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Abstract. Predator-prey interactions are among the most significant features of ecology. In this paper,
we intend to investigate an ecological system with one predator and two prey. The current study aims
to deepen our understanding of the combined impacts of fear and toxic substance in ecological system,
through consider their impact on a delay predator-prey model. The problem specifically dealt a nonlinear,
three-dimensional, ecological system that is affected by toxicity to all species. The situation of prey growth
rates affected by predator fear was considered. Also taken into account is the predator’s gestation delay.
Numerical simulations were used to show how well our theoretical work could support theoretical results
and to make clear how the dynamics of the suggested ecological model would change when certain factors,
particularly toxic rates, fear levels and gestation time delay, were changed. The findings showed that the
systems dynamical behavior displays a range of dynamics without degenerating into chaos and that the
presence of toxicity in addition to fear and time delay significantly affects the stability of the dynamics of
the system.
2020 Mathematics Subject Classification. 37N25.
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1. Introduction

Prey-predator relationships are among the most fundamental relationships between different species
in ecology. Malthus constructed a mathematical model of the dynamics of interactions between a
single species early in the nineteenth century. Then the famous logistic growth model was created by
adding an intraspecific competition element to that mathematical model to improve it. This improved
the Lotka-Volterra model after adding the logistic growth component for the prey. Over the past few
decades, numerous scholars have examined many of theoretical works on prey-predator models and
their applications to the study of theoretical ecology and evolutionary biology, [1–4].

Globally, there is growing concern about the effects of environmental pollutants, both natural and
man-made, on ecosystem health. The main source of pollution worldwide is industrial pollution, which
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can result from solid waste, air pollution, water leaks, and contaminants. The direct impact of toxic
substances on the food web system have been a major environmental concern because they have an
adverse effect on human life. Numerous studies have examined the effects of toxic substances on the
environment. One of the earliest was the population model with effect of environment toxics created
by Hallam et al. [5]. In a closed, polluted environment, models based on hazardous chemicals in a
single species were published by Friedman and Shukla [6]; however, they also demonstrated how toxic
substances affect population through the observation of the toxicant dependent environmental carrying
capacity. Chattopadhyay [7] investigated the impact of toxic substances produced by various species.
Pal and Samanta [8] investigated the impacts of present of toxins in a Lotka-Volterra competitive system
with two species. In their model the impacts of toxic substances on the exposed species (population)
has been investigated by considering the rate of environmental toxin consumption into consideration.

According to recent studies, prey species are more impacted by predator species’ indirect conse-
quences than by the direct death [9–13]. Consequently, it makes sense to incorporate the fear effect
into the predator-focused models that takes rival species’ cohabitation into account. In studies using
song sparrows, Zanette et al. [14] discovered that the birds’ apprehension of the predator resulted
in a 40% reduction in the quantity of of spring born. In the light of that, Wang et al. [15] developed
a predator-prey model by accounting for the cost of anxiety on prey reproduction. They was found
that when predation follows the Holling type I response function, fear costs have no effect on dynamic
behavior. When considering the Holling type II response function, however, it can stabilize the system
by removing periodic orbits. Since then, several studies employing predator-prey models have come to
light, incorporating fear into the process of prey reproduction.

In biological applications, delay differential equations are typically required because of the presence
of particular stage structures. In actuality, temporal delays occur in a wide range of biological processes,
including food digestion, energy conversion, maturation, inducible defense of prey groups, and more.
In mathematical models, time lag is often incorporated to convey the dynamic nature of the models
through historical data. This makes it possible to describe the population’s development, hunting,
and gestation delays inside the ecology of prey and predator mathematically. In the presence of a
time delay, the model can become unstable and show more intricate dynamic behaviors, such as Hopf
bifurcation and saddle-node behavior. Specifically, the features of periodic solutions resulting from
the Hopf bifurcation hold great significance, [16–19] Delayed gestation refers to the interval of time
that occurs between consuming the prey and birthing a new predator. So, in ecological models with
gestation time delays, the new birth rate of a predator is based on the amount of prey it has previously
eaten, [20, 21].

The predator-prey relationship is one of the forms of interactions between different species that is
of great importance in determining the dynamics of complex ecosystems. Moreover, the dynamics of
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ecological epidemiological models is one of the main topics in mathematical biology. In last five years,
researchers looked at some mathematical models involving two prey and one predator. Kundu and
Maitra in [22] studied the effect of prey cooperation and the environmental noises on the dynamic of
such type ecosystem. The authors in [23] investigated the global stability of a discrete such model with
optimal harvest strategy and Holling Type-III function response. Such ecological model Also studied
in [24] by Sahoo and Samanta. They analyzed the effect of switching in predation and fear of predator
on the dynamic of the model. In [25], Mondal et al. showed the model has complex dynamic when it
include the harvesting and fear impact in preys. Based on the preceding literature analysis and the
motivations discussed therein, the purpose of this paper is to investigate the combined effects of fear
effect and environmental toxin on an ecosystem containing two prey and one predator with gestation
time delay.

2. Mathematical Model

Numerous of novel models of predator-prey with their environment’s impact have been examined
in recent years (see for example [25–27]). In this section„ to construct the proposed model, we start by
considering the key assumptions: the model’s populations include three species, two different preys
and one predator. The density of first and second prey are given by x1 and x2, and the density of
predator is given by y .The preys are growth exponentially with growth rates r1 and r2 and affected
by factors of fear of the predator g1 and g2 at respectively . Also, the preys influenced by external
toxic substance with rates a1 and a2, and have interspecific competition β1 and β2. The predator eating
the two preys with Holling type I functions response where d1 and d2 represent the predations rates,
while c1 and c2 are represent the conversion rates of preys biomass to predator’s biomass. Predator
has delayed growth rate due to the time required for the digestive process and gestation. Finally, the
predator also effected by external toxic substance with toxicant ratem.
Based on the above assumptions, our model is as follows:

dx1

dt
=[

r1

1 + g1y
− a1x1 − β1x2 − d1y]x1,

dx2

dt
=[

r2

1 + g2y
− a2x2 − β2x1 − d2y]x2, (1)

dy

dt
=c1d1x1(t− Td)y(t− Td) + c2d2x2(t− Td)y(t− Td)−my2.

with initial conditions:
x1(0) > 0, x2(0) > 0, y(0) > 0. (2)

In which the constants r1, r2, g1, g2, a1, a2, β1, β2, c1, c2, d1 ,d2,m are positive, while Td nonnegative.
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3. Positivity and Boundedness

A model is guaranteed to function correctly physiologically if it is both positive and bounded. These
mathematical aspects of the system (1) without delay are demonstrated by the next two theorems.

Theorem 1. All solutions of System (1)with Td = 0, that begin in R3
+ are positive for t > 0.

Proof. Using system (1), first equation, we obtain

x1(t) = x1(0) exp[

∫ t

0
{ r1

1 + g1y(θ)
− a1x1(θ)− β1x2(θ)− d1y(θ)}dθ].

Then x1(t) > 0 for x1(0) > 0.
Similarly, based on system (1), second and third equations, can have

x2(t) = x2(0) exp[

∫ t

0
{ r2

1 + g2y(θ)
− a2x2(θ)− β2x1(θ)− d2y(θ)}dθ].

y(t) = y(0) exp[

∫ t

0
{c1d1x1(θ) + c2d2x2(θ)−my(θ)}dθ].

Then x2(t) > 0 and y(t) > 0 for x2(0) > 0 and y(0) > 0. Hence, the theorem is demonstrated. �

Theorem 2. Starting in R3
+, the solutions of system (1) with Td = 0, are uniformly bounded for t > 0.

Proof. From system (1), first equation, may gain
dx1

dt
=x1[

r1

1 + g1y
− a1x1 − β1x2 − d1y]

≤x1[
r1

1 + g1y
− a1x1]

≤r1x1 − a1x
2
1.

Then for, t→∞, can have limt→∞ supx1(t) ≤ r21
4a1

.
In similar manner, one can get

lim
t→∞

supx2(t) ≤ r2
2

4a2
,

lim
t→∞

sup y(t) ≤ 1

4m
Λ2,

where, Λ = (
c1d1r21

4a1
+

c2d2r22
4a2

).
Now, let W define by x1 + x2 + y, then one can has

dW

dt
=
dx1

dt
+
dx2

dt
+
dy

dt
,

and
dW

dt
≤ r1x1 + r2x2 + c1d1x1y + c2d2x2y.
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Further, with =
r21
4a1

(r1 + 1) +
r22
4a2

(r2 + 1) + 1
4mΛ2[Λ + 1], direct calculation may yields

dw

dt
+W ≤ .

Appling Gronwall inequality [29] may obtain

0 < W (t) ≤ (1− e−t) +W (x1(0), x2(0), y(0))e−t.

Hence, 0 < W (t) ≤ , fot t→∞.
Consequently, every solutions for system (1) enters the area:
< = {(x1, x2, y) : 0 < x1(t) ≤ r21

4a1
; 0 < x2(t) ≤ r22

4a2
; 0 < y(t) ≤ 1

4mΛ2; 0 < W (t) ≤ }. �

4. Existence of the System Equilibrium Points

We define the prerequisites for the system’s equilibrium points existence in this section. The sys-
tem has seven potential nonnegative equilibria, which we can find by equating system’s (1) right
side to zero, namely Ξ0(0, 0, 0), Ξ1(x∗1, 0, 0),Ξ2(0, x∗2, 0), Ξ3(x∗1, x

∗
2, 0), Ξ4(x∗1, 0, y

∗), Ξ5(0, x∗2, y
∗)and

Ξ6(x∗1, x
∗
2, y
∗). One can note Ξ0 exist trivially. We demonstrate that additional equilibria exist in

the following ways:

(i): Ξ1’s existence.

System (1) with x2 = y = 0, yields: x1(r1 − a1x1) = 0, from which we have x∗1 = r1
a1
, thus Ξ1(x∗1, 0, 0)

exists and take the form x∗1 = ( r1a1 , 0, 0) .

(ii): Ξ2’s existence.

System (1) with x1 = y = 0, offers: x2(r2 − a2x2) = 0, and hence x∗2 = r2
a2
. Therefore the equilibrium

Ξ2 exists and given by Ξ2(0, x∗2, 0) = Ξ2(0, r2a2 , 0).

(iii): Ξ3’s existence.

System (1) with y = 0, reduced to algebraic equations:

x1(r1 − a1x1 − β1x2) = 0,

x2(r2 − a2x2 − β2x1) = 0.

Their solution directly given by

(x∗1, x
∗
2) = (

r2β1 − r1a2

β1β2 − a1a2
,
r1β2 − r2a1

β1β2 − a1a2
).

Thus, Ξ3(x∗1, x
∗
2, 0) = Ξ3( r2β1−r1a2β1β2−a1a2 ,

r1β2−r2a1
β1β2−a1a2 , 0) exists if one of the following conditions set met

r2β1 > r1a2, (3)

r1β2 > r2a1, (4)
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or
r2β1 < r1a2, (5)

r1β2 < r2a1, (6)

(iv): Ξ4’s existence.
System (1) with x2 = 0, provides:

x1[
r1

1 + g1y
− a1x1 − d1y] = 0, (7)

y[c1d1x1 −my] = 0. (8)

For y 6= 0, last equation gives, x1 = my
c1d1

. Use this in equation (7) gives the polynomial

A1y
2 +A2y +A3 = 0.

where,

A1 = g1c1d
2
1 + g1a1m > 0,

A2 = a1m+ c1d
2
1 > 0,

A3 = −r1c1d1 < 0.

So, according to the descartes’ rule of sign, there is a single positive root that is supplied by

y =
−A2 +

√
A2

2 − 4A1A3

2A1
.

Therefore, Ξ4(x∗1, 0, y
∗) exists and has the value Ξ4(my

∗

c1d1
, 0,
−A2+

√
A2

2−4A1A3

2A1
).

(v): Ξ5’s existence.
Applied x1 = 0, in System (1) yields:

x2[
r2

1 + g2y
− a2x2 − d2y] = 0, (9)

y[c2d2x2 −my] = 0. (10)

For y 6= 0, one can get, x2 = my
c2d2

, and is the positive root of the next polynomial

B1y
2 +B2y +B3 = 0.

where,

B1 = g2c2d
2
2 + g2a2m > 0,

B2 = a2m+ c2d
2
2 > 0,

B3 = −r2c2d2 < 0.
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So, there is a unique positive root for this polynomial provided by

y =
−B2 +

√
B2

2 − 4B1B3

2B1
.

Therefore, Ξ5(0, x∗2, y
∗) exists and has the value Ξ5(0, my

∗

c2d2
,
−B2+

√
B2

2−4B1B3

2B1
).

(vi): Ξ6’s existence.

Equating (1) to zero gives:
x1[

r1

1 + g1y
− a1x1 − β1x2 − d1y] = 0, (11)

x2[
r2

1 + g2y
− a2x2 − β2x1 − d2y] = 0, (12)

y[c1d1x1 + c2d2x2 −my] = 0. (13)

From equation (13) we get,
x1 =

my − c2d2x2

c1d1
. (14)

LetK = c2d2β2 − c1d1a2, and let J = 1 + g2y, and using (14) and (12) one may find

x2 =
mβ2yJ − c1d1r2 + c1d1d2yJ)

JK
. (15)

Also, by using (15) and (14) one can have,

x1 =
myJK − c2d2mβ2yJ + c1c2d1d2r2 − c1c2d1d

2
2yJ

c1d1JK
. (16)

Now, setting h = 1 + g1y and applying (15) and (16) into (11) we obtain,

C1y
3 + C2y

2 + C3y + C4 = 0. (17)

Where,

C1 =(g1g2)[(a1m+ c1d
2
1)(c2d2β2 − c1d1a2) + (mβ2 + c1d1d2)(c1d1β1 − c2d2a1)],

C2 =(g1 + g2)[(a1m+ c1d
2
1)(c2d2β2 − c1d1a2) + (mβ2 + c1d1d2)(c1d1β1 − c2d2a1)],

C3 =[(a1m+ c1d
2
1)(c2d2β2 − c1d1a2) + (mβ2 + c1d1d2)(c1d1β1 − c2d2a1)

+g1c1d1r2(c2d2a1 − c1d1β1) + g2c1d1r2(c1d1a2 − c2d2β2)],

C4 =c1d1r2(c2d2a1 − c1d1β1) + c1d1r1(c1d1a2 − c2d2β2).

Now for applying Descarte’s sign rule , we have the next two cases for gain the positive value y∗:
Case (i): When the following conditions are met

c2d2β2 < c1d1a2, (18)
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c1d1β1 < c2d2a1. (19)

We can have C1 < 0, C2 < 0,C3 < 0,C4 > 0. Hence one can say y has only one positive value. Moreover,
the values of x∗1 and x∗2 also positive under the next condition.

c2d2r2

a2m+ c2d2
2

< J∗y∗ <
c1d1r2

mβ2 + c1d1d2
. (20)

where, J∗ = 1 + g2y
∗

Case (ii): If the next conditions are met

c2d2β2 > c1d1a2, (21)

c1d1β1 > c2d2a1. (22)

One can have,C1 > 0, C2 > 0,C3 > 0,C4 < 0.Then y has a unique positive value. Hence the values of
x∗1 and x∗2 are positive when

c1d1r2

mβ2 + c1d1d2
< J∗y∗ <

c2d2r2

a2m+ c2d2
2

. (23)

So, we have the following theorem.

Theorem 3. The equilibrium point Ξ6 exists when one of the set of conditions (18)- (20) or (21)- (23) are
fulfilled.

5. Local Stability Analysis for Td = 0

The eigenvalues of the Jacobian matrices can be used to find the local stability conditions of the
equilibrium locations. At this points, for Td = 0, system’s (1) Jacobian matrix is provided by:

J =


A∗ B∗ C∗

D∗ E∗ F∗

N∗ M∗ H∗


where,
A∗ = r1

h − 2a1x1 − β1x2 − d1y, B∗ = −β1x1, C∗ = −(g1r1x1
h2

+ d1x1),

D∗ = −β2x2 , E∗ = r2
J − 2a2x2 − β2x1 − d2y , F∗ = −(g2r2x2

J2 + d2x2),

N∗ = c1d1y,M∗ = c2d2y, H∗ = c1d1x1 + c2d2x2 − 2my.

(i): For Ξ0 = (0, 0, 0):

J|Ξ0 =


r1 0 0

0 r2 0

0 0 0


So, λ01 = r1 > 0, λ02 = r2 > 0, λ03 = 0, Since there are two positive eigenvalues, point is unstable.
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(ii): For Ξ1 = ( r1a1 , 0, 0):

J|Ξ1 =


−r1

−β1r1
a1

−g1r21−d1r1
a1

0 r2a1−β2r1
a1

0

0 0 c1d1r1
a1


So, λ11 = −r1 < 0, λ12 = r2a1−β2r1

a1
, and λ13 = c1d1r1

a1
> 0, We note that there is negative and positive

eigenvalues, so the point Ξ1 is saddle point (unstable).

(iii): For Ξ2 = (0, r2a2 , 0):

J|Ξ2 =


a2r1−β1r2

a2
0 0

−β2r2
a2

−r2
−g2r22−d2r2

a2

0 0 c2d2r2
a2


So, λ21 = a2r1−β1r2

a2
, λ22 = −r2 < 0, and λ23 = c2d2r2

a2
> 0. Also can observe that the point Ξ2 is saddle

point (unstable).

(iv): For Ξ3 = ( r2β1−r1a2β1β2−a1a2 ,
r1β2−r2a1
β1β2−a1a2 , 0):

J|Ξ3 =


A3 B3 C3

D3 E3 F3

0 0 H3


A3 = a1[r1a2−r2β1]

β1β2−a1a2 , B3 = β1[r1a2−r2β1]
β1β2−a1a2 , C3 = (g1r1+d1)(r1a2−r2β1)

β1β2−a1a2 ,

D3 = β2[r2a1−r1β2]
β1β2−a1a2 ,E3 = a2[r2a1−r1β2]

β1β2−a1a2 , F3 = (g2r2+d2)(r2a1−r1β2)
β1β2−a1a2 ,

H3 = c1d1[r2β1−r1a2]+c2d2[r1β2−r2a1]
β1β2−a1a2 .

Where,

[λ2 + (−A3 − E3)λ+ (A3E3 −B3D3)](H3 − λ) = 0. (24)

Due to the conditions (3)-(4) or the conditions (5)-(6), the above characteristic equation has two
eigenvalues with negative real part, while the third eigenvalue given by λ33 = H3 is positive. So the
point Ξ3 is saddle point (unstable).

(v): For Ξ4 = (x∗1, 0, y
∗):

J|Ξ4 =


A4 B4 C4

0 E4 0

N4 M4 H4


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where,

A4 =
r1

h∗
− 2a1x

∗
1 − d1y

∗, B4 =− β1x
∗
1, C4 =− (

g1r1x
∗
1

h∗2
+ d1x

∗
1),

E4 =
r2

J∗
− β2x

∗
1 − d2y

∗, N4 =c1d1y
∗, M4 =c2d2y

∗,

H4 =c1d1x
∗
1 − 2my∗.

where h∗ = 1 + g1y
∗.

The first eigenvalue of the above Jacobin matrix is λ41 = E4 < 0, provided

J∗y∗ >
c1d1r2

β2m+ c1d1d2
. (25)

The residue eigenvalues are the roots of the equation

λ2 + b41λ+ b42 = 0, (26)

where, b41 = −A4 −H4 > 0, and b42 = A4H4 − C4N4 > 0. Hence, Routh Hurwitz criterion [28] gain
the roots (eigenvalues) of (26) have negative real parts. Thus, we can obtain the following theorem.

Theorem 4. The point Ξ4 is locally asymptotically stable, If condition (25) are met.

(vi): For Ξ5 = (0, x∗2, y
∗):

J|Ξ5 =


A5 0 0

D5 E5 F5

N5 M5 H5


where,

A5 =
r1

h∗
− β1x

∗
2 − d1y

∗, D5 =− β2x
∗
2, E5 =

r2

J∗
− 2a2x

∗
2 − d2y

∗,

F5 =− (
g2r2x

∗
2

J∗2
+ d2x

∗
2), N5 =c1d1y

∗, M5 =c2d2y
∗,

H5 =c2d2x
∗
2 − 2my∗.

The first eigenvalue of the above Jacobin matrix is λ51 = A5 < 0, provided

h∗y∗ >
c2d2r1

β1m+ c2d1d2
. (27)

The residue eigenvalues are the roots of the equation

λ2 + b51λ+ b52 = 0, (28)

where, b51 = −E5 −H5 > 0, and b52 = E5H5 − F5M5 > 0. Than, due to Routh Hurwitz criterion the
last equation (28) has two roots (eigenvalues) with negative real parts. Consequently, the next theorem
can be obtained.

Theorem 5. The point Ξ5 is locally asymptotically stable, If condition (27) are met.
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(vii): Now for Ξ6 = (x∗1, x
∗
2, y
∗):

J|Ξ6 =


A6 B6 C6

D6 E6 F6

N6 M6 H6


where,

A6 =− a1x
∗
1, B6 =− β1x

∗
1, C6 =− (

g1r1x
∗
1

h∗2
+ d1x

∗
1),

D6 =− β2x
∗
2, E6 =− a2x

∗
2, F6 =− (

g2r2x
∗
2

J∗2
+ d2x

∗
2),

N6 =c1d1y
∗, M6 =c2d2y

∗, H6 =−my∗.

The characteristic equation of J|Ξ6 is given by

λ3 + b61λ
2 + b62λ+ b63 = 0, (29)

where,

b61 = −H6 −A6 − E6 > 0,

b62 = A6H6 + E6H6 +A6E6 −B6D6 − F6M6 − C6N6 > 0,

b63 = −A6E6H6 −B6F6N6 − C6D6M6 +B6D6H6 + F6M6A6 + C6N6E6 > 0.

The two conditions (18) and (19) yield that b63 > 0 and b61b62 − b63 > 0, thereby satisfying all the
requirements of the Routh-Hurwitz criterion. Hence, we have the following theorem.

Theorem 6. The point Ξ6 is locally asymptotically stable, If condition (18) and (19) are met.

6. Region of Attraction for Td = 0

In the stability analysis of population dynamics, global stability is a crucial and necessary concept. In
complex ecological models, we typically study global stability in sub region called a region of attraction.
In this talk, we’ll look at the sub-region of stability of a system that has one predator species and two
prey species. We can use the Lyapunov function to demonstrate that.

Theorem 7. Point Ξ4 = (x∗1, 0, y
∗) is globally asymptotically stable in sub-regions where the following require-

ments are met:

(i): ma1 >
1
4 [d1 − c1d1 + g1r1

hh∗ ]2,

(ii): y∗ > c1d1r2
c1c2d1d2−β1m ,

(iii): c2 < 1.
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Proof. Consider the Lyapunov function:

z1(x1, x2, y) = (x1 − x∗1 − x∗1 log
x1

x∗1
) + x2 + (y − y∗ − y∗ log

y

y∗
).

After differentiation we get
dz1

dt
= (

x1 − x∗1
x1

)x′1 + x′2 + (
y − y∗

y
)y′.

dz1

dt
=(x1 − x∗1)[

r1

h
− a1x1 − β1x2 − d1y −

r1

h∗
+ a1x

∗
1 + d1y

∗] +
r2x2

J
− a2x

2
2 − β2x1x2

−d2x2y + (y − y∗)[c1d1x1 + c2d2x2 −my − c1d1x
∗
1 +my∗],

dz1

dt
=(x1 − x∗1)[−(x1 − x∗1)a1 − β1x2 − (y − y∗)d1 − (y − y∗)g1r1

hh∗
] +

r2x2

J
− a2x

2
2 − β2x1x2

−d2x2y + (y − y∗)[(x1 − x∗1)c1d1 + c2d2x2 − (y − y∗)m],

dz1

dt
≤− (x1 − x∗1)2a1 − (x1 − x∗1)β1x2 − (x1 − x∗1)(y − y∗)[d1 − c1d1 +

g1r1

hh∗
] + r2x2

− a2x
2
2 − β2x1x2 − d2x2y + (y − y∗)c2d2x2 − (y − y∗)2m.

We will get a perfect square
dz1

dt
≤− [(x1 − x∗1)

√
a1 + (y − y∗)

√
m]2 + d2x2y(c2 − 1) + x2(β1x

∗
1 + r2 − c2d2y

∗)

− β1x1x2 − a2x
2
2 − β2x1x2.

From the conditions of Theorem7 we will get dz1dt < 0. Accordingly, Ξ4 is an asymptotically stable point
for every trajectory that begins at a location within the region that meets the above conditions. �

Similarly, can be proved the next two theorems about the sub-regions of globally asymptotically of
Ξ5 and Ξ6 of system (1) for Td = 0.

Theorem 8. Ξ5 = (0, x∗2, y
∗) is globally asymptotically stable in sub- regions where the following requirements

are met:

(i): ma2 >
1
4 [d2 − c2d2 + g2r2

JJ∗ ]2,

(ii): y∗ > c2d2r1
c1c2d1d2−β2m ,

(iii): c1 < 1.

Theorem 9. Ξ6 = (x∗1, x
∗
2, y
∗) is globally asymptotically stable in sub- regions where the following requirements

are met:

(i): a1a2 ≥ (β1 + β2)2,

(ii): a1m ≥ [d1 − c1d1 + g1r1
hh∗ ]2,

(iii): a2m ≥ [d2 − c2d2 + g2r2
JJ∗ ]2.



Asia Pac. J. Math. 2024 11:91 13 of 26

7. Local Stability and Hopf Bifurcation for Delay Model (1)

System (1) has the generalized variational matrix:

Jd =


A∗ B∗ C∗

D∗ E∗ F∗

N∗e
−λTd M∗e

−λTd Q∗

 (30)

where, Q∗ = [c1d1x1 + c2d2x2]e−λTd − 2my. In what follows, we examine the local stability and the
Hopf bifurcation near Ξ4,Ξ5,Ξ6, by utilizing time gestation delay Td as the bifurcation parameter.

(i): for Ξ6 = (x∗1, x
∗
2, y
∗):

The characteristic equation of (1) at Ξ6

det


A6 − λ B6 C6

D6 E6 − λ F6

N6e
−λTd M6e

−λTd Q6 − λ

 = 0

where, Q6 = R�e
−λTd − 2my∗ and R� = c1d1x

∗
1 + c2d2x

∗
2, it is equivalent to:

λ3 + p1λ
2 + p2λ+ p3 + (q1λ

2 + q2λ+ q3)e−λTd = 0, (31)

where,
p1 = 2my∗ − (A6 + E6) > 0, p2 = A6E6 −B6D6 − 2my∗(A6 + E6),

p3 = 2my∗(A6E6 −B6D6), q1 = −(c1d1x
∗
1 + c2d2x

∗
2) = −R� < 0,

q2 = A6R� + E6R� − (F6M6 + C6N6),

q3 = −A6E6R� −B6F6N6 − C6D6M6 +B6D6R� + F6M6A6 + C6N6E6.

At first, when Td = 0, equation (31) reduces to:

λ3 + (p1 + q1)λ2 + (p2 + q2)λ+ (p3 + q3) = 0. (32)

So, with the help of Routh-Hurwitz criterion, theorem (6) acquire that Ξ6 is locally asymptotically
stable. Now, whenever Td is greater than zero, may (31) has a pair of purely imaginary roots, let this
pair represented by λ = ∓iω,(ω > 0). Through replacing λ = iω ( or λ = −iω) in equation (31), we
derive that

−iw3 − p1w
2 + ip2w + p3 + (−q1w

2 + iq2w + q3)(coswTd − i sinwTd) = 0.

From separating the previous equation’s real and imaginary parts, it produces

(q3 − q1w
2) coswTd + q2w sinwTd = p1w

2 − p3, (33)

q2w coswTd − (q3 − q1w
2) sinwTd = w3 − p2w

2.
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After squaring (33)1 and (33)2, we may sum the resulting equations to obtain

w6 + ~1w
4 + ~2w

2 + ~3 = 0, (34)

where,
~1 = p2

1 − q2
1 − 2p2 > 0,

~2 = p2
2 − 2p1p3 − q2

2 + 2q1q3,

~3 = p2
3 − q2

3 = (p3 + q3)(p3 − q3).

Further, assume that the next condition holds.

q3 > p3. (35)

In the event that conditions (18)- (20) and (35) are fulfilled, h3 < 0. So, there is a unique positive root,
let’s say ω0, satisfying equation (34), in accordance with Descartes’ rule of signs. Consequently, ±iω0

represents two imaginary roots of equation (31). Moreover, if substituting ω0 in (33)1 and (33)2, and
solving the resulting equations for Td, we might have

T03 =
1

w0
cos−1 (q2 − q1p1)w4

0 + (q3p1 + q1p3 − q2p2)w2
0 − q3p3

q2
1w

4
0 + (q2

2 − 2q1q3)w2
0 + q3

2

. (36)

Next, we need to prove the next transversality requirement in order to establish Hopf bifurcation at
Td = T03.

sing[
d(Reλ(Td))

dTd
]Td=T03 > 0. (37)

To accomplish that, assume that a root of equation (31) fulfilling α(T03) = 0 is λ(Td) = α(Td) + iω(Td),
where ω(T03) = ω0.
Now, through the use of λ(Td) in equation (31) and differentiation it with respect to Td, one may obtain
that

[3λ2 + 2p1λ+ p2 + (2q1λ+ q2)e−λTd − Td(q1λ
2 + q2λ+ q3)e−λTd ]

dλ

dTd

= λ(q1λ
2 + q2λ+ q3)e−λTd . (38)

Constantly,

(
dλ

dTd
)−1 =

(3λ2 + 2p1λ+ p2)eλTd

(q1λ
2 + q2λ+ q3)λ

+
2q1λ+ q2

(q1λ
2 + q2λ+ q3)λ

− Td
λ
. (39)

For Td = T03, and λ = iω0, can have that

(q1λ
2 + q2λ+ q3)λ = −q2ω

2
0 + iω0(q3 − q1ω

2
0),

2q1λ+ q2 = q2 + 2iq1ω0,

Td
λ

= −iT03

ω0
.
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further,

(3λ2 + 2p1λ+ p2)eλTd = (p2 − 3ω2
0 + i2p1ω0)(cosω0T03 + i sinω0T03)

= [(p2 − 3ω2
0) cosω0T03 − 2p1ω0 sinω0T03] + i[2p1ω0 cosω0T03 + (p2 − 3ω2

0) sinω0T03].

Than,

Re[
d(λ(Td))

dTd
]−1
Td=T03

=Re[
(2q1λ+ q2) + (3λ2 + 2p1λ+ p2)eλTd

(q1λ
2 + q2λ+ q3)λ

− Td
λ

]λ=iω0

=
1

Q0
[3ω6

0 + 2(p2
1 − q2

1 − 2p2)ω4
0 + (p2

2 − 2p1p3 + 2q1q3 − q2
2)ω2

0]

=
ω2

0

Q0
h(ω2

0), (40)

where,
Q0 = q2

2ω
4
0 + ω2

0(q3 − q1ω
2
0)2 > 0,

h(ω2
0) = 3ω4

0 + 2h1ω
2
0 + h2.

Let χ = ω2
0 > 0 and Ψ = [d(Reλ(Td))

dTd
], then from complex analysis one can show that

sing(Ψ)Td=T03 = singRe[
d(λ(Td))

dTd
]−1
Td=T03

= sign[h(χ)].

Since h′(χ) = 6χ+ 2h1 > 0. So, gain that h(χ) monotonously increases in [0,+∞). Furthermore,under
the next condition

p2
2 − 2p1p3 > q2

2 − 2q1q3. (41)

we obtain h(0) > 0, and h(χ) > 0 for ω > 0.
Considering the aforementioned, the transversal condition (37) is satisfied. Keeping the above condition
in view, we can obtain the following theorem:

Theorem 10. Assume that the conditions (18)- (20) and (35) are hold, then:

• Ξ6 is locally asymptotically stable for Td < T03

• Ξ6 is unstable for Td > T03

• System (1) undergoes Hopf bifurcations at Ξ6 for Td = T03, where T03 is defined in equation (31), if
the condition (41) is met.

Likewise, the local stability and Hopf bifurcation may also be investigated close to Ξ4,Ξ5 by using
time gestation delay Td as the bifurcation parameter. Consequently, this allows us to ascertain the
threshold values T02( T01) such that Ξ5(Ξ4) is locally asymptotically stable for Td < T02(Td < T01), and
unstable for Td > T02 (Td > T01). Also, we can show the system (1) undergoes Hopf bifurcations at Ξ5

for Td = T02 (or at Ξ4 for Td = T01).
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8. Numerical Simulations and Discussion

This section covered the numerical stability behaviors of the delay model (1) with the assistance
of ( MATLAB 2018 ) software. Because actual data is not readily available, we have used here some
hypothetical values of the model parameters.

r1 =0.9, r2 =0.95, g1 =1.5, g2 =1.5, c1 =0.85, c2 =0.85, β1 =0.25,

β2 =0.25, d1 =0.52, d2 =0.5, a1 =0.205, a2 =0.2, m =0.55. (42)

Firstly, for model (1) with Td = 0, according to analytically analysis the equilibria Ξ0 ,Ξ1,Ξ2, and Ξ3

are always exist, but they are not stable. Consequently, we were unable to obtain numerical stability
for these equilibria. On other hand, also the equilibria Ξ4, and Ξ5 are always exist, and they may be
asymptotically stable under some analytically conditions. Furthermore, if the steady state solution
Ξ6 exist under specific conditions then it’s asymptotically stable. From Fig.1 it can be seen that the
equilibrium points Ξ4,Ξ5 and Ξ6 exist for the model (1) and they are locally asymptotically stable.

Figure 1. Stability of different equilibrium points through time series solutions. (a)
Coexistence equilibrium Ξ6 stable; (b) First prey-free equilibrium Ξ5 stable; (c) Second
prey-free equilibrium Ξ4 stable.
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Figure 2. Global stability of Ξ4 = (0.9075, 0, 0.5730) of system (1) with the parameters
values as given in Fig. 1 except: (a) a1 = 0.17 (b)m = 0.7 .

The data set (42) used in Fig. 1 satisfied the existence and stability conditions of Ξ6 that given
in theorem (3) and (6) as shown in subfigure (a), This data set with g1 = 2.5 satisfied the stability
conditions of Ξ5 that given in theorem (5) as plotted in subfigure (b), while with g2 = 2.5 this data
set satisfied the stability conditions of Ξ4 that given in theorems (4) as depicted in subfigure (c). It is
apparent from that the ecosystem may become unstable due to the impact of fear of predato on prey’s
growth. But it may support warmer environments to stabilize.
Figure 2, used the data set (42) with a1 = 0.17 in subfigure 2(a), andm = 0.7 in subfigure 2(b), and
represents the global stability of Ξ4 for the proposed model. From this figure one can show the prey x2

may go to extinction with decreasing toxicity first prey rate a1 or increasing toxicity predator ratem.
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Figure 3. Global stability of Ξ5 = (0, 0.6421, 0.6822) of system (1) with the parameters
values as given in Fig. 1 except: (a) a2 = 0.15, (b)m = 0.4.

Figure 3, represents the global stability of for Ξ5 the proposed model for Td = 0. This figure plotted
with data set (42) and used a2 = 0.15 in subfigure 3(a) and m = 0.4 in subfigure 3(b). It is seen
that the first prey x1 may go to extinction with decreasing toxicity rates a2 or m. These two figures
confirmed the analytic results given in theorems (7) and (8).
Moreover, phase diagram of non-delay model of (1) shows bistability between Ξ4 and Ξ5 due to the
change of toxicity rates of preys and predator as depicted in Fig. 4. Due the model’s complexity, the
results indicate that, for lower values of toxicity rates the system solution moves between boundary
equilibrium points depends on the initial population sizes.
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Figure 4. Bistability between Ξ4 and Ξ5 of system (1) with the parameters values as
given in Fig. 1 except: a1 = 0.1, a2 = 0.12, andm = 0.25.

Figure 5. Phase portrait of system (1) at the parameters values r1 = 0.9, r2 = 0.95, g1 =

1.5, g2 = 1.5, c1 = 0.85, c2 = 0.85, β1 = 0.25, β2 = 0.25, d1 = 0.52, d2 = 0.5, a1 =

0.41, a2 = 0.41, andm = 0.55.
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Furthermore, in Fig. 5, the phase portrait of non-delaymodel of (1) has been presented. It is observed
that the data set used in this figure fulfilled the conditions of theorem (8) in addition to the conditions
for the existence of all equilibria Ξi, i = 1, 2, ..., 6 for this model. So, in this figure we show only Ξ6 is
globally stabile while other equilibria are exist but unstable. Therefore, depending on it values, toxicity
rate can either promote stability or cause instability.
The above numerical simulations validate the analytical findings of system (1)at Td = 0. In other
hand, to investigate the effect of time delay on the dynamic of the model, we showcase numerical tests
conducted on the system (1)with Td 6= 0. To confirm the theorem (10)’s analytical result, we used the
data set in figure 5 withm = 0.3. Due to this data, equation (34) has ~1 = 0.1358, ~2 = −0.0029, ~3 =

−4.6314E − 06 and w0 = 0.1412. This indicates that the equation (31) has the pure complex roots
±i0.1412. Further, the transversality criterion (37) is also met because, using Td = 11.9682 from
equation (36), we obtain sing(Ψ(Td = 11.9682)) = sing(h(0.3758)) = sign(0.0031) > 0. The next two
figures 6 and 7 validate the result of theorem (10). Where the time series and the phase portrait of
model (1) with Td = 10.9682 < T03 are plotted in Fig. 6 and show that The solution begins with a
periodic oscillation and then goes asymptotically to a steady state Ξ6 = (0.1464, 0.3005, 0.6444). While
Fig. 7 plotted with Td = 12.9682 > T03 and show the model has a Hopf bifurcation around Ξ6.

Figure 6. Solutions and Phase portrait of system (1) with Td = 10.9682 < T03,m = 0.3

and other parameters values as used in Fig. 5.
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Figure 7. Solutions and Phase portrait of system (1) with Td = 12.9682 > T03,m = 0.3

and other parameters values as used in Fig. 5.

Furthermore, by altering the values of g1, g2, a1, a2, and m, it is also possible to get the dynamic
behavior suggested by theorem (10). In these cases, as the values of these parameters vary, so does the
delay threshold value T03.
In order to verify our claim about the effect of time delay Td on the stability and instability of Ξ5, the
data set (42) with a2 = 0.15 is now applied in the next two figures, 8 and 9. Figure 8, plotted with
Td = 6.6986 < T02 = 7.6986, illustrates how the solutions arrive at a free-prey state Ξ5 following an
oscillation phase. While Fig. 9, plotted with Td = 8.6986 > T02 = 7.6986, demonstrates that the delay
model features a Hopf bifurcation near Ξ5.
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Figure 8. Solutions and Phase portrait of system (1) with Td = 6.6986 < T02, a2 = 0.15

and other parameters values as given in (42).

Figure 9. Solutions and Phase portrait of system (1) with Td = 8.6986 > T02, a2 = 0.15

and other parameters values as given in (42).

Finally, figures 10 and 11 are plotted with data set in (42) with a1 = 0.175, to confirm our assertion
on the impact of time delay Td on the stability and instability of Ξ4. Figure 10 plotted with Td =
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8.5 < T01 = 9.05, and demonstrating that the solution starts with a periodic oscillation and progresses
asymptotically to a stable state Ξ4. While Fig. 11 plotted with Td = 9.5 > T01 = 9.05, and reveals that
there is a Hopf bifurcation in the delay model close to Ξ4.

Figure 10. Solutions and Phase portrait of system (1) with Td = 8.5 < T01, a1 = 0.17,
and other parameters values as given in (42).

Figure 11. Solutions and Phase portrait of system (1) with Td = 9.5 > T01, a1 = 0.17,
and other parameters values as given in (42).
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9. Conclusions

This work develops a dynamical model of three species, two different preys and one-predator ,in the
setting of the effects of fear and toxic substances. The solution’s characteristics were examined. It was
determined that one internal equilibrium point and six boundary equilibrium points are present. The
system (1)’s stability study (locally and globally) was looked into. It is discovered that the internal,
x1-free, and x2-free equilibria are the only ones that may be stable (conditionally stable) for system
(1) at 0 ≤ Td < T0i, i = 1, 2, 3. Further, the bistability between x1-free and x2-free equilibria indicates
that the system possesses global stability within sub-regions. Also, we see that the system without
delay always (Td = 0) reaches equilibrium states; in other words, the oscillatory behavior does not
arise from the system. This indicates that the predator is constantly dependent on both prey species.
In this regard, this model does not predict oscillatory predation between the two prey species. For
Td < Tdi, this oscillation disappears over time; for Td > Tdi, it moves to the hopf bifurcation. In this
case, predator species exhibit oscillatory predation between the two prey species. Further, we observe
that the effect of toxicity on predator has no effect on the instability of the predator extinction equilibria
Ξ1,Ξ2 and Ξ3. This is due to the fact that predators might depend on the other prey to save themselves
from going extinct. Theoretical conditions and numerical results show that incrossing the fear levels of
predations g1andg2, may move the model to extinct the preys. Additionally, the toxicity levels a1, a2,
andm have a significant impact on stability and instability of the model solutions’, and on the value of
the gestation delay threshold values at which the hopf bifurcation arises. Overall analysis shows that,
for whatever value of the parameters, the system cannot collapse due to the intrinsic instability of Ξ0.
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