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STABILIZATION OF A SYSTEM OF SCHRÖDINGER EQUATIONS WITH VARIABLE
COEFFICIENTS AND DAMPED BY MEMORY BOUNDARY FEEDBACK

NAWEL ABDESSELAM

Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Laghouat, Algeria
nawelabedess@gmail.com

Received Jun. 21, 2024

Abstract. We study the energy decay for a coupled system of two complex Schrödinger equations with
variable coefficients and damped by memory boundary feedback conditions. The aim of this paper
is to prove that we can apply the Riemann geometric approach developed to study the problems of
direct stabilization for wave equations (see [10] ) and show that the sufficiently smooth solutions decays
polynomially at infinity, by adapting the ideas of Alabau in [2] used to obtain indirect stabilization results
for a system of two coupled wave equations with constant coefficients.
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1. Introduction

Let Ω be an open bounded domain in Rn with boundary Γ := ∂Ω. It is assumed that Γ consists of
two parts Γ0 and Γ1 such that Γ0,Γ1 6= ∅, Γ0 ∩ Γ1 = ∅. Given T > 0, let Q = Ω×]0, T [,Σ = Γ×]0, T [

and Σl = Γl×]0, T [(l = 0, 1). In Ω, we consider the following coupled complex valued Schr odinger
equations with variable coefficients:

iyt +Ay + az = 0 in Q,

izt +Az + ay = 0 in Q,

y = 0 on Σ0,
∂y

∂νA
= −

∫ t

0
k′(t− s)y(s)ds− k(0)y(t)− byt on Σ1 and z = 0 on Σ,

y(x, 0) = y0 and z(x, 0) = z0 in Ω,

(1)

where
Ay = −

n∑
i,j=1

∂

∂xi

(
aij(x)

∂y

∂xj

)
,
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is a second order differential operator with real coefficients aij = aji of class C∞ and satisfies the
uniform ellipticity condition

n∑
i,j=1

aij(x)ξiξj > a0

n∑
i=1

ξ2
i ∀x ∈ Ω, ζ ∈ Rn, ζ 6= 0, (2)

for some positive constant a0 > 0.ν = (ν1, ν2, . . . , νn) is the outward unit normal to
Γ, ∂y

∂νA
=
∑n

i,j=1 aij(x, t)
∂y
∂xi
νi, denotes the co-normal derivative with respect to A.

where k : Γ1 ×R+ → R+ ∈ C2(R+, L∞(Ω)) and a and b are two functions in L∞(Ω) such that for some
constants a?, b? > 0,we have a? ≤ a(x) for all x ∈ Ω and b(x) ≤ b? for all x ∈ Γ.

The stabilization of partial differential equations has been considered by many authors ( [6], [2],
[5], [10] ). Recently, Yao has introduced the Riemann geometric method to study the problem of
exact controllability of real valued wave, Euler-Bernoulli and Shalow Shells equations with variable
coefficients see ( [12]). The authors have used this approach to establish observability estimates for
vector valued Maxwell’s system with variable coefficients. Using this approach, several papers were
devoted to the stability of variable systems (see [4], [6]). More recently, the wave equation with
memory and nonlinear feedbacks with constant coefficients has been studied by [9]. This study has
been generalised by Chai and Guo [10] for variable coefficients by using a very different method,
namely, the Riemannian geometry method. But the same problem was treated by sevral authors using
arguments of differential geometry, on the multiplier method and the introduction of appropriate
Lyapunov functionals of one wave equation.
On the other hand, the stabilization of one Schrödinger equations with constant coefficients has been
studied by Machtyngier and Zuazua [11] in the Neumann boundary conditions, and by auther authors
with nonlinear feedbacks. This study has been considered and with constant coefficients acting in the
Dirichlet boundary conditions. The asymptotic behaviour of the Schrödinger equation with memory
and linear feedbacks with variable coefficients has been studied by Abdesselam and Melkemi [5].
The goal of this work is to prove that we can apply the Riemann geometric on Cn approach to the
coupled complex Schr odinger equations with variables coefficients and show that we can obtain the
indirect boundary stabilization of this system, by adapting the method of Alabau developed in the
context of coupled real wave equations with constant coefficients. We note here that the coupling
coefficient ||a||L∞(Ω) is considered as a function with sufficiently small.
The rest of this paper is organized as follows. In Section 2, we present some assumptions and material
needed for our work and give the well posedness results of our two systems. Some technical lemmas
are presented and proved in Section 3. Finally, we state and prove our main decay results.
To obtain our result, we need some geometric assumptions. The approach adopted uses Riemannian
geometry. This method was first introduced to boundary-control problems by Yao [12] for the exactly
controllability of wave equations.
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2. Preliminary Notes

2.1. Riemannian metric. For each x ∈ Rn, define the inner product and the corresponding norm on
the tangent space TxRn by

g(X,Y ) = 〈X,Y 〉g = X ·G(x)Y =
n∑

i,j=1

gij(x)αiβj

|X|2g = 〈X,Y 〉g for X =

n∑
i=1

αi
∂

∂xi
, Y =

n∑
i=1

βi
∂

∂xi
∈ TxRn.

Then (Rn, g) is a Riemannian manifold with a Riemannian metric g. Denote the Levi-Cevita connection
in metric g by D. Let H be a vector field on (Rn, g). The covariant differential DH of H determines a
bilinear form on TxRn × TxRn. For each x ∈ Rn, by

DH(X,Y ) = 〈DXH,Y 〉g,∀X,Y ∈ TxRn

where DXH is the covariante derivative of H with respect to X . The following lemma provides some
useful equalities.

Lemma 1 [12]
Let f , h ∈ C1(Ω) and let H,X be a vector field on Rn. Then using the above notation, we have

(i)
〈H(x), A(x)X(x)〉g = H(x)X(x), ∀x ∈ Rn (3)

(ii) The gradient∇gf of f in the Riemannian metric g is given by

∇gf(x) =

n∑
i=1

( n∑
j=1

aij(x)
∂f

∂xj

) ∂

∂xi
= A(x)∇0f. (4)

(iii)
∂y

∂νA
= (A(x)∇0y).ν = ∇gy.ν. (5)

(iv)
〈∇gf,∇gH〉g = ∇gf(h) = ∇0f ·A(x)∇0h. (6)

(v) An identity. If f ∈ C1(Ω) then

〈∇gf,∇gH(f)〉 = DH(∇gf,∇gf) +
1

2
div0(|∇gf |2gH)(x)− 1

2
|∇gf |2g div0(H) x ∈ Rn. (7)

(vi)

Ay = −
n∑

i,j=1

∂

∂xi
(aij(x)

∂y

∂xj
)

= −div0(A(x)∇0y) = −div0(∇gy), y ∈ C2(Ω).

(8)
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In all this work, we give the counterpart of the Green’s formula and the identity (v) for complex
valued functions, the following lemma gives further relationships in Cn.
Lemma 2

Let f be a complex valued function and H be a vector field on (Rn, g).We put

H(f) := H(Ref) + iH(Imf) and ∇gf := ∇gRef + i∇gImf. (9)

Let f1, f2 be complex valued functions in H2(Ω). Then

Re

∫
Ω
Af1f2 = Re

∫
Ω
〈∇gf1,∇gf2〉g −Re

∫
Γ

∂f1

∂νA
f̄2. (10)

Let f be a complex valued function in C1(Ω) and H a vector field on (Rn, g). Then

〈∇gf,∇gH(f)〉 = DH(∇gRef,∇gRef) +DH(∇gImf,∇gImf)

+
1

2
div0(||∇gf ||2gH)(x)− 1

2
||∇gf ||2g div0(H), x ∈ Rn.

(11)

We can see that there exist two positive constants α1 and α2 such that
∀y ∈ H1(Ω) we have α1, α2 ∈ Ω

α1

∫
Ω
|∇0y|2g ≤

∫
Ω
|∇gy|2g =

∫
Ω
Re|∇gy|2g +

∫
Ω
Im|∇gy|2g ≤ α2

∫
Ω
|∇0y|2g. (12)

Let C1 and C2 are the positive constants such that∫
Ω
|f |2 ≤ C2

1

∫
Ω
|∇gy|2g and

∫
Γ1

|f |2 ≤ C2
2

∫
Ω
|∇gy|2g. (13)

For all functions f ofH1
Γ0

(Ω), C is a generic positive constant which does not depend on the initial data.

2.2. Statement of main result. To obtain the boundary stabilization of problem, the following assump-
tions are made to state our main result. Assume that there exists a real vector field H ∈ [C1(Ω̄)]n on
the Riemannian manifold (Rn, g) a constantm0 > 0 such that

DH(X,X) ≥ m0||X||2g,∀X ∈ Rnx, (14)

and
2m0 > C1CH , (15)

where CH = supx∈Ω||∇g(div0H)||g.

H(x) · ν < 0 on Γ0, (16)

H(x) · ν ≥ 0 on Γ1, (17)

∃δ > 0, k′′ ≥ −δk′ on Γ1 × R+, (18)

k′ ≤ 0 on Γ1 × R+, (19)

ϕ = inf
(x,t)∈Γ1×R+

(−k′) 6= 0. (20)
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We have the following result of existence and uniqueness of weak solution to problem (1).

Theorem 1

Let
A : D(A) ∈ H1

Γ0
(Ω)×H1

0 (Ω)→ H1
Γ0

(Ω)×H1
0 (Ω)

be the operator defined by A(y, z) = (iAy + iaz, iAz + iay) where
D = D(A) = {(y, z) ∈ H1

Γ0
(Ω)×H1

0 (Ω)|(Ay,Az) ∈ H1
Γ0

(Ω)×H1
0 (Ω) and ∂y0

∂νA
= −

∫ t
0 k
′(t− s)y(s)ds−

k(0)y(t) − byt}. For all initial data (y0, z0) ∈ H1
Γ0

(Ω) × H1
0 (Ω) the system (1) has a unique solution

(y, z) ∈ C(R+;H1
Γ0

(Ω)×H1
0 (Ω)) and that if (y0, z0) ∈ D the system (1) has a unique solution

(y, z) ∈ C(R+;D) ∩ C1(R+;H1
Γ0

(Ω)×H1
0 (Ω)).

Proof. we can using the Faedo–Galerkin method. �

3. Main Results and the Proofs

We give our main result and the corresponding proofs in this section. Consider the total energy E of
the system defined by, for all t > 0

E(t) = E(y(t), z(t)) = E1(y(t) + E2(z(t)) +Re

∫
Ω
ayz̄dΩ.

E1(y(t)) =
1

2

∫
Ω
|∇gy|2gdΩ +

1

2

∫
Γ1

k|y|2 dΓ1 −
1

2

∫ t

0

∫
Γ1

k′(t− s)|y(t)− y(s)|2 dΓ1ds.

E2(z(t)) =
1

2

∫
Ω
|∇gz|2g dΩ.

We can see that E is equivalent to E1 + E2 when we take ||a||L∞(Ω) sufficiently small. The dissipative
property of the sollution of the system is given by the following lemma.

Lemma 3

For all t > 0, we have

E′(t) = −
∫

Γ1

b|yt|2 dΓ1 +
1

2

∫
Γ1

k′|y|2 dΓ1 −
1

2

∫ t

0

∫
Γ1

k′′(t− s)|y(t)− y(s)|2 dΓ1ds ≤ 0.

Proof. We multiply both side the first equation of (1) by ȳt, integrate over Ω, take the real part, use the
third Green’s formulla, finally we use the boundary condition, we find

Re

∫
Ω
〈∇gyt,∇gy〉gdΩ +

1

2

∫
Γ1

k′|y|2 dΓ1

+ Re

∫
Γ1

kyty dΓ1 −
1

2

∫ t

0

∫
Γ1

k′′(t− s)|y(t)− y(s)|2 dΓ1ds

− Re

∫ t

0

∫
Γ1

k′(t− s)yt(t)(y(t)− y(s)) dΓ1ds+Re

∫
Ω
azȳtdΩ = 0
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We observe
Re

∫
Γ1

yyt(k − k(0)−
∫ t

0
k′(t− s)ds) dΓ1 = 0.

We obtain similar identity for z

Re

∫
Ω
〈∇gzt,∇gz〉gdΩ +Re

∫
Ω
azȳtdΩ = 0.

But
E′(t) = Re

∫
Ω
〈∇gyt,∇gy〉gdΩ +Re

∫
Ω
〈∇gzt,∇gz〉gdΩ +Re

∫
Ω
a(yz̄)tdΩ.

Then we find the result. �

Remark

We deduce from the precident Lemma that

E(T ) ≤ E(0). (21)

and ∫
Σ1

|yt|2 ≤ CE(0). (22)

Our main result is
Theorem 2

Let N ≥ 1. For any initial data (y0, z0) ∈ D(AN ), the energy E of the solution of system (1) decays
polynomially:

E(y(t), z(t)) ≤ C

tN

p=N∑
p=0

E(y(p)(0), z(p)(0)) for all t > 0.

Proof. To prove our result we estimate ∫ T0 E1(t) and ∫ T0 E2(t) then, after summing up these two esti-
mates, we conclude applying the Theorem 3.1 in [2] withK = 1.

Step I

We prove an estimate useful to estimate the term ∫ T
0 E1(t).

For fixed t,we consider w the solution of the problem

Aw = 0 in Ω, w = y on Γ.

Using elliptic regularity (Lemma 2.1 in [6]), we can see that∫
Ω
|w|2 ≤ C

∫
Γ
|y|2 ≤ CE1(t),

and ∫
Q
|wt|2 ≤ C

∫
Σ1

|yt|2 ≤ CE(0). (23)

On the other hand, we have Re
∫

ΩAwz̄ = 0⇒ Re
∫

Ω〈∇gwt,∇gz〉gdΩ = 0. Multiplying the conjugate
of the second equation of (1) by (y − w), integrating over Q and taking the real part
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Im

∫
Q
z̄t(y − w) +Re

∫
Q
Az̄(y − w) +Re

∫
Q
a|y|2 −Re

∫
Q
aȳw = 0

then, by (Lemma 2) and the integration by parts, we obtain

=
(∫

Ω
z̄(y − w)

∣∣∣T
0

)
+<

(∫
Ω
Az̄(yt − wt)

)
+<

(∫
Q
〈∇gzt,∇gy〉g dΩ

)
+<

(∫
Q
a|y|2

)
−<

(∫
Q
aȳw

)
= 0,

and multiply the first equation of (1) by (−z̄), integrate over Q,take the real part, we find

|
∫

Ω
z̄(y − w)| ≤ C(

∫
Ω
|y|2 +

∫
Ω
|z|2 +

∫
Ω
|w|2) ≤ CE(0),

then, for all ε > 0 and a�, we have∫
Q
a|z|2 ≤ CE(0) +

ε

2a?

∫
Q
a|z|2 +

1

2ε

∫
Q
a|wt|2 + C||a||L∞(Ω)

∫ T

0
E1(t)

Using (23) and choosing ε = a?,we find∫
Q
a|z|2 ≤ CE(0) + C||a||L∞(Ω)

∫ T

0
E1(t). (24)

Step II

An estimate of the term ∫ T
0 E1(t).Multiplying the first equation by 2H(ȳ) + div0Hȳ, integrating over

Q and taking the real part, we obtain

Im

∫
Q
z̄t(2H(ȳ) + div0Hȳ) +Re

∫
Q
Az̄(2H(ȳ) + div0Hȳ)−Re

∫
Q
aȳ(2H(ȳ) + div0Hȳ) = 0. (25)

By integration by parts, we have∫
Q
ytH(ȳ) =

∫
Ω
yH(ȳ)|T0 −

∫
Q
yH(ȳt).

Invoke the standard divergence identity, we obtain∫
Q
ytH(ȳ) =

∫
Ω
yH(ȳ)|T0 −

∫
Σ
H.νyȳt +

∫
Q
ȳtdiv0Hy +

∫
Q
ȳtH(y).

Take the imaginaire, so we have

Im

∫
Q
yt(2H(ȳ) + div0Hȳ) = Im

∫
Ω
yH(ȳ)|T0 − Im

∫
Σ1

H.νyȳt. (26)

If we use Lemma 1, we find

Re

∫
Q
Ay(2H(ȳ) + div0Hȳ) = −Re

∫
Σ

∂y

∂νA
(2H(ȳ) + div0Hȳ) + 2

∫
Q
Re〈∇gy,∇g(H(y))〉g

+

∫
Q
Re〈∇gy,∇g(div0Hy)〉g.

Indeed, from the identity we obtain

Re

∫
Q
Ay(2H(ȳ) + div0Hȳ) = −Re

∫
Σ

∂y

∂νA
(2H(ȳ) + div0Hȳ)
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+2

∫
Q
DH(∇gRey,∇gRey) + 2

∫
Q
DH(∇gImy,∇gImy) +

∫
Q
H.∇0(||∇gy||2g)

+Re

∫
Q
〈∇gy,∇g(div0Hy)〉g +

∫
Q
div0H||∇gy||2g. (27)

Recalling the boundary condition on Γ. Since we have Rey = Imy = 0 on Γ0, then we have,
(see [12])

H(Rey) =
H · ν
||νA(x)||2g

(∂Rey
∂νA

)
and ||∇gRey||2g =

1

||νA(x)||2g
(
∂Rey

∂νA
)2,

and
H(Imy) =

H · ν
||νA(x)||2g

(∂Imy
∂νA

)
and ||∇gImy||2g =

1

||νA(x)||2g
(
∂Imy

∂νA
)2.

So
H(y) =

H · ν
||νA(x)||2g

( ∂y
∂νA

)
and ||∇gy||2g =

1

||νA(x)||2g
| ∂y
∂νA
|2.

Then
Re

∫
Q
Ay(2H(ȳ) + div0Hȳ) = −Re

∫
Σ

∂y

∂νA
(2H(ȳ) + div0Hȳ)

Finally, we insert (26) and (27) in (25) to obtain

2(

∫
Q
Dh(∇gRey,∇gRey) +

∫
Q
Dh(∇gImy, ,∇gImy)) = IΩ + IΓ0 + IQ + IΓ1 .

where
IΩ = Im

∫
Ω
yH(ȳ)|T0 ,

IΓ0 =

∫
Γ0

H · ν
||∇gy||2g

| ∂y
∂νA
|2,

IQ = −Re
∫
Q
〈∇gy,∇g(div0H〉gȳ −Re

∫
Q
az(2H(ȳ) + div0Hȳ),

IΓ1 = −Im
∫

Γ1

H.νyȳt −
∫

Γ1

H.ν||∇gy||2g +Re

∫
Γ1

(
∂y

∂νA
)(2H(ȳ) + div0Hȳ).

We can see that by (21)
IΩ ≤ CE(0).

We have
IΓ0 ≤ 0.

We also have, for all η > 0,

IQ ≤ CE(0) + Cη

∫ T

0
+C||a||L∞(Ω) +

∫ T

0
E1(t).

Step III

Next we estimate ( ∂y
∂νA

)2 using some idea from [10].

(
∂y

∂νA

)2

=

(
−
∫ t

0
k′ (t− s) y (s) ds− k (0) y (t)− byt

)2
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= b2 |yt|2 +

(
−
∫ t

0
k′ (t− s) y (s) ds

)2

+2k (0) y (t)

∫ t

0
k′ (t− s) y (s) ds+ (k (0) y (t))2 + 2byt(

∫ t

0
k′ (t− s) y (s) ds+ k (0) y (t)).

Let us exploit the algebraic inequality, we have∣∣∣∣∣
∫

Σ1

(
∂y

∂νA

)2

dΣ1

∣∣∣∣∣ ≤ 2[

∫
Σ1

(
−
∫ t

0
k′ (t− s) y (s) ds

)2

dΣ1 +

∫
Σ1

k (0) |y|2 dΣ1 +

∫
Σ1

b2 |yt|2 dΣ1].

We have: ∫
Σ1

k (0) |y|2 ≤ CE(0)

and ∫
Σ1

b2 |yt|2 ≤ b?E1(t).

we will increase the following term ∫
Σ1

∣∣∣∣−∫ t

0
k′ (t− s) y (s) ds

∣∣∣∣2
Let e > 0 verifying e infΓ1 k

′ + 1 > 0 and posing

h (x) =
k (0)

δ (1 + ek′ (0))
x ∈ Γ1.

Condition (23) implies that h ≥ 0 et h ∈ L∞ (Γ1). Note that

I =

(
−
∫ t

0
k′ (t− s) y (s) ds

)2

− h
∫ t

0
k′′ (t− s) |y (t)− y (s)|2 ds+ hk′y2

Applying the inequality of Hölder, we find

I ≤
(∫ t

0
−k′ (t− s) ds

)(∫ t

0
−k′ (t− s) y2 (s) ds

)
− h

∫ t

0
k′′ (t− s) z2 (s) ds

+2hy

∫ t

0
k′′ (t− s) y (s) ds+ hk′ (0) z2 − hk′y2 + hk′y2.

It easy to verify ∫ t0 −k′ (t− s) ds = k(t)− k(0).

I ≤ (k (t)− k (0))

∫ t

0
k′ (t− s) y2 (s) ds−h

∫ t

0
k′′ (t− s) z2 (s) ds+2hz

∫ t

0
k′′ (t− s) y (s) ds+hk′ (0) y2.

The Cauchy-Schwarz inequality gives us

I ≤ k (t)

∫ t

0
k′ (t− s) y2 (s) ds− k (0)

∫ t

0
k′ (t− s) y2 (s) ds

−h
∫ t

0
k′′ (t− s) y2 (s) ds+

h

e
y2 + eh

(∫ t

0
k′′ (t− s) y (s) ds

)2

+ hk′ (0) y2.

On the other hand, the inequality above, it follows

I ≤ k (t)

∫ t

0
k′ (t− s) y2 (s) ds− k (0)

∫ t

0
k′ (t− s) y2 (s) ds
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−h
∫ t

0
k′′ (t− s) z2 (s) ds+ h

(
1

e
+ k′ (0)

)
y2 + eh

(∫ t

0
k′′ (t− s) y (s) ds

)2

.

From the inequality of Hölder and (a) of the hypothesis (H2), we deduce

I ≤ k (t)

∫ t

0
k′ (t− s) y2 (s) ds+

k (0)

δ

∫ t

0
k′′ (t− s) y2 (s) ds−h

∫ t

0
k′′ (t− s) y2 (s) ds+h

(
1

e
+ k′ (0)

)
y2

+eh

[(∫ t

0
k′ (t− s) ds

)(∫ t

0
k′′ (t− s) y2 (s) ds

)]
.

Also thanks to ∫ t0 −k′ (t− s) ds = k(t)− k(0), the previous estimate gives

I ≤ k (t)

∫ t

0
k′ (t− s) y2 (s) ds− k (0)

∫ t

0
k′ (t− s) y2 (s) ds− h

∫ t

0
k′′ (t− s) y2(s)ds

+k′ (0) y2 + eh
(
k′ (0)− k′ (t)

)(∫ t

0
k′′ (t− s) y2 (s) ds

)
.

The hypothesis (10) and (11), allow us to undermine equality previous as follows

k

∫ t

0
k′ (t− s) y2 (s) ds < 0

and
ehk′

∫ t

0
k′′ (t− s) y2 (s) ds < 0

and also from the definition of h, we deduce that

I ≤ 1

eδ
k (0) y2

Consequently ∫
Σ1

(
−
∫ t

0
k′ (t− s) y (s) ds

)2

dΣ1 ≤ C3E1(t),

where
C3 = 2

[
| |k (0) ||L∞(Γ1)

eδf
+ ||h||L∞(Γ1)

]
.

Step IV

An estimate of the term ∫ T
0 E2(t). First we have,∫

Q
|z|2 ≤ CE(0) = E(y(0), z(0)).

If we use this inequality with the derivatives, we obtain∫
Q
|zt|2 ≤ CE(0) = E(yt(0), zt(0)).

On the other hand, if we multiply equation two for system by z, integrate over Q, take the real part and
we use (19), we find ∫

Q
||∇gz||2g = Im

∫
Q
ztz̄ −Re

∫
Q
ayz̄.

If we use Cauchy Schwarz, we find

E2(t) ≤ C(E(y(0), z(0)) + E(yt(0), zt(0)).
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Step V

We can now conclude the result. We have, for all T > 0∫ T

0
E(y(t), z(t)) =

∫ T

0
E1(y(t)) dt+

∫ T

0
E2(z(t)) dt+ <

(∫
Q
ayz̄ dQ

)

≤ C(E(y(0), z(0)) + E(yt(0), zt(0)).

The desired conclusion follows from Theorem 3.1 in [2] withK = 1. �
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