
Asia Pac. J. Math. 2024 11:97

SEMI-ANALYTICAL SOLUTIONS OF FRACTIONAL TELEGRAPH EQUATIONS BY USING
YANG DECOMPOSITION METHOD

HASSAN KAMIL JASSIM∗, SALEM ABDULWAHED ISSA

Department of Mathematics, College of Education for Pure Science, University of Thi-Qar, Thi-Qar, Iraq
∗Corresponding author: hassankamil@utq.edu.iq

Received Jul. 5, 2024

Abstract. Weprovide new approximation solutions to telegraph equationswith Caputo fractional operator
using the Yang decomposition method in this paper. To confirm the suggested method’s high accuracy,
certain specific instances are given, and the resulting solutions are compared to the exact answer and
analytical data. The findings show that, for lower degree of approximations, Yang decomposition method
converge quickly to accurate solutions of the given problems.
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1. Introduction

During recent decades, researchers have been interested in studying fractional calculus and its
applications, not only in mathematics but also in many other sciences, such as physics, thermodynam-
ics, engineering, economics, etc. Fractional calculus has many applications in the field of electrical,
electrochemistry, statistics, and probability. In addition, fractional differential equations can describe
many cosmological phenomena that traditional differential equations cannot describe [1]- [8]. Dif-
ferential equations of fractional order are particularly suited to describing critical aspects in finance,
electromagnetic, acoustics, viscoelasticity, biochemistry, and material science [3]. Therefore, broad
classes of semi-analytical and numerical techniques were used to solve these equations such as ADM,
VIM, HPM, DTM, RDTM, LADM, LVIM, SADM, SVIM and other methods [8]- [60].

The Adomian decomposition technique is one of the important methods for finding the approximate
solution to differential equations and it has been dealt with in many researches. The Yang transform is
also one of the integral transforms used in solving differential equations. Therefore, when wemerge the
ADMwith the Yang transform, we get a new method to find the approximate solution to differential
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equations. In this paper, we apply the Yang decomposition technique to find solution of fractional
differential equations with the fractional operator Caputo. The order of the paper is as follows: The
basic definitions for calculus and fractional integration are presented in section 2, the method used is
analyzed in section 3, many examples are given that explain the effectiveness of the method proposed
in section 4, and finally, the conclusion is provided in section 5.

2. Preliminaries

This section [61]- [66] goes through some FC definitions and notation that will be used during this
period of work.

Definition 2.1. The fractional integral operator of order v ≥ 0 Riemann Liouville, of ϕ(µ) ∈ Cϑ, ϑ ≥ −1 is

Iαu(t) =

 1
Γ(α)

∫ t
0 (t− τ)α−1u(t)dτ, α > 0, t > 0.

u(t), α = 0

Properties of operator Iα :

1. IαIσu(t) = Iα+σu(t).

2. IαIσu(t) = IσIαu(t).

3. Iαtm = Γ(m+1)
Γ(α+m+1) t

α+m

Definition 2.2. The Caputo fractional derivative of order α of u(t) is

Dαu(t) = Im−αDmu(t)

=
1

Γ(m− α)

∫ t

0
(t− τ)m−α−1u(m)(τ)dτ

Form− 1 < α < m,m ∈ N, t > 0 and u ∈ Cm−1.

The properties Dα are:

1. Dαk = 0, where k is a constant.

2. Dαtσ = Γ(σ+1)
Γ(σ−α+1) t

σ−α,

3. DαDσu(t) = Dα+σu(t)

4. IαDαu(t) = u(t)−
∑m−1

k=0 u
(k)(0) t

k

k! .

Definition 2.3. The MLF with α > 0 is

Eα(z) =
∞∑
m=0

zα

Γ(mα+ 1)

3. Yang transform

Definition 2.4. The Yang transform of the function is

Y {u(t)} =

∫ ∞
0

e−
t
v u(t)dt, t > 0,
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with v representing the transform variable.

Few properties of YT is stated as.

The YT Y [f(t)] of the caputo fractional derivative as defined by

Y [c0D
α
xf(t)] =

Y [f(t)]

vα
−
n−1∑
k=0

U (k) (0+)

v(α−k−1)

Where n− 1 < α < n

3. Formulation of Yang decomposition method for fractional telegraph equation

We now consider the following and hence illustrate the basic

c
0D

α
xU(x, t) = A(x, t)∂2

t U(x, t) +B(x, t)∂tU(x, t) + C(x, t)U(x, t) + U r(x, t) + g(x, t), (3.1)

with the initial condition U(0, t) and Ux(o, t), 0 < x < a, 0 < α ≤ 2 and A(x, t), B(x, t), C(x, t) are
continues functions and U r(x, t) is nonlinear function.
Applving the YT to both sides of (3.1), we have

Y [U(x, t)]

vα
−
n−1∑
k=0

U (k) (0+)

v(α−k−1)
= Y

 A(x, t)∂2
t U(x, t) +B(x, t)∂tU(x, t)

+C(x, t)U(x, t) + U r(x, t) + g(x, t)

 , (3.2)

or

Y [U(x, t)] =vα
n−1∑
k=0

U (k) (0+)

v(α−k−1)
+ vαY [g(x, t)]

+ vαY
[
A(x, t)∂2

t U(x, t) +B(x, t)∂tU(x, t) + C(x, t)U(x, t) + U r(x, t)
]
. (3.3)

Hence, applving the inverse YT to the both sides of (3.3), we conclude that.

U(x, t) = Y −1

[
vα

n−1∑
k=0

U (k) (0+)

v(α−k−1)
+ vαY [g(x, t)]

+ vαY
[
A(x, t)∂2

t U(x, t) +B(x, t)∂tU(x, t) + C(x, t)U(x, t)

+U r(x, t)] (3.4)

So that

U(x, t) = µ(x, t) + Y −1
[
vαY

[
A(x, t)∂2

t U(x, t) +B(x, t)∂tU(x, t) + C(x, t)U(x, t) + U r(x, t)
]]
, (3.5)

Where

µ(x, t) = Y −1

[
vα

n−1∑
k=0

U (k) (0+)

v(α−k−1)
+ vαY [g(x, t)]

]
. (3.6)

Now, suppose that
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U(x, t) =

∞∑
n=0

Un(x, t) (3.7)

and
U r(x, t) =

∞∑
n=0

An(x, t).

Substituting series (3.7) in (3.5), we have
∞∑
n=0

Un(x, t) =µ(x, t)

+ Y −1
[
vαY

[
A(x, t)∂2

t Un(x, t) +B(x, t)∂tUn(x, t) + C(x, t)Un(x, t) +An(x, t)
]]
.

(3.8)

For the recursive iteration system, by the computing of both side of (3.8), we get the components of
the approximation as the of the following respectively.

U0(x, t) = µ(x, t).

U1(x, t) =
[
Y −1

[
vαY

[
A(x, t)∂2

t U0(x, t) +B(x, t)∂tU0(x, t) + C(x, t)U0(x, t) +A0(x, t)
]]] (3.9)

U2(x, t) =

Y −1

vαY
 A(x, t)∂2

t U1(x, t) +B(x, t)∂tU1(x, t)+
]

C(x, t)U1(x, t) +A1(x, t)

 (3.10)

U3(x, t) =
[
Y −1

[
vαY

[
A(x, t)∂2

t U2(x, t) +B(x, t)∂tU2(x, t) + C(x, t)U2(x, t) +A2(x, t)
]]]

. (3.11)

Un+1(x, t) =
[
Y −1

[
vαY

[
A(x, t)∂2

t Un(x, t) +B(x, t)∂tUn(x, t) + C(x, t)Un(x, t) +An(x, t)
]]] (3.12)

4. Convergence analysis

In this section, the sufficient condition that guarantees existence of a unique solution is introduced
and we discuss the convergence of solution,

Theorem 4.1. The equation

Un+1(x, t) = µ(x, t) +
[
Y −1

[
vαY

[
∂2
t Un(x, t) + ∂tUn(x, t) + Un(x, t) + Ukn

]]
, n ≥ 0

hase unique solution whenever 0 < ε < 1, and

ε =
(L1 + L2 + L3) t(α+1)

(α− 1)!

Proof. let E = (C[I]2‖ · ‖) be a Banach space of all continuous function on I = [0, T] with norm ‖ · ‖
we defin amapping F : E→ E where

Un+1(x, t) = µ(x, t) +
[
Y −1

[
vαY

[
L [Un(x, t)] +M [Un(x, t)] + Un(x, t) + Ukn

]]]
Where L [Un(x, t)] ≡ ∂2

t Un(x, t)
] and M [Un(x, t)] ≡ ∂tUn(x, t)
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Now suppose that L [Un(x, t)] andM [Un(x, t)] is also lipschitzian with

and |LU − LŨ | ≤ L2|U − Ũ ||MU −MŨ | ≤ L1|U − Ũ |

Where L1 and L2 is lipschitz constant respectively and U, Ũ is defferent values of the function

‖F− F̃‖ = max
t∈I
|
[
Y −1

[
vαY [LU(x, t)] +M [U(x, t)] + U(x, t) + Uk(x, t)

]]]
−
[
Y −1

[
vαY

[
L[Ũ(x, t)] +M [Ũ(x, t)] + Ũ(x, t) + Ũk

]]]
≤ max

t∈I
|
[
Y −1

[
vαY

[
L[U(x, t)− L[Ũ(x, t)]] + Y −1

[
vαY [M [U(x, t)]−M [Ũ(x, t)]

+Y −1
[
vαY

[
Uk(x, t)

]
− Ũk(x, t)

]]]
|

≤ max
t∈I
| L1Y

−1
[
vαY [U(x, t)− Ũ(x, t)]

+L2Y
−1
[
vαY [U(x, t)− Ũ(x, t)] + L3Y

−1
[
vαY [U(x, t)− Ũ(x, t)]

]]]
|

≤ max
t∈I

(L1 + L2 + L3)
[
Y −1

[
vαY [U(x, t)− Ũ(x, t)]

]]
≤ (L1 + L2 + L3)

[
Y −1

[
vαY [U(x, t)− Ũ(x, t)]

]]
=

(L1 + L2 + L3) tα−1

(α− 1)!

∥∥∥[Y −1
[
vαY [U(x, t)− Ũ(x, t)]

]]∥∥∥ ,
under the condition 0 < ε < 1, the mapping contraction. Therefore, by Banach fixed point theorem for
contraction, there exists a unique solution to the equation. �

Theorem 4.2. The solution of equation 3.1 and with initial condition
∑n−1

k=0
U

(k)
0

vn−k−1 will be convergence.

Proof. Let sn be the one partial sum., I.e, sn =
∑n

i=0 Ui(x, t). We shall prove that {Sn} is a Cauchy
sequence in a Banach space E. By using a new formulation of Adomian polynomials, we get

R (sn) = Ãn +
n−1∑
r=0

Ãr

Uk (sn) = Ãn +

n−1∑
r=0

Ãc

‖sn − sm‖ = max
t∈I
|sn − sm| = max

t∈I

∣∣∣∣∣
n∑

i=m+1

Ũl(x, t)

∣∣∣∣∣

≤ max
t∈I

∣∣∣∣∣∣∣∣∣
Y −1

[
vαY

[∑n
i=m+1 L

[
Unn−1(x, t)

]]]
+Y −1

[
vαY

[∑n
i=m+1M

[
Unn−1(x, t)

]]]
+Y −1

[
vαY

[∑n
i=m+1 [An−1(x, t)]

]]
∣∣∣∣∣∣∣∣∣
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≤ max
t∈I

∣∣∣∣∣∣∣∣∣
Y −1

[
vαY

[∑n−1
i=m L [Un(x, t)]

]]
+Y −1Y

[∑n−1
i=mM [Un(x, t)]

]]
+Y −1

[
vαY

[∑n
i=m+1 [An−1(x, t)]

]]
∣∣∣∣∣∣∣∣∣

≤ max
t∈I

∣∣∣∣∣∣∣∣∣
Y −1 [vαY [L (sn−1)− L (sm−1)]]

+Y −1 [vαY [M (sn−1)−M (sm−1)]]

vαY
[∑n

i=m+1

[
Uk (sn−1)− Uk (sm−1)

]]]
∣∣∣∣∣∣∣∣∣

≤ L1 max
t∈I

Y −1 |[vαY [(sn−1)− (sm−1)]]|

+ L2 max
t∈I

Y −1 |[vαY [(sn−1)− (sm−1)]]|

+ L3 max
t∈I

Y −1 |[vαY [(sn−1)− (sm−1)]]|

≤ (L1 + L2 + L3) t(α−1)

(α− 1)!
‖sn−1 + sm−1‖ .

Let n = m+ 1, then

‖sm+1 + sm‖ ≤ ε ‖sm + sm−1‖ ≤ ε2 ‖sm−1 + sm−2 ‖ ≤ · · · ≤ εm ‖s1 + s0‖

Where ε = (L1+L2+L2)t(α−1)

(α−1)! .

Similarly, we have, from the triangle inequality we have

‖sm+1 − sm‖ ≤ ‖sm+2 − sm+1‖ ≤ · · · ≤ ‖sn − sn−1‖ ≤
[
εm + εm+1 + · · ·+ εn−1

]
≤

‖s1 − s0‖ ≤ εm
1− εn−m

ε
‖U1‖ ,

since 0 < ε < 1 we have(
1− εn−m

)
< 1; then ‖sn − sm‖

εm

1− ε
max
t∈I
‖U1‖

However, |U1| <∞ ( since U(x, t) is bounded),
So , asm→∞ then ‖sn − sm‖ → hence {sn} is a cauchy sequance in E, therefore the series∑∞n=0 Un

convergence and the prove is complete. �

5. Illustrative Examples

Example 5.1. Consider the one-dimensional space FTE

c
0D

α
xU(x, t) = D2

tU(x, t) +DtU(x, t) + U(x, t), 0 < x < 1, 0 < α ≤ 2, (5.1)

with the initial and boundary conditions
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U(0, t) = e−t,

Ux(0, t) = e−t,

U(x, 0) = ex

Ut(x, 0) = 0.

Applying the YT on the both side of (5.1), we have

Y [c0D
α
xU(x, t)]− Y

[
D2
tU(x, t) +DtU(x, t) + U(x, t)

]
= 0 (5.2)

or

Y [U(x, t)]

vα
−
m−1∑
k=0

U (k)

vα−k−1
= Y

[
D2
tU(x, t) +DtU(x, t) + U(x, t)

] (5.3)

Y [U(x, t)]

vα
−

U
(0)
(0)

vα−0−1
− U

(1)
0

vα−1−1
= Y

[
D2
tU(x, t) +DtU(x, t) + U(x, t)

]
Y [U(x, t)] = vα

[
e−t

vα−1
+

e−t

vα−2

]
+ vαY

[
D2
tU(x, t) +DtU(x, t) + U(x, t)

]
Y [U(x, t)] = (1− v)e−t + vαY

[
D2
tU(x, t) +DtU(x, t) + U(x, t)

]
. (5.4)

Applying the invers YT to the both side of (5.4), we get

U(x, t) = (1− x)e−t + Y −1
[[
vαY

[
D2
tU(x, t) +DtU(x, t) + U(x, t)

]]
.

Then, we have

U0(x, t) = e−t(1− x)

Next, when we use U0(x, t) to calculate U1(x, t)

U1(x, t) = Y −1
[
vαY

[
D2
tU0(x, t) +DtU0(x, t) + U0(x, t)

]]
= Y −1

[
vαY

[
D2
t

[
e−t(1− x)

]
+Dt

[
e−t(1− x)

]
+ e−t(1− x)

]]
= Y −1

[
vαY

[
(1− x)D2

t

(
e−t
)

+ (1− x)Dt

(
e−t
)

+ e−t(1− x)
]]

= Y −1
[
vαY

[
(1− x)

(
e−t
)
− (1− x)

(
e−t
)

+ e−t(1− x)
]]

= Y −1
[
vαY

[
e−t (1− x)

]]
= Y −1

[[
e−t
(
v − v2

)
vα
]]

= Y −1
[[
e−t
(
vα+1 − vα+2

)]]
=

[
e−t
[

xα

Γ(α+ 1)
+

xα + 1

Γ(α+ 2)

]]
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After that using U1(x, t), we get

U2(x, t) = Y −1
[
vαY

[
D2
tU1(x, t) +DtU1(x, t) + U1(x, t)

]]
U2(x, t) = Y −1

(
vαY

[
D2
t

[
e−t

[
xα

Γ(α+ 1)
+

xα + 1

Γ(α+ 2)

]
+Dt

[
e−t

[
xα

Γ(α+ 1)
+

xα + 1

Γ(α+ 2)

]
+

e−t
[

xα

Γ(α+ 1)
+

xα + 1

Γ(α+ 2)

]])
= Y −1

[
vαY

[
e−t

[
xα

Γ(α+ 1)
+

xα + 1

Γ(α+ 2)

]
−
[
e−t

[
xα

Γ(α+ 1)
+

xα + 1

Γ(α+ 2)

]
+ e−t

[
xα

Γ(α+ 1)
+

xα + 1

Γ(α+ 2)

]]
= Y −1

[
vαY

[
e−t

[
xα

Γ(α+ 1)
+

xα + 1

Γ(α+ 2)

]
= e−t

[
x2α

Γ(2α+ 1)
+

x2α + 1

Γ(2α+ 2)

]

Now Use U2(x, t) colculus U3(x, t)

U3(x, t) = Y −1

[
vαY

[
D2
t

[
e−t
[

x2α

Γ(2α+ 1)
+

x2α + 1

Γ(2α+ 2)

]]
+Dt

[
e−t
[

x2α

Γ(2α+ 1)
+

x2α + 1

Γ(2α+ 2)

]]
+[

e−t
[

x2α

Γ(2α+ 1)
+

x2α + 1

Γ(2α+ 2)

]]]
U3(x, t) = Y −1

[
vαY

[[
e−t
[

x2α

Γ(2α+ 1)
+

x2α + 1

Γ(2α+ 2)

]]
−
[
e−t
[

x2α

Γ(2α+ 1)
+

x2α + 1

Γ(2α+ 2)

]]
+[

e−t
[

x2α

Γ(2α+ 1)
+

x2α + 1

Γ(2α+ 2)

]]
U3(x, t) = Y −1

[
vαY

[
e−t
[

x2α

Γ(2α+ 1)
+

x2α + 1

Γ(2α+ 2)

]]
U3(x, t) = e−t

[
x4α

Γ(4α+ 1)
+

x4α + 1

Γ(4α+ 2)

]
So that, the approximate solution is

U(x, t) = e−t(1− x) + e−t
[

xα

Γ(α+ 1)
+

xα + 1

Γ(α+ 2)

]
+ e−t

[
x2α

Γ(2α+ 1)
+

x2α + 1

Γ(2α+ 2)

]
+ e−t

[
x2α

Γ(2α+ 1)
+

x2α + 1

Γ(2α+ 2)

]
+ · · ·

U(x, t) =

∞∑
m=0

e−t
[

xmα

Γ (xmα + 1)
+

xmα+1

Γ (xmα + 2)

]
When α = 2, we have

U(x, t) = ex−t
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Figure 1. Plot of approximate solutions U(x, t) at different values of α at t = 0.5 and
compression with exact solution ex−t.

Figure 2. The surface shows the YADM solution U(x, t) for example 1, when α = 2.

Figure 3. The surface shows the YADM solution U(x, t) for example 1, when α = 1.7.
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Figure 4. The surface shows the YADM solution U(x, t) for example 1, when α = 1.3.

Example 5.2. Consider the following space-fractional nonlinear telegraph equation.

∂αu

∂tα
=
∂2u

∂x2
+
∂u

∂x
− u2(x, t) + xu(x, t)ux(x, t), x, t ≥ 0 , 0 < α ≤ 2 (5.5)

with the initial conditions

u(x, 0) = x, ut(x, 0) = x,

By taking Yang transform for (5.5), we have

Y

[
∂αu

∂tα

]
= Y

[
∂2u

∂x2
+
∂u

∂x
− u2(x, t) + xu(x, t)ux(x, t)

]
Y [u(x, t)]

vα
− u(x, 0)

vα−1
− ut(x, o)

vα−2
= Y

[
∂2u

∂x2
+
∂u

∂x
− u2(x, t) + xu(x, t)ux(x, t)

]

Arrangement and substitute the initial condition, we get

Y [u(x, t)] = vx+ v2x+ vαY

[
∂2u

∂x2
+
∂u

∂x
− u2(x, t) + xu(x, t)ux(x, t)

]

Applying the invers Yang transform

u(x, t) = Y −1
[
vx+ v2x

]
+ Y −1

[
vαY

[
∂2u

∂x2
+
∂u

∂x
− u2(x, t) + xu(x, t)ux(x, t)

]]
u(x, t) = x+ xt+ Y −1

[
vαY

[
∂2u

∂x2
+
∂u

∂x
− u2(x, t) + xu(x, t)ux(x, t)

]]

Hence
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un+1(x, t) = (x+ xt)

+ Y −1

(
vαY

[ ∞∑
n=0

∂2un(x, t)

∂x2
+

∞∑
n=0

∂un(x, t)

∂x
−
∞∑
n=0

An(x, t)

+
∞∑
n=0

Bnxu(x, t)ux(x, t)

])
The initial term

u0(x, t) = x+ xt

u1(x, t) =

(
tα

Γ(α+ 1)
x

)
,

u2(x, t) =

(
tα+1

Γ(α+ 2)
x

)
,

u3(x, t) =

(
tα+2

Γ(α+ 3)
x

)
Therefore, the approximate is

un(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + · · ·

= x+ xt+
tα

Γ(α+ 1)
x+

tα+1

Γ(α+ 2)
x+

tα+2

Γ(α+ 3)
x+ · · ·

substituting α = 2, We obtain the exact solution of standard Telegraph Equation in the following from

u(x, t) = xet

Figure 5. Plot of approximate solutions U(x, t) at different values of α at t = 0.5 and
compression with exact solution ex−t.
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Figure 6. The surface shows the YADM solution U(x, t) for example 2, when α

Figure 7. The surface shows the YADM solution U(x, t) for example 2, when α = 1.5

Figure 8. The surface shows the YADM solution U(x, t) for example 1, when α = 1.5.
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Example 5.3. Consider the space-fractional linear telegraph equation of nonhomogeneous type

∂αu

∂xα
=
∂2u

∂2t
+
∂u

∂t
+ u− x2 − t+ 1 , 0 < α < 2, t ≥ 0 (5.6)

with initial condition

u(0, t) = t, ux(0, t) = 0

Taking the yang transform of the equation

Y

[
∂αu

∂xα

]
= Y

[
∂2u

∂2t
+
∂u

∂t
+ u

]
+ Y

[
−x2 − t+ 1

]
Y

[
u(x, t)

vα

]
− u(0, t)

vα−1
− ux(0, t)

vα−2
= Y

[
∂2u

∂2t
+
∂u

∂t
+ u

]
+
[
−2vα+2 − vαt+ vα

]
Y [u(x, t)] =

[
vαt− 2v2α+2 − v2αt+ v2α

]
+ vαY

[
∂2u

∂2t
+
∂u

∂t
+ u

]
Appling invers yang transform it give

u(x, t) = Y −1
[
vαt− 2v2α+2 − v2αt+ v2α

]
+ Y −1

[
vαY

[
∂2u

∂2t
+
∂u

∂t
+ u

]]
+ Y −1

[
vαY

[
∂2u

∂2t
+
∂u

∂t
+ u

]]
= t− 2xα+2

Γ(α+ 3)
− txα

Γ(α+ 1)
+

xα

Γ(α+ 1)

u0(x, t) = t− 2xα+2

Γ(α+ 3)
− txα

Γ(α+ 1)
+

xα

Γ(α+ 1)

u1(x, t) = Y −1

[
vαY

[
∂2u0

∂2t
+
∂u0

∂t
+ u0

]]
= Y −1

[
vαY

[
0 + 1− xα

Γ(α+ 1)
+ t− 2xα+2

Γ(α+ 3)
− txα

Γ(α+ 1)
− txα

Γ(α+ 1)
+

xα

Γ(α+ 1)

]]
=

xα

Γ(α+ 1)
+

txα

Γ(α+ 1)
− 2xα+2

Γ(α+ 3)
− tx2α

Γ(α+ 1)

u2(x, t) = Y −1

[
vαY

[
∂2u1

∂2t
+
∂u1

∂t
+ u1

]]
=

2x2α

Γ(2α+ 1)
− x3α

Γ(3α+ 1)
+

tx2α

γ(2α+ 1)
− 2x3α+2

γ(3α+ 3)
− tx3α

γ(3α+ 1)

Similarly, with find out the components ahead as authors have found out the previous components

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + · · ·

= t− 2xα+2

Γ(α+ 3)
− txα

Γ(α+ 1)
+

xα

Γ(α+ 1)
+

xα

Γ(α+ 1)
+

txα

Γ(α+ 1)

− 2xα+2

Γ(α+ 3)
− tx2α

Γ(α+ 1)
+

2x2α

Γ(2α+ 1)
− x3α

Γ(3α+ 1)
+

tx2α

Γ(2α+ 1)

− 2x3α+2

Γ(3α+ 3)
− tx3α

Γ(3α+ 1)

When α = 2, we get YADM solution
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u(x, t) = t− 2x4

Γ(5)
− tx2

Γ(3)
+

x2

Γ(3)
+

x2

Γ(3)
+

tx2

Γ(3)
− 2x6

Γ(7)
− tx4

Γ(5)
+

2x4

γΓ(5)
− x6

Γ(7)

+
tx4

Γ(5)
− 2x8

Γ(9)
− tx6

Γ(7)
.

This solution is equivalent to exact solution

u(x, t) = t+ x2.

Figure 9. Plot of approximate solutions U(x, t) at different values of α at t = 0.5 and
compression with exact solution.

Figure 10. The surface shows the YADM solution U(x, t) for example 2, when α = 2



Asia Pac. J. Math. 2024 11:97 15 of 19

Figure 11. The surface shows the YADM solution U(x, t) for example 2, when α = 1.5

Figure 12. The surface shows the YADM solution U(x, t) for example 2, when α = 0.9

6. Conclusion

In conclusion, this article investigates the use of YDM to obtain approximate analytical solutions
of telegraph equation. Through a careful comparative analysis between these approximate solutions
and exact solutions, supported by 2D and 3D graphs generated using the Maple platform, the analysis
sheds light on the accuracy and confidence of the YDM in solving fractional differential equations.
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