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Abstract. In this paper, the uniform eventual stability of nonlinear impulsive Caputo fractional differential
equations with fixed moments of impulse is examined using the vector Lyapunov functions which is
generalized by a class of piecewise continuous Lyapunov functions. Together with comparison results,
sufficient conditions for the uniform eventual stability of impulsive Caputo fractional differential equations
are presented. An illustrative example is given to confirm the suitability of the obtained results.
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1. Introduction

The stability of solutions of differential equations via Lyapunov method has been intensively investi-
gated in the past [15,40], and in many real cases, it is obligatory to study the stability of certain sets,
which are not invariant with respect to a given system of differential equations and thereby excludes
the stability in the sense of Lyapunov. As stated in [40], examples of such sets can be found when
self-controlled systems of management are being studied (see [13]). Thus, to allay the problem that
will arise subsequently, [28] introduced a new concept called eventual stability, maintaining that, the
set under consideration, despite not being invariant in the usual sense, is invariant in the asymptotic
sense (see also [42]). Accordingly, the eventual stability of solutions of impulsive differential systems
have been extensively studied (see [22,40] and the references therein).
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As observed in [37], there are many perturbations and adaptive control problems where the point in
question may not be an equilibrium (invariant) point but eventually stable sets that are asymptotically
invariant, which enables us to consider Lyapunov stability as a special case of eventual stabilities. For
decades, a large number of researchers have shown explosive interests in the study of the qualitative
properties of impulsive differential equations (See [6, 9, 17, 22, 25, 32, 39–41]).

Now, concerning the stability of perturbed differential equations, [38] obtained results on the
eventual stability of impulsive differential systems but with the perturbations considered as bounded
functions. In [37], sufficient conditions for the retention of uniform eventual stability of impulsive
differential systemwas establishedwith non fixedmoments of impulses under varnishing perturbations
by employing piecewise continuous auxilliary functions which is assumed to be a generalization of
the Lyapunov functions. Results on the uniform eventual stability for impulsive differential equations
with non fixed moment of impulses having bounded perturbations were established in [19], while [40]
obtained results on the eventual stability and eventual boundedness of impulsive differential systems
with supremum using a class of piecewise continuous functions (which are analogues of classical
Lyapunov functions) together with the Razumikhin technique.

Unarguably, the theory of impulsive differential equation is richer than the corresponding theory of
differential equations [22], as they constitutes very important models in the description of the true
state of several real life processes and phenomena, as many evolution processes are characterized by
the fact that at certain moments of time they experience a change of state abruptly. These processes are
subject to short term perturbations whose duration is negligible in comparison with the duration of
the process. Consequently, it is natural to assume that these perturbations acts instantaneously, that
is, in the form of impulses. It is also known for example, that many biological phenomena involving
thresholds, bursting rhythm models in medicine and biology, optimal control models in economics,
pharmacokinetics and frequency modulated systems, do exhibit impulsive effects [22].

Now, the efficient applications of impulsive differential system require the finding of criteria for
stability of their solutions [36], and one of the most versatile methods in the study of the stability
properties of impulsive systems is the method of Lyapunov function (Lyapunov’s second method).
The method was originally developed for studying the stability of a fixed point of an autonomous or
nonautonomous differential equations. However, as was argued in [33], the method was then extended
from fixed points to sets, from differential equation to dynamical systems and to stochastic equations.

There are several approaches in the literature in the study of the stability of solutions, one of which
is the Lyapunov’s second method. However, the novelty of the Lyapunov’s second method over other
methods of examining stability properties like the Razumikhin technique, the use of matrix inequality,
etc. stems from the fact that the method allows us to examine the stability of solutions without first
solving the given differential equation. Again, themethod involves seeking an appropriate continuously
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differentiable function that is positive definite and whose time derivative along the trajectory curve or
solution path is negative semidefinite.

The stability of the zero solution of impulsive differential equations have been extensively studied
in [6, 11, 34].

Furthermore, the study of stability for fractional order systems is quite recent and one of the main
difficulties in the application of a Lyapunov function to fractional order differential equations is the
appropriate definition of its derivative among the fractional differential equations (see [5]). The
stability of fractional order systems is examined in [1–5,7, 10, 15, 20]. Using the generalized Caputo
fractional Dini derivative and scalar impulsive fractional differential equations, [5] established the
comparison results together with sufficient conditions for the stability properties of impulsive fractional
differential equations using the scalar Lyapunov function.

In this paper, the uniform eventual stability of impulsive Caputo fractional differential equations
using the vector Lyapunov functions is examined. Together with the comparison results, sufficient
conditions for the uniform eventual stability of the set x(t) = 0 is established with illustrative example.

2. Preliminaries, Notations and Definitions

Let Rn be the n-dimensional Euclidean space with norm ‖.‖, let Ω be a domain in Rn containing the
origin; R+ = [0,∞), R = (−∞,∞), t0 ∈ R+, t > 0.
Let J ⊂ R+. Define the following class of functions PCq[J,Ω] = α : J → Ω, α(t) is a piecewise
continuous function with points of discontinuity tk ∈ J at which α(t) exists.

Fractional calculus generalizes the classical calculus to non integer order and allows for the extension
of the classical concepts of derivative and integral to functions with fractional orders. It allows for
functions with non integer orders which makes it much more flexible in describing real world systems
(see [18,30, 31, 35]). There are several definitions of fractional derivatives and fractional integrals.

General case. Let the number n − 1 < q < n, q > 0 be given, where n is a natural number and Γ(.)

denotes the gamma function.

Definition 2.1. The Riemann-Liouville fractional derivative of order q of x(t) is given by (see [35])

RL
t0 D

q
tx(t) =

1

Γ(n− q)
dn

dtn

∫ t

t0

(t− s)n−q−1x(s)ds, t ≥ t0.

Definition 2.2. The Caputo fractional derivative of order q of x(t) is defined by (see [35])

C
t0D

qx(t) =
1

Γ(n− q)

∫ t

t0

(t− s)n−q−1x(n)(s)ds, t ≥ t0.

The Caputo derivatives has many properties that are similar to those of the standard derivatives,
which makes them easier to understand and apply. The initial conditions of fractional differential
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equations using the Caputo derivative are also easier to interpret in physical context, which is another
reason why it is often used in applications of fractional calculus.

Definition 2.3. The Grunwald-Letnikov fractional derivative of order q of x(t) is given by (see [4])

Dq
0x(t) = lim

h→0+

1

hq

[
(t−t0)

h
]∑

r=0

(−1)r(qCr)x(t− rh), t ≥ t0,

and the Grunwald-Letnikov fractional Dini derivative of order q of x(t) is given by (see [4])

Dq
0x(t) = lim sup

h→0+

1

hq

[
(t−t0)

h
]∑

r=0

(−1)r(qCr)x(t− rh), t ≥ t0,

where qCr are the binomial coefficients and [ (t−t0)
h ] denotes the integer part of (t−t0)

h .

Particular case. (when n=1). In most applications, the order of q is often less than 1, so that q ∈ (0, 1).
For simplicity of notation, we will use CDq instead of Ct0Dq and the Caputo fractional derivative of order
q of the function x(t) is

CDqx =
1

Γ(1− q)

∫ t

t0

(t− s)−qx′ds, t ≥ t0. (1)

3. Impulses in Fractional Differential Equations

Consider the initial value problem (IVP) for the system of fractional differential equations (FrDE)
with a Caputo derivative for 0 < q < 1,

CDqx = f(t, x), t ≥ t0, x(t0) = x0, (2)

where x ∈ RN , f ∈ C[R+ × RN ,RN], f(t, 0) ≡ 0 and (t0, x0) ∈ R+ × RN .
Some sufficient conditions for the existence of the global solutions to (2) are considered in [8, 12, 26, 27,
32, 35, 43]. The IVP for FrDE (2) is equivalent to the following Volterra integral equation (See [5]),

x(t) = x0 +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, x(s))ds, t ≥ t0. (3)

Consider the initial value problem for the system of impulsive fractional differential equations (IFrDE)
with a Caputo derivative for 0 < q < 1,

CDqx = f(t, x), t ≥ t0, t 6= tk, k = 1, 2, ...

∆x = Ik(x(tk)), k ∈ N, t = tk

x(t0) = x0,

(4)

where x, x0 ∈ RN , f : R+ × RN → RN , and t0 ∈ R+, Ik : RN → RN , k = 1, 2, ...

under the following assumptions:
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(A0) (i) 0 < t1 < t2 < ... < tk < ..., and tk →∞ as k →∞;

(ii) f : R+ × RN → RN , is continuous in (tk−1, tk] and for each x ∈ RN , k = 1, 2, ...,

lim
(t,y)→(t+k ,x)

f(t, y) = f(t+k , x) exists;

(iii) Ik : RN → RN

In this paper, we assume that f(t, 0) ≡ 0, Ik(0) = 0 for all k, so that we have the trivial solution for (4),
and the points tk, k = 1, 2, ... are fixed such that t1 < t2 < ... and lim

k→∞
tk = ∞. The system (4) with

initial condition x(t0) = x0 is assumed to have a solution x(t) = x(t; t0, x0) ∈ PCq([t0,∞),RN ).

Remark 3.1. The second equation in (4) is called the impulsive condition, and the function Ik(x(tk))

gives the amount of jump of the solution at the point tk.

Definition 3.1. Let V : R+ × RN → RN+ . Then V is said to belong to class L if,
(i) V is continuous in (tk−1, tk] × RN and for each x ∈ RN , k = 1, 2, ... and lim

(t,y)→(t+k ,x)
V (t, y) =

V (t+k , x) exists;
(ii) V is locally Lipschitz with respect to its second argument x and V (t, 0) ≡ 0.

Now, for any function V (t, x) ∈ PC([t0,∞)× ξ,RN+ ) we define the Caputo fractional Dini derivative as:

cDq
+V (t, x) = lim sup

h→0+

1

hq
{V (t, x)− V (t0, x0)−

[
t−t0
h

]∑
r=1

(−1)r+1(qCr)[V (t− rh, x− hqf(t, x))− V (t0, x0)]},

(5)
t ≥ t0, where t ∈ [t0,∞), x, x0 ∈ ξ, ξ ∈ RN and there exists h > 0 such that t− rh ∈ [t0, T ].

Definition 3.2. A function g ∈ C[Rn,Rn] is said to be quasi-monotone non-decreasing in x, if x ≤ y

and xi = yi for 1 ≤ i ≤ n implies gi(x) ≤ gi(y),∀i.

Definition 3.3. The set x(t) ≡ 0 of (2) is said to be:
(S1) eventually stable if for every ε > 0 there exists a number T = T (ε) > 0 for all t0 ∈ R+ and
δ = δ(t0, ε) for all x0 ∈ RN such that ‖x0‖ < δ implies ‖x(t; t0, x0)‖ < ε for t ≥ t0.

(S2) uniformly eventually stable if the δ in S1 is independent of t.

Definition 3.4. A function a(r) is said to belong to the class K if a ∈ C([0, ψ),R+], a(0) = 0, and a(r) is
strictly monotone increasing in r.

In this paper, we define the following sets:

S̄ψ = {x ∈ RN : ‖x‖ ≤ ψ}

Sψ = {x ∈ RN : ‖x‖ < ψ}.

Suffice to say that the inequalities between vectors are understood to be component-wise inequalities.
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We will use the comparison results for the impulsive Caputo fractional differential equation of the
type

c
t0D

qu = g(t, u), t ≥ t0, t 6= tk, k = 1, 2, ...

∆u = ψk(u(tk)), k ∈ N, t = tk

u(t+0 ) = u0,

(6)

existing for t ≥ t0, where u ∈ Rn,R+ = [t0,∞), g : R+ × Rn+ → Rn, g(t, 0) ≡ 0,
where g is the continuous mapping of R+ × Rn+ into Rn. The function g ∈ C[R+ × Rn+,Rn] is such that
for any initial data (t0, u0) ∈ R+ × Rn, the system (6) with initial condition u(t0) = u0 is assumed to
have a solution u(t; t0, u0) ∈ PCq([t0,∞),Rn).

Lemma 3.2. Assumem ∈ PC([t0, T ]× S̄ψ,RN ) and suppose there exists t∗ ∈ [t0, T ] such that for α1 < α2,

m(t∗, α1) = m(t∗, α2) andm(t, α1) < m(t, α2) for t0 ≤ t < t∗. Then if the Caputo fractional Dini derivative

ofm exists at t∗, then the inequality CDq
+m(t∗, α1)−C Dq

+m(t∗, α2) > 0 holds.

Proof. Let V (t, x) = m(t, α1)−m(t, α2).
Applying (5), we have

CDq
+(m(t∗, α1)−m(t∗, α2)) = lim sup

h→0+

1

hq
{[m(t∗, α1)−m(t∗, α2)]− [m(t0, α1)−m(t0, α2)]

−
[
t−t0
h

]∑
r=1

(−1)r+1qCr[m(t∗ − rh, α1)−m(t∗ − rh, α2)]

−[m(t0, α1)−m(t0, α2)]}.

Whenm(t∗, α1) = m(t∗, α2), we have

CDq
+(m(t∗, α1)−m(t∗, α2)) = lim sup

h→0+

1

hq
{−[m(t0, α1)−m(t0, α2)]−

[
t−t0
h

]∑
r=1

(−1)r+1qCr

[m(t∗ − rh, α1)−m(t∗ − rh, α2)]− [m(t0, α1)−m(t0, α2)]}

= − lim sup
h→0+

1

hq
{[m(t0, α1)−m(t0, α2)]

+ lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=1

(−1)rqCr[m(t∗ − rh, α1)−m(t∗ − rh, α2)]

− lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=1

(−1)rqCr[m(t0, α1)−m(t0, α2)]

= − lim sup
h→0+

1

hq
{[m(t0, α1)−m(t0, α2)]

− lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=1

(−1)rqCr[m(t0, α1)−m(t0, α2)]
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= − lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=0

(−1)rqCr[m(t0, α1)−m(t0, α2)].

Applying equation 3.8 in [4], we have

cDq
+(m(t∗, α1)−m(t∗, α2)) = −(t− t0)−q

Γ(1− q)
[m(t0, α1)−m(t0, α2)].

By the lemma, we have that

m(t, α1)−m(t, α2) < 0, for t0 ≤ t < t∗.

And so it follows that

cDq
+(m(t∗, α1)−m(t∗, α2)) > 0.

�

Remark 3.3. Lemma (3.2) extends Lemma 1 in [4], where the vectorsm(t, α1) andm(t, α2) are compared
component-wise.

4. Fractional Differential Inequalities and Comparison Results for Impulsive Vector Fractional
Differential Equations

In this section, we assume that 0 < q < 1.

Theorem 4.1. Assume that

(i) g ∈ PC[R+ × Rn+,Rn] and is continuous in (tk−1, tk], k = 1, 2, ... and g(t, u) is quasimonotone

nondecreasing in u for each u ∈ Rn and lim
(t,y)→(t+k ,u)

g(t, u) = g(t+k , u) exists;

(ii) V ∈ PC[R+ × RN ,RN+ ] and V ∈ L such that

CDq
+V (t, x) ≤ g(t, V (t, x)),

t 6= tk, (t, x) ∈ R+ × RN and

V (t+k , x+ Ik(x(tk))) ≤ ρk(V (t, x)), t = tk, x ∈ Sψ and the function ρk : RN+ → RN+ is nondecreasing

for k = 1, 2, ...

(iii) r(t) = r(t; t0, u0) ∈ PCq([t0, T ],Rn) is the maximal solution of the IVP for the IFrDE (6).
Then,

V (t, x(t)) ≤ r(t), t ≥ t0, (7)

where x(t) = x(t; t0, x0) ∈ PCq([t0, T ],RN is any solution of (4) existing on [t0,∞), provided that

V (t+0 , x0) ≤ u0. (8)
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Proof. Let η ∈ S̄ψ =: {η ∈ Rn : ‖η‖ ≤ ψ} be a small enough arbitrary vector and consider the initial
value problem for the following system of fractional differential equations.

CDqu = g(t, u) + η,∆u = ψk(u(tk)), t = tk, k = 1, 2, ...

u(t+0 ) = u0 + η,
(9)

for t ∈ [t0,∞).
The function uη(t, α) is a solution of (9), where α > 0, if and only if it satisfies the Volterra Integral
equation

uη(t, α) = u0 + η +
1

Γ(q)

∫ t

t0

(t− s)q−1(g(s, uη(s, α)) + η)ds, t ∈ [t0,∞). (10)

Let the functionm(t, α) ∈ C([t0, T ]× S̄ψ,RN ) be defined asm(t, α) = V (t, x∗(t)).
We now prove that

m(t, α) < uη(t, α), for t ∈ [t0,∞). (11)

Observe that the inequality (11) holds for t = t0 i.e

m(t0, α) = V (t0, x0) ≤ u0 < uη(t0, α).

Assume that the inequality (11) is not true, then there exist a point t1 > t0 such that

m(t1, α) = uη(t1, α) and m(t, α) < uη(t, α), for t ∈ [t0, t1).

It follows from lemma (3.2) that

CDq
+m(t1, α)−C Dq

+uη(t1, α) > 0,

so that
CDq

+(V (t1, x(t1))) >C Dq
+(uη(t1, α)),

and using (9) we arrive at

CDq
+(V (t1, x(t1))) > g(t1, uη(t1, α) + η) > g(t1, u(t1, α)).

Therefore,
CDq

+(m(t1, α)) > g(t1, u(t1, α)). (12)

For t ∈ [t0, T ], we maintain that x∗(t) satisfies (4) and the equality,

lim sup
h→0+

1

hq
[x∗(t)− x0 − S(x∗(t), h)] = f(t, x∗(t)), (13)

holds, where x∗(t) is any other solution of (4).

S(x∗(t), h) =

[
t−t0
h

]∑
r=1

(−1)r+1(qCr)[x
∗(t− rh)− x0)], (14)
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is the Grunwald Letnikov fractional derivative and [ t−t0h ] is the integer part of t−t0h .
Multiply (13) through by hq we have,

lim sup
h→0+

[x∗(t)− x0 − S(x∗(t), h)] = hqf(t, x∗(t))

x∗(t)− x0 − lim sup
h→0+

[S(x∗(t), h)] = hqf(t, x∗(t))

x∗(t)− x0 − [S(x∗(t), h) + ρ(hq)] = hqf(t, x∗(t))

x∗(t)− hqf(t, x∗(t)) = [S(x∗(t), h) + x0 + ρ(hq)]. (15)

For t ∈ [t0, T ], we have

m(t, α)−m(t0, α)−
[
t−t0
h

]∑
r=1

(−1)r+1(qCr)[m(t− rh, α)−m(t0, α)]

= V (t, x∗(t))− V (t0, x0)−
[
t−t0
h

]∑
r=1

(−1)r+1(qCr)[V (t− rh, x∗(t)− hqf(t, x∗(t))− V (t0, x0)]

= V (t, x∗(t))− V (t0, x0)−
[
t−t0
h

]∑
r=1

(−1)r+1qCr[V (t− rh, x∗(t)− hqf(t, x∗(t))− V (t0, x0)]

+

[
t−t0
h

]∑
r=1

(−1)r+1(qCr){[V (t− rh, S(x∗(t), h) + x0 + ρ(hq)− V (t0, x0)]

−[V (t− rh, x∗(t− rh)− V (t0), x0)]}. (16)

Since V (t, x) is locally Lipschtzian in the second variable, with L > 0 as the Lipschitz constant, then
from (16) we obtain

V (t, x∗(t))− V (t0, x0)−
[
t−t0
h

]∑
r=1

(−1)r+1qCr[V (t− rh, x∗(t)− hqf(t, x∗(t))− V (t0, x0)]

+

[
t−t0
h

]∑
r=1

(−1)r+1(qCr){[V (t− rh, S(x∗(t), h) + x0 + ρ(hq)− V (t0, x0)]

−[V (t− rh, x∗(t− rh)− V (t0), x0)]}

≤ L|(−1)r+1|‖
[
t−t0
h

]∑
r=1

(qCr)[S(x∗(t), h) + x0 + ρ(hq)− x∗(t− rh)]||

≤ L‖
[
t−t0
h

]∑
r=1

qCr[S(x∗(t), h) + ρ(hq)− (x∗(t− rh)− x0)]||. (17)
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Using (14), (17) becomes,

L

∥∥∥∥ [
t−t0
h

]∑
r=1

qCr(

[
t−t0
h

]∑
r=1

(−1)r+1qCr[x
∗(t− rh)− x0)] + ρ(hq)− (x∗(t− rh)− x0)]

∥∥∥∥
≤ L

∥∥∥∥ [
t−t0
h

]∑
r=1

qCr(−1)r+1(

[
t−t0
h

]∑
r=1

qCr[x
∗(t− rh)− x0)]

+

[
t−t0
h

]∑
r=1

qCrρ(hq)−
[
t−t0
h

]∑
r=1

qCr(x
∗(t− rh)− x0)]

∥∥∥∥
≤ L

∥∥∥∥(−1)r+1

[
t−t0
h

]∑
r=1

qCr(x
∗(t− rh)− x0)[

[
t−t0
h

]∑
r=1

qCr − 1] +

[
t−t0
h

]∑
r=1

qCrρ(hq)

∥∥∥∥. (18)

Substituting (18) into (16) yields,

V (t, x∗(t))− V (t0, x0)−
[
t−t0
h

]∑
r=1

(−1)r+1(qCr)[V (t− rh, x∗(t)− hqf(t, x∗(t))− V (t0, x0)]

+L‖
[
t−t0
h

]∑
r=1

(−1)r+1(qCr)− 1] +

[
t−t0
h

]∑
r=1

(−1)r+1(qCr)ρ(hq)‖

= V (t, x∗(t))− V (t0, x0)−
[
t−t0
h

]∑
r=1

(−1)r+1qCr[V (t− rh, x∗(t)− hqf(t, x∗(t))− V (t0, x0)]

+L‖
[
t−t0
h

]∑
r=1

(−1)r+1(qCr)(x
∗(t− rh)− x0)[−

[
t−t0
h

]∑
r=1

(−1)rqCr − 1] +

[
t−t0
h

]∑
r=1

(−1)r+1(qCr)ρ(hq)‖.

Dividing through by hq > 0 and taking the limsup as h→ 0+ we have,

CDq
+m(t, α) = lim sup

h→0+

1

hq

{
V (t, x∗(t))− V (t0, x0)

−
[
t−t0
h

]∑
r=1

(−1)r+1qCr[V (t− rh, x∗(t)− hqf(t, x∗(t))− V (t0, x0)]

}

+ lim sup
h→0+

1

hq
L‖

[
t−t0
h

]∑
r=1

(−1)r+1qCr(x
∗(t− rh)− x0)[−

[
t−t0
h

]∑
r=1

(−1)rqCr − 1]

+

[
t−t0
h

]∑
r=1

(−1)r+1qCrρ(hq)‖.

Recall,

lim
h→0+

[
t−t0
h

]∑
r=1

(−1)rqCr = −1 and lim sup
h→0+

1

hq
ρ(hq) = 0,
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from (3.6) and (3.7) in [4] we have,

CDq
+m(t, α) =C Dq

+V (t, x∗(t)) + L‖
[
t−t0
h

]∑
r=1

qCr(x
∗(t− rh)− x0)[−(−1)− 1] + 0‖

CDq
+m(t, α) =C Dq

+V (t, x∗(t)) + 0,

using condition (ii) of Theorem 4.1 we have
CDq

+m(t, α) ≤ g(t, V (t, x∗(t))) = g(t,m(t, α)). (19)

Also,
m(t+0 , α) ≤ u0 and m(t+k , α) = V (t+k , x(tk) + Ik(x(tk)) ≤ ρk(m(tk)). (20)

Now, (19) with t = t1 contradicts (12), hence (11) holds. �

For t ∈ [t0, T ], we now show that whenever η1 < η2, then

uη1(t, α) < uη2(t, α). (21)

It is obvious that (21) holds for t = t0. Assume the inequality (21) is not true. Then there exist a point
t1 > t0 such that uη1(t1, α) = uη2(t1, α) and uη1(t, α) < uη2(t, α) for t ∈ [t0, t1).
By lemma (3.2), we have that

CDq
+(uη1(t1, α)− uη2(t1, α)) > 0.

However,
CDq

+(uη1(t1, α)− uη2(t1, α)) = CDq
+uη1(t1, α)−C Dq

+uη2(t1, α)

= g(t1, u(t1, α) + η1))− [g(t1, u(t1, α) + η2))]

= η1 − η2 < 0,

which is a contradiction and so (21) is true. Thus, (11) and (21) guarantee that the family of solutions
{uη(t, α)}, t ∈ [t0, T ] of (9) is uniformly bounded, i.e. there exists P > 0 with |uη(t, α)| ≤ P , with
bound P on [t0, T ].
We now show that the family {uη(t, α)} is equicontinuous on [t0, T ]. AssumeK = sup{g(t, x) : (t, x) ∈

[t0, T ] × [−P, P ]}. Also, fix a decreasing sequence {ηi}∞i=1(t), such that lim
i→∞

ηi = 0 and consider a
sequence of functions uηi(t, α). Again let t1, t2 ∈ [t0, T ] with t1 < t2, then we have the following
estimate

‖uηi(t2, α)− uηi(t1, α)‖ = ‖u0 + ηi +
1

Γ(q)

∫ t2

t0

(t2 − s)q−1(g(s, uηi(s, α)) + ηi)

− (u0 + ηi +
1

Γ(q)

∫ t1

t0

(t1 − s)q−1(g(s, uηi(s, α)) + ηi))‖

=
1

Γ(q)
‖
∫ t2

t0

(t2 − s)q−1(g(s, uηi(s, α)))ds
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−
∫ t1

t0

(t1 − s)q−1(g(s, uηi(s, α)))ds‖

≤ k

Γ(q)

∣∣∣∣∫ t2

t0

(t2 − s)q−1 −
∫ t1

t0

(t1 − s)q−1

∣∣∣∣ ds
=

k

Γ(q)

∣∣∣∣−(

∫ t1

t0

(t1 − s)q−1 −
∫ t2

t0

(t2 − s)q−1)ds

∣∣∣∣
=

k

Γ(q)

∣∣∣∣∫ t1

t0

(t1 − s)q−1 − (

∫ t1

t0

(t2 − s)q−1 +

∫ t2

t1

(t2 − s)q−1)ds

∣∣∣∣
=

k

Γ(q)

∣∣∣∣∫ t1

t0

(t1 − s)q−1 −
∫ t1

t0

(t2 − s)q−1 −
∫ t2

t1

(t2 − s)q−1ds

∣∣∣∣
≤ k

Γ(q)

∣∣∣∣∫ t1

t0

(t1 − s)q−1 −
∫ t1

t0

(t2 − s)q−1

∣∣∣∣ ds+

∣∣∣∣∫ t2

t1

(t2 − s)q−1ds

∣∣∣∣
=

k

Γ(q)

∣∣∣∣(t1 − t0)q

q
+

(t2 − t1)q

q
− (t2 − t0)q

q

∣∣∣∣+
(t2 − t1)q

q

≤ k

Γ(q + 1)
(t1 − t0)q + (t2 − t1)q − (t2 − t0)q + (t2 − t1)q

=
k

Γ(q + 1)
(t1 − t0)q − (t2 − t0)q + 2(t2 − t1)q

≤ 2k

Γ(q + 1)
(t2 − t1)q < ε,

provided ‖t2 − t1‖ < δ = ( εΓ(q+1)
2k )

1
q , proving that the family of solutions {uηi(t;α)} is equi-continuous.

By the Arzela-Ascoli theorem, {uηi(t;α)}has a subsequence {uηij (t;α)} which converges uniformly to
a function r(t) on [t0, T ]. We then show that r(t) is a solution of (10). Now, (10) becomes

uηij (t, α) = u0ij
+ ηij +

1

Γ(q)

∫ t

t0

(t− s)q−1(gij (s, uij (s, ηij )) + ηij )ds, (22)

taking the limit as ij →∞ in (22), yields

r(t) = u0 +
1

Γ(q)

∫ t

t0

(t− s)q−1(g(s, r(t)))ds. (23)

Thus, r(t) is a solution of (6) on [t0, T ]. We claim that r(t) is the maximal solution of (6). Then from
(11), we have thatm(t, α) < uη(t, α) ≤ r(t) on [t0, T ].

5. Main Results

In this section, we will obtain sufficient conditions for the uniform eventual stability of the system
(4).

Theorem 5.1. Assume the following

(i) g ∈ PC[R+ × Rn+,Rn] satisfies (A0)(ii) and g(t, u) is quasi-monotone non-decreasing in u with

g(t, 0) ≡ 0.
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(ii) V : R+ × Sψ → RN+ , and V ∈ L with V (t, 0) ≡ 0 such that

CDq
+V (t, x) ≤ g(t, V (t, x)), t 6= tk, (t, x) ∈ R+ × Sψ, (24)

holds for all (t, x) ∈ R+ × Sψ.

(iii) there exists a ψ0 > 0 such that x0 ∈ Sψ implies that

x+ Ik(x(tk)) ∈ Sψ and V (t+k , x+ Ik(x(tk))) ≤ ψk(V (t, x)), t = tk, x ∈ Sψ,

and the function ψk : RN+ → RN+ is nondecreasing for k=1,2,...

(iv) b(‖x‖) ≤ V0(t, x) ≤ a(‖x‖), where a, b ∈ K and V0(t, x) =
∑N

i=1 Vi(t, x).

Then the uniform eventual stability of the trivial solution u = 0 of the IFrDE (6) implies the uni-

form eventual stability of the trivial solution x = 0 of (4).

Proof. Let 0 < ε < ψ and t0 ∈ R+ be given.
Assume that the solution u = 0 of (6) is uniformly eventually stable. Then given each b(ε) > 0, and
t0 ∈ R+, there exist a positive function δ1 = δ1(ε) > 0 such that whenever

u0 =

n∑
i=1

ui0 ≤ δ, we have

n∑
i=1

ui(t; t0, u0) < b(ε), t ≥ t0, (25)

where u(t; t0, u0) is any solution of (6).
let us choose V (t+0 , x0) ≤ u0 and

n∑
i=1

ui0 = a(t0, ‖x0‖).

Since a(t,K) and a ∈ C[R+ × R+,R+] we can find a positive function δ = δ(t0, ε) > 0 such that

a(t0, ‖x0‖) < δ1, and ‖x0‖ < δ, (26)

hold simultaneously. We claim that if

‖x0‖ ≤ δ, then ‖x(t, t0, x0)‖ ≤ ε, t ≥ t0.

Suppose that this claim is not true. Then there would exists a point t1 > t0 and a solution x(t) with
‖x0‖ < δ such that

‖x(t1)‖ = ε and ‖x(t)‖ < ε, for t ∈ [t0, t1). (27)

This implies that x(t) + Ik(x(tk)) ∈ Sψ for t ∈ [t0, t1).

From (7) we have that
V0(t, x(t)) ≤ r0(t, t0, u0) for t ∈ [t0, t1). (28)

Combining condition (iv) and (28) we have

b(ε) ≤
n∑
i=1

Vi(t1, x(t1)) ≤
n∑
i=1

ri(t; t0, u0). (29)
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Using (25), (27) and (29) we have,

b(ε) ≤
n∑
i=1

Vi(t1, x(t1)) ≤
n∑
i=1

ri(t; t0, u0) < b(ε),

which leads to an absurdity that b(ε) < b(ε).
Hence, the uniform eventual stability of the trivial solution u(t) = 0 of (6) implies the uniform eventual
stability of the set x(t) = 0 of (4). �

6. Application

Let the points tk, tk < tk+1, limk→∞tk →∞ be fixed. Consider the vector impulsive Caputo fractional
differential equations

CDqx1(t) = −15x1 −
x2

2cosecx1

2x1
+ x1sinx2 +

3x2
2sinx1

x1

CDqx2(t) =
3x2

1

x2
− x2sinx1 − 5x2cosecx1 − x2

1cosx2

∆x1 = sk(x(tk)),∆x2 = nk(x(tk)), k = 1, 2, ..

(30)

for t ≥ t0, with initial conditions

x1(t+0 ) = x10 and x2(t+0 ) = x20.

Consider a vector V = (V1, V2)T , where
V1(t, x1, x2) = x2

1 and V2(t, x1, x2) = x2
2, with x = (x1, x2) ∈ R2, and its associated norm defined by

‖x‖ =
√
x2

1 + x2
2.

Now,

V0(t, x) =

2∑
i=1

Vi(t, x1, x2) = x2
1 + x2

2,

and so b(‖x‖) ≤ V0(t, x) ≤ a(‖x‖) with b(r) = r and a(r) = r2, implying that a, b ∈ K. From (5), we
compute the Caputo fractional Dini derivative for V1(t, x1, x2) = x2

1 for t > 0, t 6= tk as follows:

CDq
+V1(t;x1, x2)

= lim sup
h→0+

1

hq

{
V (t, x)− V (t0, x0) +

[
t−t0
h

]∑
r=1

(−1)r(qCr)[V (t− rh, x− hqf(t, x))− V (t0, x0)]

}

= lim sup
h→0+

1

hq

{
x2

1 − x2
10 +

[
t−t0
h

]∑
r=1

(−1)r(qCr)[(x1 − hqf1(t;x1, x2)2 − x2
10]

}

≤ lim sup
h→0+

1

hq
{
x2

1 − x2
10|+

[
t−t0
h

]∑
r=1

(−1)r(qCr)[x
2
1 − 2x1h

qf1(t;x1, x2) + h2qf1(t, x1)− x2
10]
}
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= lim sup
h→0+

1

hq
{
x2

1 − x2
10 +

[
t−t0
h

]∑
r=1

(−1)r(qCr)x
2
1 −

[
t−t0
h

]∑
r=1

(−1)r(qCr)2x1h
qf1(t;x1, x2)

−
[
t−t0
h

]∑
r=1

(−1)r(qCr)h
2qf1(t;x1, x2)

}

= lim sup
h→0+

1

hq
{
x2

1 +

[
t−t0
h

]∑
r=1

(−1)r(qCr)x
2
1 − x2

10 −
[
t−t0
h

]∑
r=1

(−1)r(qCr)x
2
10

−2x1

[
t−t0
h

]∑
r=1

(−1)r(qCr)h
qf1(t;x1, x2)|

}

= lim sup
h→0+

1

hq
{ [

t−t0
h

]∑
r=0

(−1)r(qCr)x
2
1 −

[
t−t0
h

]∑
r=0

(−1)r(qCr)x
2
10 − 2x1

[
t−t0
h

]∑
r=1

(−1)r(qCr)h
qf1(t;x1, x2)

}
.

Recall that,

lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=0

(−1)r(qCr) =
x2

1

tqΓ(1− q)
, and lim

h→0+

[
t−t0
h

]∑
r=0

(−1)r(qCr) = −1.

Applying (3.7) and (3.8) in [4]. we obtain,

CDq
+V1(t;x1, x2) ≤ x2

1

tqΓ(1− q)
− x2

10

tqΓ(1− q)
+ 2x1f1(t;x1, x2)

≤ x2
1

tqΓ(1− q)
+ 2x1f1(t;x1, x2)

CDq
+V1(t;x1, x2) ≤ x2

1

tqΓ(1− q)
+ 2x1(−15x1 −

x2
2cosecx1

2x1
+ x1sinx2 +

3x2
2sinx1

x1
)

=
x2

1

tqΓ(1− q)
− 30x2

1 − x2
2cosecx1 + 2x2

1sinx2 + 6x2
2sinx1.

As t→∞, x21
tqΓ(1−q) → 0, so that we have

CDq
+V1(t;x1, x2) ≤ −30x2

1 − x2
2cosecx1 + 2x2

1sinx2 + 6x2
2sinx1

= 2x2
1(−15 + sinx2) + x2

2(6sinx1 − cosecx1)

≤ 2x2
1(−15 + |sinx2|) + x2

2(6|sinx1| −
1

|sinx1|
)

≤ 2x2
1(−15 + 1) + x2

2(6− 1)

≤ 2x2
1(−14) + 5x2

2

≤ x2
1(−14) + 5x2

2.
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Therefore,

CDq
+V1(t;x1, x2) ≤ −14V1 + 5V2. (31)

Also, for x0 ∈ Sψ, for t = tk, k = 1, 2, .., we have

V (t, x(t) + ck) = |ck + x(t)| ≤ V (t, x(t)).

Similarly, using (5), we compute the Caputo fractional Dini derivative for V2(t, x1, x2) = x2
2 as follows:

CDq
+V2(t;x1, x2) = lim sup

h→0+

1

hq
{
V (t, x)− V (t0, x0)

+

[
t−t0
h

]∑
r=1

(−1)r(qCr)[V (t− rh, x− hqf(t, x))− V (t0, x0)]
}

= lim sup
h→0+

1

hq
{
x2

2 − x2
20 +

[
t−t0
h

]∑
r=1

(−1)r(qCr)[(x2 − hqf2(t;x1, x2)2 − x2
20]
}

≤ lim sup
h→0+

1

hq
{
x2

2 − x2
20 +

[
t−t0
h

]∑
r=1

(−1)r(qCr)[x
2
2 − 2x2h

qf2(t;x1, x2)

+h2qf2(t, x2)− x2
20]
}

= lim sup
h→0+

1

hq
{
x2

2 − x2
20 +

[
t−t0
h

]∑
r=1

(−1)r(qCr)x
2
2

−
[
t−t0
h

]∑
r=1

(−1)r(qCr)2x2h
qf2(t;x1, x2)−

[
t−t0
h

]∑
r=1

(−1)r(qCr)h
2qf2(t;x1, x2)

}

= lim sup
h→0+

1

hq
{
x2

2 +

[
t−t0
h

]∑
r=1

(−1)r(qCr)x
2
2 − x2

20 −
[
t−t0
h

]∑
r=1

(−1)r(qCr)x
2
20

−2x2

[
t−t0
h

]∑
r=1

(−1)r(qCr)h
qf2(t;x1, x2)|

}

= lim sup
h→0+

1

hq
{ [

t−t0
h

]∑
r=0

(−1)r(qCr)x
2
2 −

[
t−t0
h

]∑
r=0

(−1)r(qCr)x
2
20

−2x2

[
t−t0
h

]∑
r=1

(−1)r(qCr)h
qf2(t;x1, x2)

}
CDq

+V2(t;x1, x2) ≤ x2
2

tqΓ(1− q)
− x2

20

tqΓ(1− q)
+ 2x2f2(t;x1, x2)

CDq
+V2(t;x1, x2) ≤ x2

2

tqΓ(1− q)
+ 2x2f2(t;x1, x2) (32)
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CDq
+V2(t;x1, x2) ≤ x2

2

tqΓ(1− q)
+ 2x2(

3x2
1

x2
− x2sinx1 − 5x2cosecx1 −

x2
1cosx2

x2
)

=
x2

1

tqΓ(1− q)
− 2x2

2sinx1 + 6x2
1 − 10x2

2cosecx1 − 2x2
1cosx2

≤ −2x2
2sinx1 − 10x2

2cosecx1 + 6x2
1 − 2x2

1cosx2

= −2x2
2(sinx1 + 5cosecx1) + 2x2

1(3− cosx2)

≤ −2x2
2(|sinx1|+

5

|sinx1|
) + 2x2

1(3− |cosx2|)

≤ −2x2
2(1 + 5) + 2x2

1(3− 1)

= −2x2
2(6) + 2x2

1(2)

≤ −12V2 + 4V1.

Therefore,

CDq
+V1(t;x1, x2) ≤ 4V1 − 12V2. (33)

Also, for x0 ∈ Sψ, for t = tk, k = 1, 2, .., we have

V (t, x(t) + dk) = |dk + x(t)| ≤ V (t, x(t))

Combining (31) and (33), we have

CD+V ≤

−13 5

4 −12

V1

V2

 = g(t, V ). (34)

Now, consider the comparison system

CDqu = g(t, u) = Au. (35)

where A =

−13 5

4 −12

.

Thus, the vectorial inequality (34) and all other conditions of Theorem (5.1) are satisfied since the
eigenvalues of A are all negative real parts. Hence, the system (30) is uniformly eventually stable.
Therefore, the set x(t) = 0 for the system of IFrDE (30) is uniformly eventually stable.

7. conclusion

In this paper, the uniform eventual stability of impulsive Caputo fractional differential equations
using a class of piecewise continuous functions which generalizes the vector Lyapunov functions is
examined. Together with the comparison results, sufficient conditions for the uniform eventual stability
of the set x(t) = 0 is established with an illustrative example.
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