, the range of Z under Φ is confined within a compact
set. Consequently, there exists a subsequence {Φ(ζnj )} of {Φ(ζn)} that strongly converges to ζ† ∈ Z .
In view of (3.5), it implies that the subsequence {ζnj} strongly converges to ζ†. Using the fact that
mapping Φ satisfies condition (E) and (3.5)

Ω(ζnj ,Φ(ζ†)) ≤ µΩ(ζnj ,Φ(ζnj )) + Ω(ζnj , ζ
†)

≤ Ω(ζnj , ζ
†).

Therefore, subsequence {ζnj} strongly converges toΦ(ζ†), it implies thatΦ(ζ†) = ζ†. Since lim
n→∞

Ω(ζn, ζ
†)

exists, the sequence {ζn} strongly converges to a point in F (Φ). �

Corollary 3.11. Let (M,Ω,W ) be a complete UCW -hyperbolic space and Z ⊂M such that Z 6= ∅, Z be a

compact convex. Let Φ : Z → Z be a PNE mapping satisfying condition (E). Let ζ0 ∈ Z and define the sequence

{ζn} by the successive iteration

ζn+1 =
1

2
ζn ⊕

1

2
Φ (ζn) (3.6)

for any n ∈ N ∪ {0}}. Then the sequence {ζn} strongly converges to a point in F (Φ).
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Theorem 3.12. SupposeM, Z , Φ, and {ζn} are as defined in Theorem 3.9. If the mapping Φ satisfies condition

(I), then the sequence {ζn} strongly converges to a point in F (Φ).

Proof. According to Lemma 3.8, the sequences {Ω(ζn, z
†)} are monotonically non-increasing for all

z† ∈ F (Φ). Consequently, the sequence {Ω(ζn, F (Φ))} also exhibits monotonic non-increasing behavior.
This ensures the existence of lim

n→∞
Ω(ζn, F (Φ)). In view of Lemma 3.4, we have

lim
n→∞

Ω(ζn,Φ(ζn)) = 0. (3.7)

Since Φ satisfies condition (I),
Ω(ζn,Φ(ζn)) ≥ f(Ω(ζn, F (Φ))).

From (3.7), lim
n→∞

f(Ω(ζn, F (Φ))) = 0 and

lim
n→∞

Ω(ζn, F (Φ)) = 0. (3.8)

Now, it can be confirmed that the sequence {ζn} is Cauchy. For any given ε > 0, according to (3.8),
there exists an n0 ∈ N such that for all n ≥ n0

Ω(ζn, F (Φ)) <
ε

4
.

Therefore
inf{Ω(ζn0 , z

†) : z† ∈ F (Φ)} < ε

4
,

and there exists z† ∈ F (Φ) such that
Ω(ζn0 , z

†) <
ε

2
.

Thus, for allm,n ≥ n0,

Ω(ζn+m, ζn) ≤ Ω(ζn+m, z
†) + Ω(z†, ζn) ≤ 2Ω(ζn0 , z

†)

< 2
ε

2
= ε,

and the sequence {ζn} is Cauchy. Due to the closedness property of the set Z withinM, the sequence
{ζn} converges to a point ζ† ∈ Z . Now, by condition (E), we have

Ω(ζ†,Φ(ζ†)) ≤ Ω(ζ†, ζn) + Ω(ζn,Φ(ζ†))

≤ Ω(ζ†, ζn) + µΩ(ζn,Φ(ζn)) + Ω(ζ†, ζn)

≤ 2Ω(ζ†, ζn) + µΩ(ζn,Φ(ζn))

from (3.7), ζ† = Φ(ζ†). Thus, the sequence {ζn} strongly converges to a point in F (Φ). �
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