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Abstract. In this research, we proposed a novel one-parameter model, where the Inverse Exponential
and the Inverse Lindley distributions are sub-models. This study aims to investigate the statistical and
mathematical properties of our newmodel. Also, we estimated its parameter applyingmaximum likelihood
approach and bayesian approach under different loss functions. Furthermore, an algorithm for obtaining a
random sample based on the indicated distribution is presented. The approximate confidence interval
according to a normal approximation is calculated and the stability of the estimator was conducted by
numerical simulation for support the found results. To illustrate the importance of our new uni-modal
distribution, we applied it to an actual data set, and it was found that the novel distribution fits considerably
more intensely than certain other current distributions.
2020 Mathematics Subject Classification. 60E05, 62F10.
Key words and phrases. Renyi entropy; stress-strength reliability; maximum likelihood estimation; approx-
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1. Introduction

In the literature review, choosing an acceptable model for real-life data has been problematic and
thus intensively investigated. However, in several contexts, the traditional models are considered to
be insufficient or inaccurate in predicting actual data, and the majority of standard distributions do
not adequately fit the real data. Several distributions have really been presented by the authors for
analysing actuarial and lifetime data by melanging certain important lifetime distributions.
For a long time, several researchers have been aware of the great importance of combining distributions
in actuarial science and survival analysis. For example, in the past, Lindley proposed the Lindley
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distribution as a mixing model for the exponential and gamma distribution [11]. After that, a new
discrete distribution has been proposed by S. Denthet and T. Ngamkham [5] which is the mixture
of distributions between the negative binomial and Kumaraswamy–Lindley distributions named the
negative binomial–Kumaraswamy Lindley distribution. Moreover, Elbatal et al. [6] have introduced
a tree parameter model named as the new generalized Lindley distribution by mixing two gamma
distributions. In those papers, the authors had studied some of their statistical properties and, in the
last one, they estimated the unknown parameters by the maximum likelihood method. On the other
hand, A.H Abd Ellah [1] used bayesian and non-bayesian approaches to obtain the estimators of the
parameters and reliability function for the inverse Weibull distribution. Next, in 2012, H. Rahman et
al. [15] used different symmetric and asymmetric loss functions, such as squared error loss function,
quadratic loss function, modified linear exponential loss function and non-linear exponential loss
function to study the Bayes estimators of the parameter of Power function distribution. Also, MR.
Hasan, and AR. Baizid [8] examined the Bayes estimators of the parameter of exponential distribution
under different loss functions and compared among them as well as with the classical estimator.

Motivated by all these studies, we introduce a new model by mixing the Inverse Exponential distri-
bution (studied by AZ. Killer and AR. Kamath [10]) with the Inverse Lindley distribution (created by
V. Sharma et al. [19]). The results prove that the mixture distribution enhance fitting of data more than
other existing distributions.

The rest of our study contains six essential sections. In section 2, we introduce the new melange
via its probability density function (Pdf), cumulative distribution function (CDF), reliability, and
hazard functions. Additionally, we indicate the various statistical and mathematical properties of this
distribution, such as stochastic orderings, quantile function, entropy, and stress-strength reliability
in section 3. The maximum likelihood estimator and the asymptotic confidence interval (IC) of the
undetermined parameter for the new proposed model with evaluation of the efficiency and the stability
of the suggested estimator are addressed in section 4, whereas bayesian estimator under different loss
functions (symmetric and asymmetry loss functions) with a comparison with the first one is given in
section 5. In section 6, a set of actual data is fitted. Finally, section 7 draws a conclusion.

2. Creation of the model

2.1. Pdf and CDF. The main idea of our work is to mix the Inverse Exponential distribution with the
Inverse Lindley distribution for the scale parameter (α), and melding proportion p. Thus, the Pdf can
be formatted as follows:

g(x;α) = pg1(x;α) + pg2(x;α)

where
p = α

1+α ,
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g1(x;α) = α exp(−α/x)/x2, α > 0, x > 0,

g2(x;α) = α2

1+α

(
1+x
x3

)
exp(−α/x), α > 0, x > 0.

So, we can present the new model under the name ’New Exponentiated Extention Lindley distribution’
with abbreviation NEELD by the following Pdf and CDF:

g (x;α) =
α2

(1 + α)2

[
(2 + α)x+ 1

x3

]
exp(−α/x); α > 0, x > 0, (1)

G(x;α) =

[
1 +

α

(1 + α)2
1

x

]
exp(−α/x); α > 0, x > 0. (2)

where, α is a scale parameter.

2.2. Reliability and hazard rate functions. The reliability function R(x) and hazard rate function h(x)

of the NEEL distribution have been respectively defined by

R (x;α) = 1−G(x;α) =
(1 + α)2 x [1− exp(−α/x)]− α exp(−α/x)

(1 + α)2 x
(3)

h (x;α) =
g(x;α)

R (x;α)
=

α2 [(2 + α)x+ 1]

x2 [(1 + α)x(exp(−α/x)− 1)− α]
(4)

The behavior of the NEEL distribution’s Pdf (1) and hazard rate function (4) is portrayed in Figure 1
over various values of α, demonstrating that the function (4) is unimodal in x.

Figure 1. NEELD Pdf and hrf plots for chosen values of parameter
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2.3. The mode. As a way to determine the mode of the Pdf (1) one must find the maximum of the
function. Therefore, it is essential to identify the location where the first derivative of this function
equals zero. The first derivative of it is provided by:

∂

∂x
g(x;α) =

(
α

1 + α

)2

exp (−α/x) /x5
[
(4 + 2α)x2 −

(
2α+ α2 − 3

)
x− α

] (5)

if we take
φ (x) = Ax2 +Bx+ c, x > 0 (6)

with:
A = (4 + 2α) ,

B = −
(
2α+ α2 − 3

)
,

C = −α.

It is self-evident that the equation φ (x) is a quadratic function, and that, φ (x) = 0 indicates
that ∂∂xg(x;α) = 0. The roots of function (6) must then be found in order to establish the mode
of the Pdf already presented in (1).

In addition, the function’s roots may be found, one of them is negative and the other is positive.
However, because X is non-negative, the positive root is only of the relevance, which is defined as:

Mo =
(α2 + 2α− 3) +

√
(α2 + 2α− 3)2 + (8α2 + 16α)

(4α+ 8)
(7)

3. Statistical properties of the NEELD

Features of the NEELD are evaluated in this section, specifically the stochastic ordering, quantile
function, rényi entropy, stress-strength reliability, and the distribution of the order statistics.

3.1. Stochastic ordering. In order to evaluate comparative behavior, it is helpful to use stochastic
orderings of non-negative continuous random variables. When the variablesZ1 andZ2 are independent
with CDFs TZ1 and TZ2 , respectively, it is said that Z1 is larger than Z2 in the following circumstances:

• The stochastic order (Z1 ≤s Z2) if TZ1(z) ≥ TZ2(z) ∀ z,

• The mean residual life order (Z1 ≤mrl Z2) ifmZ1(z) ≥ mZ2(z) ∀ z,

• The hazard rate order (Z1 ≤hr Z2) if hZ1(z) ≥ hZ2(z) ∀ z,

• The likelihood ratio order (Z1 ≤lr Z2) if tz1 (z)tz2 (z)
is an decreasing function of z.

Remark 3.1. The following effects (see [18]) are especially striking:

(The likelihood ratio order⇒ The hasard rate order⇒ The mean residual life order)︸ ︷︷ ︸
⇓

The stochastic order
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Theorem 3.2. Suppose Z1 and Z2 two independent random variables with parameters α1 and α2 respectively,

that follow the NEELD.

If α2 > α1, then (Z1 ≤lr Z2) ,∀z > 0.

Proof. We have, for all x > 0

tz1 (z)

tz2 (z)
=

α2
1 (1 + α2)

2 [(2 + α1) z + 1] exp (−α1/z)

α2
2 (1 + α1)

2 [(2 + α2) z + 1] exp (−α2/z)
,

=
α2
1 (1 + α2)

2 [(2 + α1) z + 1]

α2
2 (1 + α1)

2 [(2 + α2) z + 1]
exp {(α2 − α1)/z}

It is increasing in z for α2 > α1. so, in terms of likelihood ratio, Z1 is stochastically larger than Z2. �

Corollary 3.1. If Z1  NEELD(α1) and Z2  NEELD(α2) with α2 > α1, then (Z1 ≤lr Z2), hence

(Z1 ≤hr Z2) , (Z1 ≤mrl Z2) and (Z1 ≤s Z2) .

3.2. Quantile function. The mean and variance formulae of the NEELD are difficult to be acquired
directly since mathematic formulas for related integrals are not obtainable, but the quantiles are
straightforward to calculate. Assuming T is an arbitrary random variable with the CDF GT (t) =

P (T ≤ t), where t ∈ R, the quantile function of the NEELD can also be calculated by using the formula
Q(u) = G−1T (u), where u ∈ (0, 1).

Theorem 3.3. For any α > 0. The NEEL distribution’s quantile function is supplied by

Q(u) =

[
−(1 + α)2

α
− 1

α
W−1 (−u(1 + α)2 exp(−(1 + α)2)

]−1
, u ∈ (0, 1). (8)

whereW−1 represents the negative branch of the LambertW function.

Proof To any specific α > 0, allow u ∈ (0, 1),

((1 + α)2 +
α

Q(u)
) exp(−α/Q(u)) = u (1 + α)2 (9)

Both sides of the equation (9) are multiplied by − exp(− (1 + α)2 ,we have

− (1 + α)2 − α

Q(u)
exp−

(
(1 + α)2 +

α

Q(u)

)
= −u (1 + α)2 exp(− (1 + α)2) (10)

The LambertW function, as provided by Jodra [9], must be utilized to solve equation (10). It is a
multivalued complex function represented as the solution to the equationW (z) exp(W (z)) = z , where
z is a complex number.

Equation (10) clearly shows that −
(

(1 + α)2 + α
Q(u)

)
is a Lambert W function with real argument

−u (1 + α)2 exp(− (1 + α)2).
Next we take
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W−1

(
−u (1 + α)2 exp(− (1 + α)2)

)
= −

(
(1 + α)2 +

α

Q(u)

)
(11)

In addition, for any α > 0 and x > 0, and u ∈ (0, 1), the next inequalities exist:
i )
(

(1 + α)2 + α
Q(u)

)
> 1,

ii)− u (1 + α)2 exp(− (1 + α)2 ∈ (−1
e , 0).

By virture of the inequalities (i) and (ii) below, including the Lambert W , the real branch of W
associated in (11) is the negative branchW−1, which yields the preferred result, so we have

Q(u) =

[
−(1 + α)2

α
− 1

α
W−1 (−u(1 + α)2 exp(−(1 + α)2)

]−1
;u ∈ (0, 1)

The NEEL distribution’s quartiles may be calculated using equation (8).
To that goal, the following assumptions are made: u = 1

4 , 1
2 and 3

4 . The quartiles of the NEELD are
calculated as shown below:

Q(
1

4
) =

[
−(1 + α)2

α
− 1

α
W−1

(
−1

4
(1 + α)

)2

exp(−(1 + α)2)

]−1

Q(
1

2
) =

[
−(1 + α)2

α
− 1

α
W−1

(
−1

2
(1 + α)

)2

exp(−(1 + α)2)

]−1

Q(
3

4
) =

[
−(1 + α)2

α
− 1

α
W−1

(
−3

4
(1 + α)

)2

exp(−(1 + α)2)

]−1
3.3. Rényi entropy. The entropy describes the level of variability in the uncertainty in a random
variable’s distribution. Plenty of uses of the Rényi entropy can be observed in the areas of statistics,
computer science, and econometrics. A high entropy value indicates a high level of uncertainty.

Plenty of uses of the Rényi entropy can be observed in the areas of statistics, computer science, and
econometrics.

The expression of the Rényi entropy is given by

IR(δ) =
1

1− δ
log {I(δ)} ,

where I(δ) =
∫
gδ(x)dx, δ > 0 and δ 6= 1.

Now, consider X as a random variable with the Pdf (1). The entropy of X is thus being described
below:

IR(δ) =
1

1− δ
log

{(
α

1 + α

)2δ ∫ [
((2 + α)x+ 1)δ

x3δ

]
exp(−αδ/x)dx

}
We know

(1 + a)n =

n∑
i=0

(
n

i

)
ai and Γ(τ)/cτ =

∫ ∞
0

x−τ−1 exp(−c/x)dx,

As a result, the NEEL distribution’s Rényi entropy takes the form
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IR(δ) =
1

1− δ
log

[(
α

1 + α

)2δ n∑
i=0

(
n

i

)
(2 + α)i

Γ(3δ − i− 1)

(αδ)(3δ−i−1)

]
(12)

3.4. Stress-Strength Reliability. The stress-strength reliability of a system is a measure of its capacity
to perform in harsher conditions, and it is theoretically identified as R = P (Y < X), or the probability
that the system strength (X) is larger than the environmental stress (Y ) when the system is operating.
Now, assume that X and Y are independent stress and strength random variables, with parameters α1

and α2 that each follow the NEELD. As a result, the stress-strength reliability R is described in this
manner:

R =

∫ ∞
0

{∫ x

0
gY (y, α2)dy

}
gX(x, α1)dx

=

∫ ∞
0

gX(x, α1)GY (x, α2)dx

=

∫ ∞
0

α2
1

(1 + α1)
2

[
(2 + α1)x+ 1

x3

]
exp(−α1/x)

[
1 +

α2

(1 + α2)
2

1

x

]
exp(−α2/x)dx

=
α2
1

(1 + α1)
2

∫ ∞
0

[
(2 + α1)x+ 1

x3

]
exp {−(α1 + α2)/x} dx

+
α2

(1 + α2)
2

(
α1

1 + α1

)2 ∫ ∞
0

[
(2 + α1)x+ 1

x4

]
exp {−(α1 + α2)/x} dx (13)

Finally, using the definition of the inverse gamma density, we arrive to

R =
α2
1

{
(2 + α1) (1 + α2)

2 (α1 + α2)
2 + (α1 + α2)

[
(1 + α1)

2 + α2 (2 + α1)
]

+ 2α2

}
(1 + α1)

2 (1 + α2)
2 (α1 + α2)

3 (14)

3.5. Order statistics. Let X1, X2, ...Xn represent a random sample from the NEELD and
X1:n, X2:n, ...Xn:n constitute the associated order statistics. The ith order statistic’s Pdf, had said Xi:n,
is offered by

gj:n(x) =
n!

(j − 1)!(n− j)!
F j(x)

[
1− F j(x)

]n−j
f(x)

=
n!

(j − 1)!(n− j)!

n−j∑
k=0

(−1)k
(
n− j
k

)
F j+k−1(x)f(x)

respectively, for j = 1, 2, ...n, it follows from (1) and (2) that

gj:n(x) =
n!

(j − 1)!(n− j)!

n−j∑
k=0

(−1)k
(
n− j
k

)
α2

(1 + α)2

[
(2 + α)x+ 1

x3

]
exp(−α/x)

×
[{

1 +
α

(1 + α)2
1

x

}
exp(−α/x)

]j+k−1
When j = 1 and j = n, the Pdf of the minimum and the maximum order statistic of the NEELD are

respectively provided by
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g1:n(x) = n

n−1∑
k=0

(−1)k
(
n− 1

k

)
α2

(1 + α)2

[
(2 + α)x+ 1

x3

]
exp(−α/x)

×
[{

1 +
α

(1 + α)2
1

x

}
exp(−α/x)

]k
and

gn:n(x) = n

(
α

1 + α

)2 [(2 + α)x+ 1

x3

]
exp(−α/x)×

[{
1 +

α

(1 + α)2
1

x

}
exp(−α/x)

]n−1
(15)

4. Maximum likelihood estimation

We present in this section the maximum likelihood estimate of the parameter of the proposed
distribution, as well as the unknown parameter’s approximate confidence interval.
Let X1, X2, ..., Xn be n independent and identical random variables returning to the NEELD with
parameter α. For identifying the MLE of α,we now have likelihood function based on observed sample
x̄= (x1, x2, ...xn) provided by

`(α; x̄) =

(
α

1 + α

)2n n∏
i=1

[
(2 + α)xi + 1

x3

]
exp(−α

n∑
i=1

x−1i ) (16)

The log-likelihood function for (16) is

log ` = 2n logα− 2n ln(α+ 1) +

n∑
i=1

ln [(2 + α)xi + 1]− 3

n∑
i=1

lnxi − α
n∑
i=1

x−1i (17)

The maximum likelihood estimates α̂ML of α could be achieved by solving the following non-linear
equation:

∂ log `

∂α
=

2n

α
− 2n

α+ 1
+

n∑
i=1

[
xi

(2 + α)xi + 1

]
−

n∑
i=1

x−1i = 0 (18)

Numerical solutions to this equation using non-linear optimization techniques, such as the quasi-
Newton approach, are frequently more practical . Because the explicit formula for the maximum
likelihood estimator of the parameter is not accurate, numerical approaches like the Newton-Raphson
method, the Monte Carlo method, the BB method, and others are required.

In the next section, we prove that the MLE, say, α̂ is consistent and asymptotically normal under
certain regularity condition.

4.1. Asymptotic Confidence Interval. Because the accurate distribution of the aforementioned estima-
tor cannot be determined directly, we used large sample theory, in this part, to generate confidence
interval based on it . Let us recollect that the MLE α̂ is consistent and asymptotically normal under
some regularity criterion (see section 4.2.2). Hence, the asymptotic distribution of the estimator may
be written as
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(α̂− α) N(0, I−1(α̂))

As a result, we can create a two-sided (1− τ) % asymptotic confidence interval for α with τ ∈ (0, 1)

as
[
α̂− zτ/2

√
v(α̂), α̂+ zτ/2

√
v(α̂)

]
where zτ/2 is the upper (τ/2) th percentile of the standard normal

distribution. Here, var (α̂) may be estimated as follows:

var (α̂) = E

[
−∂

2 log `

∂2α

]−1
α=α̂

Where
∂2 log `

∂2α
= −2n

α2
+

2n

(α+ 1)2
−

n∑
i=1

[
x2i

((2 + α)xi + 1)2

]
(19)

4.2. Monte Carlo simulation study.

4.2.1. Generation of the random sample. The inverse of the cumulative distribution function (CDF) has
been the most widely used and easiest way to generate random samples. Hence, in the application
of NEEL distribution, the inverse of the CDF can not be derived directly, thus a Lambert W function
is necessary for simplification (see [9]). For this objective, we used in our study the equation (8) in
conjunction with the R package (LambertW) to generate a random sample of size n.

Also, we can use the algorithm described below.
Algorithm.

Because theNEELD is a combination of Inverse Exponential (α) and Inverse Lindley (α) distributions,
simulation from the NEELD may also be done using the description of the mixed distribution. The
steps of the algorithm are as follows:

Step 1. Set the value of the parameter α, and desired simple size n.
Step 2. Generate U using the basic uniform density.
Step 3. Generate Y using the Inverse Exponential(α).

Step 4. Generate Z an Inverse Lindley variate Z  IL(α)

Step 5. If U ≤ α
1+α , accept Z as a sample from NEELD(α), so X = Z otherwise X = Y.

Step 6. Repeat the steps 2 to 5, n times for obtaining the sample of size n fromNEELDwith parameter
α.

Remark 4.1. The R-codes, runif(n,0,1), rilindley(n, alpha, mixture = TRUE) and rinvexp(n, rate = 1,
scale = 1/rate) may be used to generate samples from the uniform, Inverse Lindley and Inverse Exponentiel

distributions, respectively, where the first term n defines the number of units to be obtained.
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4.2.2. Simulation. This section discusses the simulation research that was carried out in order to evaluate
the bias and the mean square error of the suggested estimator with various sample sizes. We chose
α = 0.7, 1, 1.5, 2, 4. and n = 10, 30, 80, 150, 200, 300, 500. The average of the simulated value of the
maximum likelihood estimator α̂ (MLE), the bias (Bias), and their mean squared error (MSE) were
calculated using the R program (R 4.1.2) and the Barzilai-Borwein (BB) technique [16]. We ended
this simulation study by investigating the approximate confidence interval IC and their length LIC of
MLE of the parameter α . We executed the process N times (N =5000). Table 1 shows the results of
the simulation. The following equations are used to determine theMLE, Bias, andMSE of α, based
on 5000 simulations.

MLE(α) =
1

N

N∑
i=1

α̂i, (20)

Bias(α̂) =
1

N

N∑
i=1

(α̂i − α) , (21)

MSE(α̂) =
1

N

N∑
i=1

(α̂i − α)2 (22)

Table 1 shows the average estimate value, bias and mean square error of the parameter α.
In general, for large values of n, the bias and MSE tend to be zero. That is to say, the estimator α̂ is
asymptotically unbiased.

It is obvious that α has a strictly positive bias. Furthermore, as α increases, so does this bias.
Regarding the mean square error, this table shows that as α increases, the MSE increases.

However, the effect of α in the MSE is very important. In addition, as the sample size increases, the
approximate length LIC decreases. Based on the results in this table, it can be concluded that the
maximum likelihood technique works well when estimating the NEEL model parameter.

Table 1: Average estimate, Bias, MSE and CI for α by varying
sample size when α = 0.7, 1, 1.5, 2, 4.

α = 0.7

Sample size MLE(α) Bias(α̂) MSE(α̂) IC95% LIC95%

10 0.7574 0.0574 0.0451 (0.6755, 0.8393) 0.1638

30 0.7168 0.0168 0.0107 (0.6968, 0.7371) 0.0403

80 0.7053 0.0053 0.0037 (0.7003, 0.7111) 0.0108

150 0.7031 0.0031 0.0020 (0.7012, 0.7050) 0.0038

200 0.7014 0.0014 0.0015 (0.6987, 0.7041) 0.0054

300 0.7020 0.0020 0.0009 (0.7018, 0.7035) 0.0017

500 0.7012 0.0012 0.0005 (0.7004, 0.7019) 0.0015

α = 1
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10 1.0712 0.0712 0.0978 (0.8896, 1.2528) 0.3632

30 1.0229 0.0229 0.0242 (0.9765, 1.0693) 0.0928

80 1.0095 0.0095 0.0085 (1.0065, 1.0393) 0.0328

150 1.0032 0.0032 0.0044 (0.9946, 1.0118) 0.0172

200 1.0025 0.0025 0.0031 (0.9965, 1.0085) 0.0120

300 1.0019 0.0019 0.0021 (0.9978, 1.0060) 0.0082

500 1.0014 0.0014 0.0012 (0.9991, 1.0037) 0.0046

α = 1.5

10 1.6276 0.1276 0.2633 (1.1435, 2.1117) 0.9682

30 1.5349 0.0349 0.0612 (1.4174, 1.6524) 0.2350

80 1.5128 0.0128 0.0212 (1.4716, 1.5540) 0.0824

150 1.5100 0.0100 0.0107 (1.4893, 1.5307) 0.0414

200 1.5081 0.0081 0.0083 (1.4920, 1.5242) 0.0322

300 1.5330 0.0033 0.0055 (1.5223, 1.5437) 0.0214

500 1.5030 0.0030 0.0031 (1.4970, 1.5090) 0.0120

α = 2

10 2.1743 0.1743 0.4886 (1.2762, 2.9533) 1.6771

30 2.0552 0.0552 0.1207 (1.8246, 2.2858) 0.4612

80 2.0208 0.0208 0.0397 (1.9438, 2.0978) 0.1540

150 2.0103 0.0103 0.0209 (1.9695, 2.0511) 0.0816

200 2.0069 0.0069 0.0154 (1.9768, 2.0370) 0.0602

300 2.0070 0.0070 0.0103 (1.9869, 2.0271) 0.0402

500 2.0029 0.0029 0.0063 (1.9906, 2.0152) 0.0246

α = 4

10 4.4433 0.4433 2.3874 (0.1493, 8.7374) 8.5880

30 4.1325 0.1325 0.5548 (3.0795, 5.1856) 2.1060

80 4.0429 0.0429 0.1849 (3.6840, 4.4019) 0.7178

150 4.0230 0.0230 0.0967 (3.8344, 4.2117) 0.3773

200 4.0201 0.0201 0.0730 (3.8778, 4.1624) 0.2845

300 4.0124 0.0124 0.0475 (3.9194, 4.1053) 0.1858

500 4.0090 0.0090 0.0288 (3.9526, 4.0654) 0.1127

Figures 2 and 3 round out these findings through plotting the Bias and theMSE of theMLE presented
in table 1.
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Figure 2. Bais of the MLE for different values of the parameter α

Figure 3. MSE of the MLE for different values of the parameter α

The histograms of the MLE values obtained, as well as their forms, were plotted in Figures 4, 5, and
6 for various values of α and sample sizes n = 20, 100, and 500, respectively. As a result, we want to get
a sense of the MLE distribution. For instance, these graphs reveal that the MLE’s overall distribution
resembles the bell shape of a normal distribution. Because the sample size is so large, the bell form is
more obvious. This is consistent with the MLE’s asymptotic normality, which has been widely proven
(see [17]). We also see that the modal class of each histogram has the precise value of the parameter α.

Figure 4. Simulated distribution of the MLE for α = 0.7, n = 20, 100 and 500
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Figure 5. Simulated distribution of the MLE for α = 1.5, n = 20, 100 and 500

Figure 6. Simulated distribution of the MLE for α = 4, n = 20, 100 and 500

4.3. Stability analysis. In statistical modelling, an appropriate model should ideally indicate reduced
variability and greater precision as additional data is available for estimate. The behaviour of the
distribution was tested using bias and standard error and revealed as the sample size increased. The
simulation results showed the expected trend: as sample sizes increased, the values of the adequacy
parameters (bias and standard error) decreased (Table 1). The pattern shown in Figure 2 and Figure 3
is consistent with predictions for a well-fitting density model.
As a result, falling values of these adequacy indicators with increasing sample numbers might be
regarded positively. This finding supports the notion that the NEEL model acts like a well-behaved
density function, indicating that it is appropriate for modelling real-world data sets.
In summary, the simulation findings, as summarized in Table 1, show that the NEEL model is a
statistically sound and acceptable option for modelling data in a variety of applications.

5. Bayesian estimation

The bayesian estimation is a non-classical technique in statistical inference and is practical in real-
world situations. The aim of this section is to study the Bayes estimators of the parameter of the NEEL
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distribution under different loss functions (symmetric and asymmetric loss functions) and compare
them with the MLE.

For the prior distribution, gamma model is a good choice. A comparative situation is studied for
different cases.

5.1. Prior and posterior density functions of the parameter α. Let X1, X2, ...Xn be a sample of size n
generated from the NEEL model. The likelihood function is then given by (4.1).

In the Bayesian context, we need to specify a prior distribution for the parameter. Consider a
conjugate Gamma prior for α having a density function:

p(α) =
ba

Γ(a)
αa−1 exp(−bα); α, a, b > 0. (23)

Then the posterior density function of the parameter α for the given random sample X is given by:

p(α/x) =
`(α; x̄)p(α)∫ +∞

0 `(α; x̄)p(α)dα

=

α2n+a−1

(1+α)2n
∏n
i=1

[
(2 + α)x−2i + x−3i

]
exp

[
−α

(
b+

∑n
i=1 x

−1
i

)]∫ +∞
0

α2n+a−1

(1+α)2n
∏n
i=1

[
(2 + α)x−2i + x−3i

]
exp

[
−α

(
b+

∑n
i=1 x

−1
i

)]
dα

= I−1 × α2n+a−1

(1 + α)2n

n∏
i=1

[
(2 + α)x−2i + x−3i

]
exp

[
−α

(
b+

n∑
i=1

x−1i

)]
(24)

Where

I =

∫ 1

0

α2n+a−1

(1 + α)2n

n∏
i=1

[
(2 + α)x−2i + x−3i

]
exp

[
−α

(
b+

n∑
i=1

x−1i

)]
dα

5.2. Different loss functions. We consider the squared error ,the generalized quadratic, the linex , and
the entropy loss functions .

We present the Bayesian estimators with their corresponding posteriors errors in the Table 2

Table 2. Loss functions with the corresponding bayesian estimators and the posterior
risk for the parameter. (Ep(.) stands for the posterior expectation)

Loss function expression Bayes estimator P.R
Squared error L(α, α̂) = (α− α̂)2 α̂SQE = Ep(α) Ep((α− α̂)2)

Linex L(α, α̂) = e(α̂−α) − r(α̂− α)− 1 α̂LE = −1
r lnEp(e

−rα) r(α̂SQE − α̂LE)

Generalized quadratic L(α, α̂) = τ(α)(α− α̂)2 α̂GQE =
Ep(τ(α)α)
Ep(τ(α))

Ep(τ(α)(α− α̂GQE)

Entropy L(α, α̂) = ( α̂α )c − cln( α̂α )− 1 α̂EE = [Ep(α)−c]
−1
c c[Ep(ln(α)− ln(α̂EE))]
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5.3. Simulation and comparison study. In our study, since we cannot calculate the analytical expres-
sions of all these estimators, we generate 5000 samples for each case. We have obtained the estimated
values by using MCMCmethods as the Merropolis-Hastings algorithm using a self-writhen R code.
The results and their graphs are presented in Tables 3, 4, 5.

The performance of different estimation approaches is studied by using simulation, so we generated
random samples in such a way that estimators under different estimation techniques can be compared
and are in accordance with real-life problems. Here, for simulation, we used the inverse transformation
method. The study has been carried out for n = 50, 100, 150, 200 and 300, using α = 1, 2 and 4. Notice
that under the generalized quadratic loss function assuming τ(α) = αβ−1 for β = 5, we have taken
c = −3 for the entropy loss function and r = 1 in the case of linex one. The posterior risk (PR) of Bayes
estimates has been presented in parenthesis.

Table 3. MLE value ( MSE) with different Bayesian estimators (BR)of α for NEEL
distribution where α = 1, and β = 5, c = −3, r = 1 for two senarios (1) with a non
informative prior a = b = 0 (2) with a conjugate prior a = 1, b = 5.

n MLE senario (1) a = b = 0 (BR) senario (2) a = 1, b = 5 (BR)

(MSE) α̂SQE α̂LE α̂GQE α̂EE α̂SQE α̂LE α̂GQE α̂EE

50 1.0095 1.0631 1.066 1.0748 1.0658 1.0535 1.052 1.0617 1.0554

(0.01341) (0.00397) (0.00138) (0.00474) (0.00432) (0.00285) ()0.00097) ((0.00318) (0.00306)

100 1.0084 1.0309 1.0305 1.0339 1.0316 1.0238 1.0236 1.026 1.0244

(0.00647) (0.00095) (0.00036) (0.00095) (0.00099) (0.00056) (0.00026) (0.00067) (0.00059)

150 1.0054 1.0451 1.0444 1.0508 1.0464 1.0391 1.0386 1.0432 1.0401

(0.00458) (0.00203) (0.00069) (0.00199) (0.00215) (0.00153) (0.00049) (0.00135) (0.00161)

200 1.0023 1.0222 1.022 1.0237 1.0225 1.0245 1.0242 1.0264 1.0249

(0.00317) (0.00049) (0.00018) (0.00045) (0.00050) (0.00059) (0.00022) (0.00058) (0.00062)

300 1.0027 1.0302 1.0299 1.0327 1.0308 1.0288 1.0285 1.0315 1.0295

(0.00207) (0.00091) (0.00030) (0.00077) (0.00094) (0.000832) (0.00033) (0.00085) (0.00087)

It is clear from the Tables 3, 4 and 5 that the estimated value of the parameter converges to the true
value as the sample size increases. While the magnitude of the posterior risk is not stable, the estimates
under a conjugate prior are seen to work better than those under a uniform prior for each loss function,
and the estimates using a bayesian framework provide better results than the maximum likelihood
estimates.
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Table 4. MLE value ( MSE) with different Bayesian estimators (BR) of α for NEEL
distribution where α = 2, and β = 5, c = −3, r = 1 for two senarios (1) with a non
informative prior a = b = 0 (2) with a conjugate prior a = 1, b = 5.

n MLE senario (1) a = b = 0 (BR) senario (2) a = 1, b = 5 (BR)

(MSE) α̂SQE α̂LE α̂GQE α̂EE α̂SQE α̂LE α̂GQE α̂EE

50 2.0195 2.0839 2.0805 2.0956 2.0869 2.0612 2.0579 2.0702 2.0638

(0.06429) (0.00704) (0.00338) (0.11880) (0.00755) (0.00374) (0.00327) (0.07541) (0.00406)

100 2.0156 2.0867 2.0832 2.0993 2.0899 2.0652 2.0626 2.0741 2.0675

(0.03210) (0.00752) (0.00358) (0.12934) (0.00808) (0.00425) (0.00264) (0.08809) (0.004557)

150 2.0144 2.0374 2.0359 2.0412 2.0321 2.0444 2.0428 2.049 2.0387

(0.02025) (0.00139) (”0.00146) (0.02787) (0.00102) (0.00197) (0.00165) (0.03545) (0.00150)

200 2.0082 2.0322 2.031 2.035 2.0274 2.0365 2.035 2.0404 2.0312

(0.01467) (0.00103) (0.00121) (0.01756) (0.00075) (0.00133) (0.00147) 0.02905 0.00097

300 2.0063 2.0364 2.0351 2.0398 2.0313 2.0328 2.0315 2.0359 2.0279

(0.01258) (0.00132) (0.00135) (0.02412) (0.00098) (0.00107) (0.00128) (0.02057) (0.00077)

Table 5. MLE value ( MSE) with different Bayesian estimators (BR)of α for NEEL
distribution where α = 4, and β = 5, c = −3, r = 1 for two senarios (1) with a non
informative prior a = b = 0 (2) with a conjugate prior a = 1, b = 5.

n MLE senario (1) a = b = 0 (BR) senario (2) a = 1, b = 5 (BR)

(MSE) α̂SQE α̂LE α̂GQE α̂EE α̂SQE α̂LE α̂GQE α̂EE

50 4.0772 4.053 4.0346 4.0589 3.9696 4.0763 4.0562 4.0851 3.9899

(0.29906) (0.00280) (0.01835) (0.8581) (0.00092) (0.00582) (0.02008) (1.72991) (0.00010)

100 4.0554 4.0775 4.0573 4.0863 3.9909 4.0624 4.0434 4.0695 3.9779

(0.14688) (0.00599) (0.020138) (1.76168) (8.25e− 05) (0.00389) (0.01899) (1.20655) (0.00048)

150 4.0138 4.0724 4.0524 4.0813 4.0756 4.0527 4.0344 4.0585 4.0551

(0.09651) (0.00524) (0.02001) (1.78538) (0.00571) (0.00277) (0.01826) (0.80713) (0.00303)

200 4.0047 4.0633 4.0442 4.0704 4.066 4.0846 4.0642 4.0939 4.0879

(0.07363) (0.00400) (0.01907) (1.22492) (0.00435) (0.00716) (0.02044) (1.94730) (0.00772)

300 4.0056 4.028 3.9853 4.0863 4.015 4.0076 3.9913 4.0349 4.0066

(0.06749) (0.00032) (0.03261) (19.34859) (0.00032) (3.181e− 05) (0.01438) (7.76343) (3.181e− 05)

6. Application of real data

We provide the actual data set that represents the costs of the 31 various kids’ wooden toys that were
being sold in a Suffolk craft store in April 1991 [20] to demonstrate the validity of the model presented
in this study.
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The data were: 4.2, 1.12, 1.39, 2, 3.99, 2.15, 1.74, 5.81, 1.7, 2.85, 0.5, 0.99, 11.5, 5.12, 0.9, 1.99, 6.24, 2.6, 3,
12.2, 7.36, 4.75, 11.59, 8.69, 9.8, 1.85, 1.99, 1.35, 10, 0.65, 1.45.

Shafiei et al. [17] believed that this data set to fit the Inverse Weibull Poisson (IWP), Inverse Weibull

Geometric (IWG) and Inverse Weibull Logarithmic (IWL) distributions and also compared them with
the Inverse Weibull (IW),Weibull (W) [13], Nadarajah-Haghighi (NH) [14], Generalized Inverse Weibull

(GIW) [7], Exponentiated Exponential Binomial (EEB) [2] and Exponentiated Weibull–Poisson (EWP) [12].
We compared the fit of the new proposed distribution to this data set with the models mentioned

above. For each of those distributions, the subsequent functions provide the corresponding densities
(for x > 0):

IW (z, ζ, κ) = ζκz−(κ+1)e−ζz
−κ

;

W (z, ζ, κ) = ζκz(κ−1)e−ζz
κ
;

NH(z, ζ, κ) = ζκ(1 + κz)ζ−1 exp
{

1− (1 + κz)ζ
}

;

GIW (z, ζ, κ, ν) = νκζκz−(κ+1)e−ν(ζ/z)
κ
;

EEB(z, ζ, κ, ν) =
nζκνe−νλz(1− e−νz)ζ−1(1− κ(1− e−νz)ζ)n−1

1− (1− β)n
, κ ∈ [0, 1] ;

EWP (z, ζ, κ, ν, θ) =
ζνθκν

eθ−1
zν−1e−(κz)

ν
(1− e−(ζ)ν )ζ−1eθ(1−e

−(κz)ν )ζ .

The previously mentioned pdfs’ unidentified parameters have all non-negative real values. The AIC,
HQIC, BIC, and CAIC are used for evaluating distributions. These statistics are offered by

AIC = −2ˆ̀+ 2m

BIC = −2ˆ̀+m log(n)

CAIC = −2ˆ̀+
2mn

(n−m− 1)

HQIC = −2ˆ̀+ 2m log[log(n)]

where n is the sample size, m is the number of the previous model’s parameters, and ˆ̀ is the
log-likelihood function for the MLE.

The best fit for the data may be determined by choosing the model with fewer values for all of these
statistics. To obtain the results, the R program was utilized.

Figure 7 indicates the estimated pdf, estimated CDF and the P-P plot for the data set, and Figure 8
gives the total time on test plot (TTT plot ) and Box plots of them. It can be observed that our data
shows a non-monotone failure rate.
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Figure 7. Estimated pdf, CDF and P-P plot for the prices of the 31 different children’s
wooden toys.

Figure 8. TTT and Box plots of the 31 different children’s wooden toys.

Table 6 displays the MLEs of the parameters, whereas Table 7 presents a comparison of the NEEL
model with the previously mentioned distributions. With all fitted models to these data, the lowest
AIC, BIC, CAIC, and HQIC statistics are found in the newly proposed model.

Consequently, it can be chosen as themost effectivemodel out of the bunch. These plots demonstrates
that the offered distribution fits the data best than some other models.
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Table 6. MLEs for the real data.
Estimates

Model ζ̂ κ̂ ν̂ θ̂

NEELD 2.209 − − −

IW 2.153 1.214 − −

W 0.155 1.228 − −

NH 1.881 0.096 − −

GIW 1.543 1.214 1.270 −

EEB 1.731 0.036 0.264 −

EWP 20.475 9.112 0.375 0.006

Table 7. AIC, BIC, CAIC, and HQIC statistics for the real data.
Statistics

Model AIC BIC CAIC HQIC

NEELD 153.478 154.912 153.615 153.940

IW 153.668 156.563 154.096 154.602

W 153.577 156.445 154.006 154.512

NH 154.590 157.458 155.018 155.524

GIW 155.668 159.970 156.556 157.070

EEB 154.178 158.480 155.066 155.580

EWP 155.198 160.933 156.736 157.067

Table 8 presents a comparison of the parameter estimation within Bayesian and MLE approaches for
NEEL model with the previously mentioned loss functions for the two scenarios (informative and non
informative priors).

Table 8. Real data MLE value ( MSE) with different Bayesian estimators (BR)of α for
NEELD distribution where α = 2, and β = 5, c = −3, r = 1 for two senarios (1) with a
non informative prior a = b = 0 (2) with a conjugate prior a = 1, b = 5.

n MLE senario (1) a = b = 0 (BR) senario (2) a = 1, b = 5 (BR)

(MSE) α̂SQE α̂LE α̂GQE α̂EE α̂SQE α̂LE α̂GQE α̂EE

31 2.2097 2.1544 2.1445 2.1961 2.164 2.1022 2.0964 2.1261 2.1078

(1.46338) (0.02384) (0.00991) (0.61438) (0.02690) (0.010450) (0.00579) (0.30438) (0.01162)
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7. Conclusion

In the current work, the NEELD, a one-parameter model, is the focus. The mathematical expression
of its probability density is feasible. As a result, we can use this to establish its various statistical
characteristics. The technique of maximum likelihood estimation and Bayesian estimation under
different loss functions are applied to estimate the parameter. In conjunction with a simulation study,
an asymptotic confidence interval for the model parameter is found. Also we used this simulation to
evaluate the stability of the Maximum Likelihood Estimate (MLE) for NEELD parameter, exhibiting
stable behaviour with larger sample numbers. The evaluation of real data demonstrates the feasibility
of our newmodel (NEELD). This application indicates that it has the opportunity to substantially affect
various commonly employed statistical models in the sense of fit. The recently offered distribution
might be thought of as a tried-and-true substitute for existing distributions like the IWD, the WD, etc.
At last, we believe that the model we have created will be widely used for real data in a variety of fields,
including social sciences, engineering, and medicine.
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