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1. Introduction

The theory of complex analysis has so many interesting results that can be used in different scientfic
disciplines. It is believed that complex analysis, has essential role not only in the progress of several
areas in pure and applied mathematics but also in technology and engineering. It includes several
significant aspects and theorems that can be implemented in order to handle some challenging problems
encountered in both science and technology [14], [3]. For example, the well known Cauchy’s residue
theorem can be used to evaluate some real definite integrals as well as infinite series. Moreover, in
electrical engineering, the voltage of the so called alternating current, that requires two parameters,
can be presented as a complex number. In quantum physics, complex variables are used to present the
particle state as well as the construction of the wave equation.

The key concept of complex theory is the analyticity of a complex valued function over a domain on the
complex plane. Analytic functions are essentially well-behaved complex valued functions in the sense
that the rules for computing derivatives of real valued functions can be adopted. However, compared
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to real differentiable functions, a far broader range of conclusions can be made about complex analytic
functions. In the following we state some interesting theorems about analytic functions [9], [10], [2].

Theorem 1.1. [9] (The Maximum Modulus Principile) If f : D → C is a continuous function over a closed

bounded region D ⊆ C such that f is analytic and non-costant in D◦ , the interior of D, then the maximum

value of |f(z)| over D if it exists, then it is somewhere on ∂D, the boundary of D.

Theorem 1.2. [9] (The Minimum Modulus Principile) If f : D → C is continuous function over a closed

bounded region D ⊆ C such that f is analytic, non-costant in D◦ , and f(z) 6= 0 for all z ∈ D, then the

minimum value of |f(z)| over D if it exists, it attained somewhere on ∂D.

Utilizing the α-conformable fractional derivative where α ∈ (0, 1),the first attempt to formulate the
fractional version of analytic functions was carried out in 2018 [16]. Concequently, Cauchy like theorem
and a fractional Cauchy like formula for fractional analytic functions were established. However, the
definition did not give Cauchy Riemann equations.

Recently, in [11], the concept of a fractional nalytic function was introduced again together with
some related peoperties. Moreover, the fractional versions for both Cauchy Riemann equations and
Cauchy integral formula were implemented.

In this paper, we are interested in developing a fractional versions of both the maximum and
minimummodulus principles. Before we establish our main results, we commence with some required
definitions and theorems.

2. Preliminaries

In [17] the definition of α-conformable fractional derivative was introduced as follows.

Definition 2.1. Let α ∈ (0, 1), and u : I ⊆ (0,∞)→ R. For x ∈ I , let

Dαu(x) = lim
ε→0

u(x+ εx1−α)− u(x)
ε

. (2.1)

If the limit exists, then it is called the α-conformable fractional derivative of u at x. Moreover, u is
said to be α-differentiable on (0, r) for some r > 0, and if lim

ε→0+
Dαu(x) exists then we write

Dαu(0) = lim
κ→0

Dαu(x). (2.2)

For α ∈ (0, 1] and u, υ are α-differentiable at a point x, one can easily see that the conformable
derivative satisfies

(i) Dα(c1u+ c2υ) = c1D
α(u) + c2D

α(υ), for all c1, c2 ∈ R,

(ii) Dα(k) = 0, for all constant functions f(x) = k,

(iii) Dα(uυ) = uDα(υ) + υDα(u),

(iv) Dα(uυ ) =
υDα(u)−uDα(υ)

υ2
, υ(x) 6= 0.

(2.3)
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In the following, we provide the α-conformable fractional derivatives of some basic functions,

(i) Dα(xp) = pxp−α,

(ii) Dα(sin( 1αx
α)) = cos( 1αx

α),

(iii) Dα(cos( 1αx
α)) = − sin( 1αx

α),

(iv) Dα(e
1
α
xα) = e

1
α
xα .

(2.4)

On letting α = 1 in these derivatives, we get the corresponding classical rules for ordinary derivatives.
Many differential equations can be transformed to fractional form and can have many applications

in many branches of science [13], [4] , [1], [7], [8].
Let us writeDα

s u andDα
t u to denote the partial α-conformable fractional derivative with respect to s

and t respectively. Moreove we write D2α
s u to denote Dα

sD
α
s u and similarly, for D2α

t u.
Now, let D ⊆ C be a region in the complex plane such that for any z ∈ D, z = x + iy for some

x; y ≥ 0. Then for any function f : D → C, one can write

f(z) = f(x, y) = u(x, y) + iv(x, y), (2.5)

where u(x, y) and v(x, y) are the real and imaginary part of f , respectivly.

Definition 2.2. [11] A function f : D → C is said to be α-differentiable at z◦ = x◦ + iy◦ ∈ D − {0} and

denoted by fα(z◦), if

lim
(ε1,ε2)→(0,0)

f(x◦ + ε1x
1−α
◦ , y◦ + ε2y

1−α
◦ )− f(x, y)

ε1 + iε2
, α ∈ (0, 1) (2.6)

exists. Moreover, if there exists δ > 0 such that f is α-differentiable for all z ∈ B(δ, z◦) where B(δ, z◦) is an

open disc centered at z◦, then f is said to be α-analytic at z◦.

Theorem 2.1. [11] (α-Fractional Cauchy Integral Formula) Let f be α-analytic everywhere inside and on a

simple closed α-contour C taken in the positive sense such that

C := {z = xα + iyα : |(xα + iyα)− (ξα◦ + iξα◦ )| = r} .

Then for all z◦ ∈ C◦, the interior of C, we have

f(z◦) =
α

2πi

∮
C

f(z)

z − z◦
dzα. (2.7)

Now, we are ready to introduce our main results.

3. Main Results

3.1. α−Fractional Axes in the Eucleadian Space. Let R2 = {(x, y) : x, y ∈ R} . Then the set E1 =

{(x, 0) : x ∈ R} , is just the x-axis, and the set E2 = {(0, y) : y ∈ R}, is the y-axis. Accordingly, let us
introduce the following definition.
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Definition 3.1.1. (α−fractional axes) Let

P1 = {xα : x ≥ 0, α ∈ (0, 1) } ≡ [0,∞)

and (3.1.1)

P2 = {−xα : x ≥ 0, α ∈ (0, 1) } ≡ (−∞, 0) .

Then P = P1 ∪ P2 is called the α−fractional x-axis. Similarly, let

Q1 = {yα : y ≥ 0, α ∈ (0, 1) } ≡ [0,∞)

and (3.1.2)

Q2 = {−yα : y ≥ 0, α ∈ (0, 1)} ≡ (−∞, 0) .

Then Q = Q1 ∪Q2 is called the α−fractional y-axis.

Noting that, utilizing (3.1.1) and (3.1.2), any point in the first quadrant is of the form (xα, yα) ,

x, y ≥ 0.

In order to see what is new in these fractional axes, for a, b ∈ R let us consider the equation
(x− x◦)2 + (y − y◦)2 = r2 which represents a circle in the classical xy−plane. However, in the new
α−fractional axes, the equation (xα − xα◦ )

2 + (yα − yα◦ )
2 = r2 represents an α−fractional circle which

is not a circle in the classical xy−plane. This is the main ingrediant in this paper.

3.2. Fractional Maximum / MinimumModulus Principle.

Theorem 3.2.1. (The Fractional Maximum Modulus Principle) Let f : G ⊆ R2 → C be an α−fractional

analytic function, where G is a simply connected region in the first quadrant. Then |f(z)| cannot have maximum

value in G◦ unless f is constant.

Proof. If possible, assume |f(z)| has a maximum value at some point z◦ = xα◦ + iyα◦ in G◦ and f is
not constant in G. Then there exists α−fractional circle γ in Gwith center z◦, namely,

(xα − xα◦ )
2 + (yα − yα◦ )

2 = r2,

such that |f(z◦)| > |f(ω)| for some ω lies on such α−fractional circle.
Since |f(z)| is continuous, then there is an α-fractional arc, η around the point ω ∈ γ such that

|f(z◦)| > |f(z)| for all z ∈ η. (3.2.1)

Now, by the α-fractional Cauchy formula [11], we have

f(z◦) =
α

2πi

∮
γ

f(z)

z − z◦
dzα, (3.2.2)
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where z = xα + iyα and z◦ = xα◦ + iyα◦ . Let ζ be the complement of α-fractional arc η in the α-fractional
circle γ. Hence,

f(z◦) =
α

2πi

∮
ζ

f(z)

z − z◦
dzα +

α

2πi

∮
η

f(z)

z − z◦
dzα. (3.2.3)

So,
|f(z◦)| ≤

α

2π

∮
ζ

|f(z)|
|z − z◦|

|dzα|+ α

2π

∮
η

|f(z)|
|z − z◦|

|dzα| . (3.2.4)

But, on η, we have |f(z)| < |f(z◦)| for all z ∈ η. Therefore,

|f(z◦)| ≤
α

2π

∮
ζ

|f(z◦)|
|z − z◦|

|dzα|+ α

2π

∮
η

|f(z◦)|
|z − z◦|

|dzα| . (3.2.5)

By (3.2.1), the inequality is strict, because it is strict on η. Therefore,

|f(z◦)| <
α

2π

∮
ζ

|f(z◦)|
r
|dzα|+ α

2π

∮
η

|f(z◦)|
r
|dzα| . (3.2.6)

Now, zα = xα + iyα, and lies on the α−fractional circle (xα − xα◦ )2 + (yα − yα◦ )
2 = r2. Thus, zα = reiθ.

Consequently, dzα = rieiθdθ, and so, |dzα| = rdθ, 0 ≤ θ ≤ 2π. Hence, (3.2.6) , can be reduced as

|f(z◦)| <
α

2π
|f(z◦)|

∮
ζ

r

r
dθ +

α

2π

∮
η

r

r
dθ


< α |f(z◦)| , (3.2.7)

which is a contradiction since 0 < α < 1.Hence, |f(z)| cannot have a maximum value at any interior
point of G. This ends the proof.

Theorem 3.2.2. Let f : G ⊆ C → C be an α−fractional analytic function in G such that f(z) 6= 0 for all

z ∈ G. Then, 1
f is α−fractional analytic in G.

Proof. By (2.6) ,we have

Dα 1

f(z)
= lim

(ε1,ε2)→(0,0)

1
f(x+ε1x1−α,y+ε2y1−α)

− 1
f(x,y)

ε1 + iε2

= lim
(ε1,ε2)→(0,0)

f(x, y)− f(x+ ε1x
1−α, y + ε2y

1−α)

f(x, y)f(x+ ε1x1−α, y + ε2y1−α)
· 1

ε1 + iε2

= lim
(ε1,ε2)→(0,0)

[
f(x, y)− f(x+ ε1x

1−α, y + ε2y
1−α)

ε1 + iε2

1

f(x, y)f(x+ ε1x1−α, y + ε2y1−α)

]
= −f

α(z)

f2(z)
.

But, f(z) 6= 0 for all z ∈ G. Hence, 1
f is α−fractional analytic.
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Theorem 3.2.3. (The Fractional Minimum Modulus Principle) Let f : G ⊆ C → C be an α−fractional

analytic function in G such that f(z) 6= 0 for all z ∈ G. Then, |f | cannot have minimum in G.

Proof. Let g(z) = 1
f(z) . By Theorem (3.2.2), g is α−fractional analytic function in G. Now, |g(z)|

has a maximum at z if 1
|f(z)| has a maximum at z.Moreover, 1

|f(z)| has a maximum at z if |f(z)| has a
minimum at z. But, by the fractional maximum modulus principle that is Theorem (3.2.1), |g(z)| has
no maximum in G. Hence, |f(z)| cannot have minimum in G.

4. Conclusions

This paper has successfully introduced the fractional maximummodulus principle and the fractional
minimum modulus principle. This was implemented by establishing the so called α−fractional axes.
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