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1. Introduction

In appliedmathematics and engineering the study of stability analysis of a dynamical system is a very
important and interesting topic. The computation of spectrum for linearized operators for non-linear
differential equations determine the Lyapunov stability, see [1] for more and comprehensive details.
The evolution variational inequalities [2] can be used to represent a class of unilaterally constrained
dynamical systems. The evolution variational inequalities are a special type of dynamical systemwhere
the state of the system is forced to remain in a closed and convex setK ⊆ Rn in a real Hilbert spaceH .

The evolution variational inequalities are widely used in applied mathematics and many other
research areas of science and has many very important applications across urban transportation,
networking, networking in traffic problems, agricultural and energy markets, for more details see [3–7]
and the references therein.

DOI: 10.28924/APJM/12-1

©2025 Asia Pacific Journal of Mathematics

1

https://doi.org/10.28924/APJM/12-1


Asia Pac. J. Math. 2025 12:1 2 of 12

The stability analysis of evolution variational inequalities has been studied by many authors; see,
e.g., [8–12]. The evolution variational inequalities show the instability whenK ⊂ Rn while stability
forK = Rn. Furthermore, one must need the computation of spectrum of Jacobian for unconstrained
dynamical system in order to discuss the stability analysis of the evolution variational inequalities. But,
this isn’t practically achievable because the linearization of an unconstrained dynamical system maybe
exponentially stable while evolution variational inequalities remains unstable. On the other side, its
also possible that the tangent linearization of unconstrained dynamical system maybe of exponential
unstable but the constrained dynamical system is asymptotically stable.

In this paper, we have presented new results for the stability analysis of unilaterally constrained
dynamical systems. For this purpose, we have shown the existence of a positive semi-definite matrix G
such that the spectrum of (GA+AtG) is non-negative for a given positive definite matrixA ∈ Rn,n. For
the existence of G, we make use of the famous and well-known linear algebra tool, the singular value
decomposition and Schur complement lemma. For the asymptotically stable solutions of dynamical
system under consideration, we aim to show the existence of a positive definite matrix G such that the
spectrum corresponding to (GA+AtG) is strictly positive.

For the instbility of linear evolution variational inequalities, we have presented the existence of a
positive definite matrix G such that ((G+Gt)A+ αG) is strictly negative for α > 0. For this purpose,
we proposed and then solve an optimization problem subject to constrained on the matrix-valued
functions and their time derivatives.

The variational inequalities unveil the unified framework for consideration and study of problems
lying in equilibrium systems, dynamical systems, complementarity problems and fixed point problems
[13]. Recently many iterative methods has been noticed in terms of rich theoretical and algorithmic
development in the wake of solutions to equilibrium problems in nonlinear analysis and optimization.
Variational inequalities problems are native framework for formulating and analyzing equilibrium
problems in regard to existence and uniqueness of their solutions, sensitivity and stability analysis of
the obtained recovered solutions in terms of numerical analysis formalism.

The ingenuity of variational inequalities implied in larger areas like social sciences, weather forecast-
ing, dam-construction engineering and dynamical systems in particular. The variational inequalities
and fixed point formulation are concomitant problems. The equivalence between variational inequal-
ities and fixed point formulation plays vital role in developing and analyzing a class of dynamical
systems. The salient view of this mechanism expresses that set of stationary points of dynamical system
correspond to the corresponding variational inequalities. Considered dynamical system [14] related to
congested transportation system and problems of human migration with core interests of existence of
equilibria. In [15], authors have shown that and established unique solution of dynamical system by
utilizing the Lipchitz condition in equilibrium systems.
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The stability issues of equilibria of projected dynamical systems are addressed in [16]. They sup-
ported two particular approaches named as monotonicity and regularity during the stability analysis,
leading prosperous results in price equilibrium problems and market strategic equilibrium problems.
The use of evolution variational inequalities for social dynamical applications like a human migration,
which is more interacting problem globally and of greater humanitarian attentions were studied [16].
One of the main remark is that the linear growth condition has been evoked in the sequential variational
inequalities with a non-homogeneous Markov chain. Moreover this formulation works under general
conservation laws for population flows. A special type of variational inequalities, known as quasi
variational inequalities, which are usually studied in impulse control system, operation research and
economics, more as a programing resource in transportation and social sciences.

Overview of article: In Section 2 of manuscript, the statement of the problem under consideration
is provided. In Section 3, we present some new results to study the existence and uniqueness of the
solution of given LVEI. For existence and uniqueness, a closed and convex set in the real Hilbert space
is considered while the operators used are of the non-linear nature. In Section 4, some novel results are
provided based on optimization technique to discuss the stability and instability of LEVI. Finally, the
conclusions are provided in Section 5 of the manuscript.

2. Problem Statement

LetK ⊂ Rn be a non-empty closed and convex set. Let 0 ∈ K. The problem under consideration is
to find x(t) ∈ C0 ([t0,∞) ;Rn]) such that for x(t), dx(t)dt ∈ L

∞
loc (t0,∞;Rn) and

(P )←−


〈dx(t)dt +Ax(t) + Fx(t), v − x(t)〉 ≥ 0, ∀ v ∈ K, t ≥ t0 (a)

x(t) ∈ K, t ≥ t0 (b)

x(t0) = x0 (c).

3. Existence and Uniqueness of Linear Evolution Variational Inequalities

Theorem 1 shows the uniqueness and existence of variational inequality (a).

Theorem 1. Let K ⊂ Rn be a closed and convex set in real Hilbert Space H , and let d
dt , F be the non-linear

operators. Let the operators d
dt , F are strongly monotone with constants α ≥ 0, θ ≥ 0, ω ≥ 0, and Lipschitz

continuous with constants β ≥ 0, φ ≥ 0, v ≥ 0, and there exist a constant ρ ≥ 0, η ≥ 0, ξ ≥ 0 such that

0 < ρ <
2α

β2
, 0 < η <

2θ

φ2
, 0 < ξ <

2ω

v2
.

Then there exists a unique solution x(t) ∈ K satisfying the variational inequality (a) in problem (P).

Proof. Existence: The variational inequality

〈dx(t)

dt
+Ax(t) + Fx(t), v − x(t)〉 ≥ 0, ∀ v ∈ K, t ≥ t0
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is equivalent to fixed point problem

x(t) = Pk[x(t)− ρ d
dt
x(t)] +QK [x(t)− ηAx(t)] +Rk[x(t)− ξFx(t)].

Thus we can associate a mapping E(x(t)) with the variational inequality (a) as

E(x(t)) = Pk[x(t)− ρ d
dt
x(t)] +QK [x(t)− ηAx(t)] +Rk[x(t)− ξFx(t)]. (1)

It is enough to show that the mapping E(x(t)) defined by Equ. 1 has a fixed point. For x1(t) 6= x2(t) in
K, consider that ∥∥∥E(x1(t))− E(x2(t))

∥∥∥ = A+B + C

with

A =
∥∥∥PK [x1(t)− ρ ddtx1(t)]− PK [x2(t)− ρ ddtx2(t)]

∥∥∥ ,
B =

∥∥∥QK [x1(t)− ηAx1(t)]−QK [x2(t)η −Ax2(t)]
∥∥∥ ,

and

C =
∥∥∥Rk[x1(t)− ξFx1(t)]−Rk[x2(t)− ξFx2(t)]∥∥∥ .

Since, PK , QK , RK are non-expansive mapping. In turn this implies that the express for∥∥∥E(x1(t))− E(x2(t))

∥∥∥ is
≤
∥∥∥x1 − x2 − ρ( ddtx1 −

d
dtx2)

∥∥∥+
∥∥∥x1 − x2 − η(Ax1 −Ax2)

∥∥∥+
∥∥∥x1 − x2 − ξ(Fx1 − Fx2)∥∥∥ . (2)

In Equ. 2, we have omitted the dependency on t. Furthermore, consider that∥∥∥x1 − x2ρ( ddtx1 −
d
dtx2)

∥∥∥2
= 〈x1 − x2ρ(

d

dt
x1 −

d

dt
x2), x1 − x2ρ(

d

dt
x1 −

d

dt
x2)〉

= 〈x1 − x2, x1 − x2〉 − 2ρ〈x1 − x2,
d

dt
(x1 − x2)〉+ ρ2〈 d

dt
x1 −

d

dt
x2,

d

dt
x1 −

d

dt
x2〉

=
∥∥∥x1 − x2∥∥∥2 − 2ρα

∥∥∥x1 − x2∥∥∥2 + ρ2β2
∥∥∥x1 − x2∥∥∥2 = (1− 2ρα+ ρ2β2)

∥∥∥x1 − x2∥∥∥2 . (3)

Here we have used the strongly monotonicity of operator d
dt with constants α > 0 and Lipschitz

continuity with constant β > 0. Again consider that∥∥∥x1 − x2η(Ax1 −Ax2)
∥∥∥2

= 〈x1 − x2 − η(Ax1 −Ax2), x1 − x2 − η(Ax1 −Ax2)〉

= 〈x1 − x2, x1 − x2〉 − 2η〈x1 − x2, Ax1 −Ax2〉+ η2〈Ax1 −Ax2, Ax1 −Ax2〉

=
∥∥∥x1 − x2∥∥∥2 − 2ηθ

∥∥∥x1 − x2∥∥∥2 + η2φ2
∥∥∥x1 − x2∥∥∥2 = (1− 2ηθ + η2φ2)

∥∥∥x1 − x2∥∥∥2 . (4)
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Here we have used strongly monotonicity of operator Awith constant θ > 0 and Lipschitz continuity
with constant φ > 0. Consider that∥∥∥x1 − x2ξ(Fx1 − Fx2)∥∥∥2

= 〈x1 − x2 − ξ(Fx1 − Fx2), x1 − x2 − ξ(Fx1 − Fx2)〉

= 〈x1 − x2, x1 − x2〉 − 2ξ〈x1 − x2, Fx1 − Fx2〉+ ξ2〈Fx1 − Fx2, Fx1 − Fx2〉

=
∥∥∥x1 − x2∥∥∥2 − 2ξω

∥∥∥x1 − x2∥∥∥2 + ξ2ω2
∥∥∥x1 − x2∥∥∥2 = (1− 2ξω + ξ2ω2)

∥∥∥x1 − x2∥∥∥2 . (5)

Here we have used strongly monotonicity of operator F with constant ω > 0 and Lipschitz continuity
with constant v > 0. The inequality 2 in view of Equ. 3 to Equ. 5 implies the following inequality for
‖E(x1(t))− E(x2(t))‖, that is,

≤
√

1− 2ρα+ ρ2β2 ‖x1 − x2‖2 +
√

1− 2ηθ + η2φ2 ‖x1 − x2‖2 +
√

1− 2ξω + ξ2v2 ‖x1 − x2‖2 = L,

with L =
√

1− 2ρα+ ρ2β2 +
√

1− 2ηθ + η2φ2 +
√

1− 2ξω + ξ2v2 = l1 + l2 + l3.

Let L < 1, then l1 < 1, l2 < 1 l3 < 1. For l1 < 1, we have that 0 < ρ < 2α
β2 . For l2 < 1, we have

that 0 < η < 2θ
φ2

and for l3 < 1,we have that 0 < ξ < 2ω
v2
. From the conditions 0 < ρ < 2α

β2 , 0 < η < 2θ
φ2
,

0 < ξ < 2ω
v2
, it follows that L < 1 and the mappingE(x(t)) is the contraction mapping and consequently

it has a fixed point E(x(t)) = x ∈ K, a closed and convex set satisfying the variational inequality (a).

Uniqueness: Let x1(t) 6= x2(t) be the solution of variational inequality (a), then

〈dx1(t)
dt

+Ax1(t) + Fx1(t), v − x1(t)〉 ≥ 0,∀ v ∈ K, t ≥ t0 (6)

and
〈dx2(t)

dt
+Ax2(t) + Fx2(t), v − x2(t)〉 ≥ 0,∀ v ∈ K, t ≥ t0 (7)

Take v = x2(t) in Equ. 7 and v = x1(t) in Equ. 6 to have

〈dx1(t)
dt

+Ax1(t) + Fx1(t), x2(t)− x1(t)〉 ≥ 0, ∀x1(t), x2(t) ∈ K (8)

and
〈dx2(t)

dt
+Ax2(t) + Fx2(t), x1(t)− x2(t)〉 ≥ 0, ∀x1(t), x2(t) ∈ K. (9)

In turn this implies that

〈−dx2(t)
dt

−Ax2(t)− Fx2(t), x2(t)− x1(t)〉 ≥ 0,∀x1(t), x2(t) ∈ K (10)

Adding Equ. 8 and Equ. 10, we have

〈dx1(t)
dt

− dx2(t)

dt
+Ax1(t)−Ax2(t) + Fx1(t)− Fx2(t), x2(t)− x1(t)〉 ≥ 0,∀x1(t), x2(t) ∈ K. (11)
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This implies that

〈d(x1(t)− x2(t))
dt

+A(x1(t)− x2(t)) + F (x1(t)− x2(t)), x2(t)− x1(t)〉 ≥ 0,∀x1(t), x2(t) ∈ K. (12)

Furthermore,

〈d(x1(t)− x2(t))
dt

+A(x1(t)− x2(t)) + F (x1(t)− x2(t)), x1(t)− x2(t)〉 ≤ 0,∀x1(t), x2(t) ∈ K. (13)

Thus,

〈dx1
dt
− dx2

dt
, x1 − x2〉+ 〈Ax1(t)−Ax2(t), x1(t)− x2(t)〉+ 〈Fx1(t)− Fx2(t), x1(t)− x2(t)〉 ≤ 0. (14)

Since, ddt is strongly monotone with constant α > 0, A is strongly monotone with constant θ > 0 and F
is strongly monotone with constant ω > 0 such that

α
∥∥∥x1(t)− x2(t)∥∥∥2 + θ

∥∥∥x1(t)− x2(t)∥∥∥2 + ω
∥∥∥x1(t)− x2(t)∥∥∥2

≤ 〈d(x1 − x2
dt

, x1 − x2〉+ 〈A(x1(t)− x2(t), x1(t)− x2(t)〉+ 〈F (x1(t)− x2(t)), x1(t)− x2(t)〉 ≤ 0.

From this, we have that

α
∥∥∥x1(t)− x2(t)∥∥∥2 + θ

∥∥∥x1(t)− x2(t)∥∥∥2 + ω
∥∥∥x1(t)− x2(t)∥∥∥2 ≤ 0.

This implies that

(α+ θ + ω)
∥∥∥x1(t)− x2(t)∥∥∥2 ≤ 0

and ∥∥∥x1(t)− x2(t)∥∥∥2 ≤ 0.

Thus, finally we have that x1(t) = x2(t),which implies the uniqueness of the solution.

4. Stability of unilaterally constrained dynamical systems
4.1. Stability Analysis of Linear Evolution Variational Inequalities (LEVI).

Theorem 2 show that solutions corresponding to (a) and (b) are stable for given A ∈ Rn,n belonging
to set fK .

Theorem 2. LetK ⊂ Rn be a set satisfying hypothesis:

(H1): SetK is closed,

(H2): SetK is convex,

(H3): 0 ∈ K.

Then, solutions to (a) and (b) in (P) are stable for given A ∈ fK .
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Proof. To show that solutions of (a) and (b) are stable for given A ∈ fK , it is sufficient to show that
there exists a positive semi-definite matrix G such that

λi
(
GA+AtG

)
≥ 0, ∀i.

For existence of G such that λi(GGt) ≥ 0 or σi(G) ≥ 0 ∀i, SVD, the famous linear algebra tool applied
on A yields

A = U

σ1 0

0 B

V t,

where U, V are unitary matrices. Let σ1 =
∥∥∥Av∥∥∥

2
,
∥∥∥v∥∥∥

2
= 1 for v ∈ Rn,1. Take u1, the very first column

of U as u1 = Av
σ1
, then ∥∥∥Av∥∥∥

2

σ1
=

∥∥∥Av∥∥∥
2∥∥∥A∥∥∥
2

= 1.

The quantity σ1 =
∥∥∥A∥∥∥

2
denotes largest singular value of A ∈ Rn,n. The structure of U2 ∈ Rm×n−1,

V2 ∈ Rn×n−1 such that U = (u1 : U2) and V = (v1 : V2) . Thus, the structure of given A in view of U, V
appear as

(u1 : U2)A (v1 : V2) =

σ1ut1u1 ut1AV2

σ1U
t
2u1 U t2AV2

 =

σ1 a

0 B

 .

In above, ut1u1 = 1, U t2u1 = 0, a = V t
2A

tu1, and B = U t2AV2. Let a = 0, then

σ21 =
∥∥∥A∥∥∥2

2
= max


∥∥∥U tAV x∥∥∥2

2∥∥∥x∥∥∥2
2

 = max



∥∥∥∥∥∥
σ1 at

0 B

x

∥∥∥∥∥∥
2

2∥∥∥x∥∥∥2
2


.

Let x 7−→ a, yields

U tAV =

σ1 0

0 B

V t.

In turn,

A = U

σ1 0

0 B

V t.

Let S =

I 0

0 α

 , α > 0 such that S−1 exists, then G := S−1A =

 A11 A12

1
αA21

1
αA22

 . The largest

singular value of G is dependent on choice of α. The Schur complement lemma yields inequality for
positive-definite matrix I and G as I G

Gt I

 > 0⇔
(
I −GI−1Gt

)
≥ 0.
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The above inequality results λi
(
I −GGt

)
≥ 0, ∀i. In turn this yields

0 ≤ λi
(
I −GGt

)
≥ 0, ∀i.

In other words,

σi (G) ≥ 0, ∀i.

Finally, we conclude that for given A ∈ Rn,n, a positive semi-definite matrix there exists a matrix G
such that λi

(
GA+AtG

)
≥ 0, ∀i.

Theorem 3 is about the computation of a positive definite matrix G for a given matrix A ∈ f+
K and to

discuss the asymptotic stability of solutions of (a) and (b) in (P).

Theorem 3. LetK ⊂ Rn be a non-empty closed and convex set and 0 ∈ K. Then, solutions to (a) and (b) in

(P) are asymptotically stable for given A ∈ f+
K .

Proof. To show that solutions to (a) and (b) in (P) are asymptotically stable for given A ∈ f+
K , it is

sufficient to show that there exists a positive-definite matrix G such that

λi
(
GA+AtG

)
> 0, ∀i.

For given A ∈ Rn,n, let λ ∈ Λ(A) denotes the it’s spectrum. Assume that Re(λi) > 0, ∀i. Furthermore,

Λ(A) = {αj , (λj + ιµj)j}, αj , µj > 0, ∀i.

The given A ∈ Rn,n possesses the same spectrum as of a block diagonal matrix whose blocks have the
forms:
(F1) : The family of matrices (αjIm + Jm) with Jm beingm×m nil-potent Jordan matrix.

(F2) : WithM =

 λj µj

−µj λj

 , construct the block matrix


M Im 0m

0m M Im

0m 0m M

 . For (F1) : Let ε > 0, a small

positive parameter so that (αjIm + Jm) possesses the same spectrum as G = (αjIm + εJm) possesses.
Furthermore,

G+Gt = (2αjIm + ε(Jm + J tm))

with (G+Gt) > 0, being a positive definite matrix.

For (F2): The given A ∈ Rn,n have the same spectrum as G =


M εIm 0m

0m M εIm

0m 0m M

 and G + Gt =
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2λjIm 0m 0m

0m 2λjIm 0m

0m 0m 2λjIm

 + εK. Thus it can be seen that (G + Gt) > 0 for ε > 0, the admissible

perturbation level.
4.2. Instability of Linear Evolution Variational Inequalities.

For given A ∈ Rn,n, we aim to determine G, a positive definite matrix such that

(
(G+Gt)A+ αG

)
< 0, α > 0.

The existence of G > 0 is given in Theorem 2. We aim to determine an admissible perturbation matrix
(εP (t)), ε > 0, a small positive parameter, the perturbation level and P (t) a matrix valued functions
for all t. The matrix Frobenius norm of P (t) satisfies

∥∥∥P (t)

∥∥∥
F

=
√

Σi,jp2i,j ≤ 1, ∀t.

Furthermore, diag(P (t)) = 0. The computation of perturbation matrix εP (t) shifts the negative spec-
trum of the matrix valued function ((G+Gt)A+ αG

) such that

λi
(
((G+Gt)A+ αG) + εP (t)

)
> 0, ∀i.

The eigenvalue problem under consideration is

x∗(t)
(
((G+Gt)A+ αG) + εP (t)

)
x(t) = λ(t)x(t), (15)

where x(t) being an eigenvector corresponding to the smallest negative eigenvalue. Furthermore,
assume that

∥∥∥x(t)

∥∥∥
2
≤ 1, ∀t. Differentiating Equ. 15 with respect to t yields

λ(t)x∗(t)
d

dt
(x(t)) + εx∗(t)

d

dt
(P (t)x(t)) =

d

dt
(λ(t)) + λ(t)x∗(t)

d

dt
(x(t)). (16)

Upon making use of Equ. 15, we have that

λ(t)x∗(t) = x∗(t)
(
((G+Gt)A+ αG) + εP (t)

)
.

Thus, Equ. 16 becomes
d

dt
(λ(t)) = εx∗(t)

d

dt
(P (t))x(t). (17)

Let x∗(t) ddt(x(t)) = 0 in Equ.16 and d
dt(P (t)) = φ(t), then this yields an optimization problem to

maximize the matrix values function P (t).
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4.2.1. Optimization Problem. Forφ(t) = d
dt(P (t)) construct and thenmaximize the quantity (x∗1(t)φ(t)x1(t))

subject to constraints on P (t), d
dt(P (t)) and diag( ddt(P (t))). The maximization problem in order to

maximize the growth of smallest negative eigenvalues is:

(A)←−



max
(
x∗1(t)

d
dt(P (t))x1(t)

)
Subject to

〈 ddt(P (t)), P (t)〉 = 0

diag( ddt(P (t))) = 0.

The solution to maximization problem (A) is given by Lemma 1.

Lemma 1. Let P (t), ∀t be a non-zero matrix valued function with
∥∥∥P (t)

∥∥∥
F

=
√

Σi,jp2i,j ≤ 1. Let x1(t), x∗1(t)

be right and left eigenvectors associated with smallest negative eigenvalue λ1(t) of the matrix valued function(
(G+Gt)A+ αG

)
+ εP (t). The solution to problem (A) is the differential equation

d

dt
(P (t)) = ProjP (t)(x1(t)x

∗
1(t))− 〈ProjP (t)(x1(t)x

∗
1(t)), P (t)〉P (t),

where ProjP (t)(x1(t)x
∗
1(t)) is the projection of matrices (x1(t)x

∗
1(t)) onto manifold induced by family of matrices

P (t).

Proof. The proof involve the computation of an orthogonal projection onto the manifold of P (t). We
refer [13] for a complete details on proof.

Remark 1. The solution of (A), that is,

d

dt
(P (t)) = ProjP (t)(x1(t)x

∗
1(t))− 〈ProjP (t)(x1(t)x

∗
1(t)), P (t)〉P (t)

ensures that
d

dt
(λ1(t)) > 0, ∀t.

The very next negative eigenvalue λ2(t) to be a part of the positive spectrum ofmatrix valued function(
((G+Gt)A+ αG) + εP (t)

) while keeping λ1(t) remains positive. Furthermore, the maximization
problem addressed to maximize both λ1(t) and λ2(t) such that λ1(t) > 0 and λ2(t) > 0 is given as
follows:

(B)←−



max
(
x∗1(t)

d
dt(P (t))x1(t)

)
Subject to

x∗2(t)
d
dt (P (t))x2(t) = x∗1(t)

d
dt (P (t))x1(t)

〈 ddt(P (t)), P (t)〉 = 0

diag( ddt(P (t))) = 0.
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Remark 2. The vectors x∗1(t), x1(t), x∗2(t), x2(t) in (B) are the left and right eigenvectors to λ1(t) and λ2(t),

respectively.

For solution of optimization problem (B), we refer [13]. Finally, the eigenvalue problem(
((G+Gt)A+ αG) + εP (t)

)
x(t) = λ(t)x(t), (18)

yields the positive spectrumofmatrix valued function ((G+Gt)A+ αG
) for an admissible perturbation

level ε > 0, P (t).

Remark 3. The addition of −βI for β > 0 and I being an identity matrix to the matrix valued function(
(G+Gt)A+ αG

)
yields a purely negative spectrum.

5. Conclusion

In this article, the new results on existence, uniqueness, stability and instability analysis of Linear
Evaluation Variational Inequalities LEVI are presented. For the existence and uniqueness, the results
are provided on the solutions in a closed and convex set in the real Hilbert space satisfying the given
LEVI. The construction of a positive semi-definite matrix is provided in order to discuss the stability and
instability analysis of LEVI. Furthermore, the results on the asymptotic stability of LEVI are presented.
Finally, an optimization problem is developed to study the behaviour of the spectrum of matrices
corresponding to LEVI.
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