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Abstract. Our main purpose is to introduce the concepts of upper and lower slightly (τ1, τ2)-continuous
multifunctions. Moreover, several characterizations of upper and lower slightly (τ1, τ2)-continuous multi-
functions are investigated.
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1. Introduction

Stronger and weaker forms of open sets play an important role in topological spaces. By utiliz-
ing these sets several authors introduced and studied various types of generalizations of continuity.
Viriyapong and Boonpok [58] studied some characterizations of (Λ, sp)-continuous functions by uti-
lizing the notions of (Λ, sp)-open sets and (Λ, sp)-closed sets due to Boonpok and Khampakdee [18].
Dungthaisong et al. [31] introduced and studied the concept of g(m,n)-continuous functions. Duangphui
et al. [30] introduced and investigated the notion of (µ, µ′)(m,n)-continuous functions. Furthermore,
some characterizations of almost (Λ, p)-continuous functions, strongly θ(Λ, p)-continuous functions,
almost strongly θ(Λ, p)-continuous functions, θ(Λ, p)-continuous functions, weakly (Λ, b)-continuous
functions, θ(?)-precontinuous functions, ?-continuous functions, θ-I -continuous functions, almost
(g,m)-continuous functions, pairwiseM -continuous functions, (τ1, τ2)-continuous functions, almost
(τ1, τ2)-continuous functions, weakly (τ1, τ2)-continuous functions, almost quasi (τ1, τ2)-continuous
functions and weakly quasi (τ1, τ2)-continuous functions were presented in [50], [52], [2], [48], [13],
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[14], [8], [22], [27], [28], [3], [4], [5], [39] and [29], respectively. Jain [34] introduced the notion of
slightly continuous functions. Nour [43] defined slightly semi-continuous functions as a weak form
of slight continuity and investigated some characterizations of slightly semi-continuous functions.
Noiri [42] introduced and studied the concept of slightly β-continuous functions. Sangviset et al. [49]
introduced the notion of slightly (m,µ)-continuous functions as functions from anm-space into a gener-
alized topological space and investigated some characterizations of slightly (m,µ)-continuous functions.
Ekici and Caldas [33] introduced the notion of slightly γ-continuouds functions and investigated the
relationships between slight γ-continuity and the other types of continuity.

In 2005, Ekici [32] extended the notion of slightly β-continuous functions to the setting of multi-
functions. Noiri and Popa [41] introduced a new class of multifunctions called slightlym-continuous
multifunctions as a generalization of m-continuous multifunctions [44]. Popa and Noiri [45] in-
troduced and studied the notion of θ-quasi continuous multifunctions. Laprom et al. [40] intro-
duced and investigated the concept of β(τ1, τ2)-continuous multifunctions. Viriyapong and Boon-
pok [60] introduced and studied the notion of (τ1, τ2)α-continuous multifunctions. Moreover, sev-
eral characterizations of (τ1, τ2)δ-semicontinuous multifunctions, almost weakly (τ1, τ2)-continuous
multifunctions, ?-continuous multifunctions, β(?)-continuous multifunctions, weakly quasi (Λ, sp)-
continuous multifunctions, α-?-continuous multifunctions, almost α-?-continuous multifunctions,
almost quasi ?-continuous multifunctions, weakly α-?-continuous multifunctions, sβ(?)-continuous
multifunctions, weakly sβ(?)-continuous multifunctions, θ(?)-quasi continuous multifunctions, al-
most ı?-continuous multifunctions, weakly (Λ, sp)-continuous multifunctions, α(Λ, sp)-continuous
multifunctions, almost α(Λ, sp)-continuous multifunctions, almost β(Λ, sp)-continuous multifunc-
tions, slightly (Λ, sp)-continuous multifunctions, (τ1, τ2)-continuous multifunctions, almost (τ1, τ2)-
continuous multifunctions, weakly (τ1, τ2)-continuous multifunctions, weakly quasi (τ1, τ2)-continuous
multifunctions, s-(τ1, τ2)p-continuous multifunctions and c-(τ1, τ2)-continuous multifunctions were
established in [23], [19], [25], [20], [59], [6], [7], [24], [9], [11], [10], [15], [21], [12], [37], [16], [53],
[17], [46], [38], [51], [47], [55] and [36], respectively. Viriyapong et al. [56] introduced and studied
the concept of slightly (τ1, τ2)β-continuous multifunctions. Khampakdee et al. [35] introduced and
investigated the notion of slightly (τ1, τ2)s-continuous multifunctions. Viriyapong et al. [54] introduced
and studied the concept of slightly α(τ1, τ2)-continuous multifunctions. In this paper, we introduce the
concepts of upper and lower slightly (τ1, τ2)-continuous multifunctions. We also investigate several
characterizations of upper and lower slightly (τ1, τ2)-continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and Y ) always mean
bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be
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a subset of a bitopological space (X, τ1, τ2). The closure of A and the interior of A with respect to τi
are denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a bitopological space
(X, τ1, τ2) is called τ1τ2-closed [26] if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called
τ1τ2-open. Let A be a subset of a bitopological space (X, τ1, τ2). The intersection of all τ1τ2-closed sets
of X containing A is called the τ1τ2-closure [26] of A and is denoted by τ1τ2-Cl(A). The union of all
τ1τ2-open sets of X contained in A is called the τ1τ2-interior [26] of A and is denoted by τ1τ2-Int(A).
A subset A of a bitopological space (X, τ1, τ2) is said to be τ1τ2-clopen [26] if A is both τ1τ2-open and
τ1τ2-closed.

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into Y , and we
always assume that F (x) 6= ∅ for all x ∈ X . For a multifunction F : X → Y , following [1] we
shall denote the upper and lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is,
F+(B) = {x ∈ X | F (x) ⊆ B} and

F−(B) = {x ∈ X | F (x) ∩B 6= ∅}.

In particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X , F (A) = ∪x∈AF (x).

3. Upper and lower slightly (τ1, τ2)-continuous multifunctions

In this section, we introduce the notions of upper and lower slightly (τ1, τ2)-continuous multifunc-
tions. Moreover, we investigate some characterizations of upper and lower slightly (τ1, τ2)-continuous
multifunctions.

Definition 1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper slightly (τ1, τ2)-continuous

if for each point x ∈ X and each σ1σ2-clopen set V of Y containing F (x), there exists a τ1τ2-open set U of X

containing x such that F (U) ⊆ V .

Theorem 1. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is upper slightly (τ1, τ2)-continuous;

(2) F+(V ) is τ1τ2-open in X for every σ1σ2-clopen set V of Y ;

(3) F−(V ) is τ1τ2-closed in X for every σ1σ2-clopen set V of Y .

Proof. (1) ⇒ (2): Let V be any σ1σ2-clopen set of Y and x ∈ F+(V ). Then, F (x) ⊆ V . By (1), there
exists a τ1τ2-open set U of X containing x such that F (U) ⊆ V . Thus, x ∈ U ⊆ F+(V ) and hence
x ∈ τ1τ2-Int(F+(V )). Therefore, F+(V ) ⊆ τ1τ2-Int(F+(V )). This shows that F+(V ) is τ1τ2-open in X .

(2)⇔ (3): This follows from the fact that F−(Y −B) = X − F+(B) for every subset B of Y .
(2) ⇒ (1): Let x ∈ X and V be any σ1σ2-clopen set of Y containing F (x). By (2), we have x ∈

F+(V ) = τ1τ2-Int(F+(V )). There exists a τ1τ2-open set U of X containing x such that U ⊆ F+(V );
hence F (U) ⊆ V . This shows that F is upper slightly (τ1, τ2)-continuous. �
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Definition 2. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be lower slightly (τ1, τ2)-continuous if

for each point x ∈ X and each σ1σ2-clopen set V of Y such that F (x) ∩ V 6= ∅, there exists a τ1τ2-open set U of

X containing x such that F (z) ∩ V 6= ∅ for each z ∈ U .

Theorem 2. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is lower slightly (τ1, τ2)-continuous;

(2) F−(V ) is τ1τ2-open in X for every σ1σ2-clopen set V of Y ;

(3) F+(V ) is τ1τ2-closed in X for every σ1σ2-clopen set V of Y .

Proof. The proof is similar to that of Theorem 1. �

Recall that a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-extremally disconnected [57] if the
τ1τ2-closure of every τ1τ2-open set U of X is τ1τ2-open.

Theorem 3. Let (Y, σ1, σ2) be a (σ1, σ2)-extremally disconnected space. For a multifunction F : (X, τ1, τ2)→

(Y, σ1, σ2), the following properties are equivalent:

(1) F is upper slightly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F−(V )) ⊆ F−(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y ;

(3) F+(σ1σ2-Int(K)) ⊆ τ1τ2-Int(F+(K)) for every σ1σ2-closed setK of Y .

Proof. (1) ⇒ (2): Let V be any σ1σ2-open set of Y . Then, σ1σ1-Cl(V ) is a σ1σ2-clopen set of Y . By
Theorem 1, F−(σ1σ1-Cl(V )) is τ1τ2-closed in X . Thus,

τ1τ2-Cl(F−(V )) ⊆ τ1τ2-Cl(F−(σ1σ2-Cl(V ))) = F−(σ1σ2-Cl(V )).

(2)⇒ (3): LetK be any σ1σ2-closed set of Y . Then, Y −K is σ1σ2-open in Y . By (2), we have

X − τ1τ2-Int(F+(K) = τ1τ2-Cl(F−(Y −K))

⊆ F−(σ1σ2-Cl(Y −K))

= X − F+(σ1σ2-Int(K))

and hence F+(σ1σ2-Int(K)) ⊆ τ1τ2-Int(F+(K)).
(3)⇒ (1): Let x ∈ X and V be any σ1σ2-clopen set of Y containing F (x). Then by (3), x ∈ F+(V ) =

F+(σ1σ2-Int(V )) ⊆ τ1τ2-Int(F+(V )). There exists a τ1τ2-open set U of X such that x ∈ U ⊆ F+(V ).
Thus, F (U) ⊆ V and hence F is upper slightly (τ1, τ2)-continuous. �

Theorem 4. Let (Y, σ1, σ2) be a (σ1, σ2)-extremally disconnected space. For a multifunction F : (X, τ1, τ2)→

(Y, σ1, σ2), the following properties are equivalent:

(1) F is lower slightly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F+(V )) ⊆ F+(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y ;
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(3) F−(σ1σ2-Int(K)) ⊆ τ1τ2-Int(F−(K)) for every σ1σ2-closed setK of Y .

Proof. The proof is similar to that of Theorem 3. �
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