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Abstract. Nonlinear ordinary differential equations (ODEs) play a critical role in modeling complex
dynamical systems across various scientific fields. However, the difficulty in finding exact solutions often
necessitates the use of approximation methods. This paper explores quadratic approximations, focusing
on the inclusion of only the second-order terms from the Taylor series expansion. By using only the
second-order terms, we aim to provide new insights about the solution of the system. We demonstrate the
existence of nonzero real solutions for systems of ODEs involving quadratic terms and present comparisons
between these quadratic approximations and exact solutions. The findings demonstrate that quadratic
approximations effectively capture the dynamics of nonlinear systems, providing deeper insights into their
behavior and may offer a reliable method for analyzing such systems.
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1. Introduction

Nonlinear ordinary differential equations (ODEs) are important for understanding complex dynam-
ical phenomena across various scientific disciplines. However, finding exact solutions for nonlinear
ODEs presents a significant challenge, which is whywe often use approximationmethods to understand
how these systems behave.

One such method involves the concept of linearization. Linearization is the process of converting
a nonlinear system into a simple linear system. Some well-known methods for doing this include
perturbation techniques ( [1], [2]), substitution methods [3], changing variables ( [4], [5]), and using
the Jacobian matrix ( [6], [7]). While these methods are useful, they mostly focus on linear terms,
which might not fully capture the behavior of systems that are far from equilibrium. Among these
techniques, the Jacobian matrix method is particularly well-known. However, it mainly considers the
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first-order terms of a Taylor series expansion and ignores higher-order terms like quadratic terms. This
has led researchers to explore more methods by considering the quadratic terms of the Taylor series
expansion in the approximation. In the study of Bogoliubov et al., they have presented asymptotic
methods for dealing with nonlinear oscillations, relying on quadratic terms for approximation. The
study highlights how quadratic terms can help model systems where linear approaches fail to capture
nonlinear behaviors [8]. Another research by Coullet and Spiegel derives amplitude equations using
quadratic terms to describe the behavior of systems near critical points where multiple instabilities
compete. The analysis focuses on the nonlinear interactions that arise in these systems, with the
quadratic terms playing a crucial role in determining the dynamics [9]. The said studies emphasized
the importance of quadratic approximations in understanding complex dynamical behaviors focusing
on quadratic terms including the linear terms.

This paper focuses exclusively on utilizing quadratic terms, without the inclusion of linear terms,
from the Taylor series expansion to solve ODEs. Through this approach, we aim to uncover new
insights and deepen the understanding of the unique dynamics that arise in systems governed solely
by quadratic nonlinearities.

The structure of this paper is organized as follows: Section 2 explores the existence of nonzero
solutions for differential equations that involve quadratic terms. In Section 3, we approximate a sys-
tem of nonlinear differential equations using the Taylor series expansion, specifically retaining only
the quadratic terms, and compare the solutions of the original nonlinear system with those of the
quadratic-only system. Finally, Section 4 concludes the paper with a summary of our findings and a
discussion of their broader implications.

2. Existence of Nonzero Solutions to the Quadratic Approximations

This section aims to demonstrate the presence of nonzero real solutions in a system of differential
equations involving quadratic terms. We establish the same becausemany real-world problemsmodeled
by differential equations require nonzero solutions to be meaningful. For example, in epidemiology,
nonzero solutions in a disease model could represent the persistence of an infection in a population,
which is crucial for understanding and controlling disease spread.

The theorem establishes the existence of nonzero real solutions for a system of differential equations
involving quadratic terms with n variables. The corollaries offer additional evidence of nonzero real
solutions, specifically in the cases where n = 2 or n = 3. Examples are provided for each case to
illustrate the concept further.
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Theorem 2.1. The system of differential equations involving quadratic terms

dx1
dt

=
∑n

j=1 a1jx
2
j

dx2
dt

=
∑n

j=1 a2jx
2
j

...
dxn
dt

=
∑n

j=1 anjx
2
j

has a nonzero real solution whenever the system of equations

∑n
j=1 a1jy

2
j + y1 = 0∑n

j=1 a2jy
2
j + y2 = 0

...∑n
j=1 anjy

2
j + yn = 0

has a nonzero real solution.

Proof. Consider the system of equations:

∑n
j=1 a1jy

2
j + y1 = 0∑n

j=1 a2jy
2
j + y2 = 0

...∑n
j=1 anjy

2
j + yn = 0

(2.1)

Let (y1, y2, . . . , yn) = (λ1, λ2, . . . , λn) be a nonzero real solution of the system (2.1). That is,

∑n
j=1 a1jλ

2
j + λ1 = 0∑n

j=1 a2jλ
2
j + λ2 = 0

...∑n
j=1 anjλ

2
j + λn = 0

Equivalently, 

∑n
j=1 a1jλ

2
j = −λ1∑n

j=1 a2jλ
2
j = −λ2

...∑n
j=1 anjλ

2
j = −λn

Let (x1, x2, . . . , xn) =

(
λ1
t
,
λ2
t
, . . . ,

λn
t

)
where t > 0. Then

dx1
dt

= −λ1
t2

dx2
dt

= −λ2
t2...

dxn
dt

= −λn
t2

(2.2)
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Moreover,
n∑

j=1

a1jx
2
j =

n∑
j=1

a1j

(
λj
t

)2

=
1

t2

n∑
j=1

a1j (λj)
2 = −λ1

t2
,

n∑
j=1

a2jx
2
j =

n∑
j=1

a2j

(
λj
t

)2

=
1

t2

n∑
j=1

a2j (λj)
2 = −λ2

t2

and
n∑

j=1

anjx
2
j =

n∑
j=1

anj

(
λj
t

)2

=
1

t2

n∑
j=1

anj (λj)
2 = −λn

t2

Hence, 

∑n
j=1 a1jx

2
j = −λ1

t2∑n
j=1 a2jx

2
j = −λ2

t2∑n
j=1 a3jx

2
j = −λ3

t2...∑n
j=1 anjx

2
j = −λn

t2

Using the system (2.2), we get 

dx1
dt

=
∑n

j=1 a1jx
2
j

dx2
dt

=
∑n

j=1 a2jx
2
j

...
dxn
dt

=
∑n

j=1 anjx
2
j

Thus, (x1, x2, . . . , xn) =

(
λ1
t
,
λ2
t
, . . . ,

λn
t

)
is a nonzero real solution to the system of differential

equations involving quadratic terms since (y1, y2, . . . , yn) = (λ1, λ2, . . . , λn) is nonzero. �

To illustrate the solution of a system of differential equations involving quadratic terms, we will
examine the solutions for the cases of n = 2 and n = 3.

Corollary 2.1. The system of differential equations involving quadratic terms
dx1
dt

= a11x
2
1 + a12x

2
2

dx2
dt

= a21x
2
1 + a22x

2
2

has a nonzero real solution. Moreover, a nonzero real solution is given for each of the four cases:

Case 1: If a11 6= 0 and a22 6= 0, then the nonzero real solution is
x1 =

1

t

(
ω1 +

4a222 − 3a11a12 − 3a222
9|A|2ω1

− 2a22
|A|

)
x2 =

1

t

(
ω2 +

4a211 − 3a21a22 − 3a211
9|A|2ω2

− 2a11
|A|

)
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where

ω1 =

{
(81a212a

2
22|A|4 + 96a12a

4
22|A|3 − 108a12a

2
22(a11a12 + a222)|A|3

18|A|4

+
12(a11a12 + a222)

3|A|2 − 12a222(a11a12 + a222)
2|A|2)

1
2

18|A|4

+
2a22(a11a12 + a222)− 3a12a22|A|

6|A|3
− 8a322

27|A|3

} 1
3

and

ω2 =


(
81a211a

2
21|A|4 + 96a411a21|A|3 − 108a211a21(a21a22 + a211)|A|3

) 1
2

18|A|4

+
12(a21a22 + a211)

3|A|2 − 12a211(a21a22 + a211)
2|A|2

18|A|4

+
2a11(a21a22 + a211)− 3a11a21|A|

6|A|3
− 8a311

27|A|3

} 1
3

Case 2: If a11 = 0 and a22 = 0, then the nonzero real solution is
x1 = − 1

t 3
√
a12a221

x2 = − 1

t 3
√
a212a21

Case 3: If a11 = 0 and a22 6= 0, then the nonzero real solution is
x1 = −a12

t

(
ω3 −

a22
3a212a21ω3

)2

x2 =
1

t

(
ω3 −

a22
3a212a21ω3

)
where

ω3 =

(
1

6a212a21

√
4a322

3a212a21
+ 9− 1

2a212a21

) 1
3

Case 4: If a11 6= 0 and a22 = 0, then the nonzero real solution is
x1 =

1

t

(
ω4 −

a11
3a12a221ω4

)
x2 = −a21

t

(
ω4 −

a11
3a12a221ω4

)2

where

ω4 =

(
1

6a12a221

√
4a311

3a12a221
+ 9− 1

2a12a221

) 1
3
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Proof. Consider the system of differential equations:
dx1
dt

= a11x
2
1 + a12x

2
2

dx2
dt

= a21x
2
1 + a22x

2
2

(2.3)

By Theorem 2.1, the system (2.3) has a nonzero real solution whenever the system of equations a11y
2
1 + a12y

2
2 + y1 = 0

a21y
2
1 + a22y

2
2 + y2 = 0

(2.4)

has a nonzero real solution.

If there exists a nonzero real solution (y1, y2) = (λ1, λ2) of the system (2.4), then (x1, x2) =

(
λ1
t
,
λ2
t

)
where t > 0 is a nonzero real solution of the system (2.3).

Now, we form the following system of equations: a11λ
2
1 + a12λ

2
2 + λ1 = 0

a21λ
2
1 + a22λ

2
2 + λ2 = 0

We solve for λ2 from the second equation of the system.

λ2 =
−1±

√
1− 4a22a21λ21
2a22

Substitute λ2 to the first equation and we get

a11λ
2
1 + a12

(
−1±

√
1− 4a22a21λ21
2a22

)2

+ λ1 = 0

After some algebraic manipulations, we obtain(
a11a22 − a12a21

a22

)2

λ41 + 2

(
a11a22 − a12a21

a22

)
λ31 +

(
a11a12 + a222

a222

)
λ21 +

a12
a22

λ1 = 0

On the other hand, if we first solve for λ1 using the first equation in the system and then substitute it
into the second equation, we can get(
a11a22 − a12a21

a11

)2

λ41 + 2

(
a11a22 − a12a21

a11

)
λ31 +

(
a21a22 + a211

a211

)
λ21 +

a21
a11

λ1 = 0

Let A =

a11 a12

a21 a22

. Then |A| = a11a22 − a12a21. So we get

|A|2

a222
λ41 +

2|A|
a22

λ31 +

(
a11a12 + a222

a222

)
λ21 +

a12
a22

λ1 = 0 (2.5)

and
|A|2

a211
λ41 +

2|A|
a11

λ31 +

(
a21a22 + a211

a211

)
λ21 +

a21
a11

λ1 = 0 (2.6)
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Consider the following cases:
Case 1: a11 6= 0 and a22 6= 0

Multiplying both sides of the equation (2.5) by a22, we have

|A|2λ41 + 2a22|A|λ31 +
(
a11a12 + a222

)
λ21 + a12a22λ1 = 0

Equivalently,
λ1 = 0 or |A|2λ31 + 2a22|A|λ21 +

(
a11a12 + a222

)
λ1 + a12a22 = 0

Multiplying both sides of the equation (2.6) by a11, we have

λ2 = 0 or |A|2λ32 + 2a11|A|λ22 +
(
a21a22 + a211

)
λ2 + a11a21 = 0

We solve for λ1 and λ2 and substitute to x1 =
λ1
t

and x2 =
λ2
t
.

The nonzero real solution of the system of differential equation is:
x1 =

1

t

(
ω1 +

4a222 − 3a11a12 − 3a222
9|A|2ω1

− 2a22
|A|

)
x2 =

1

t

(
ω2 +

4a211 − 3a21a22 − 3a211
9|A|2ω2

− 2a11
|A|

)
where

ω1 =

{
(81a212a

2
22|A|4 + 96a12a

4
22|A|3 − 108a12a

2
22(a11a12 + a222)|A|3

18|A|4

+
12(a11a12 + a222)

3|A|2 − 12a222(a11a12 + a222)
2|A|2)

1
2

18|A|4

+
2a22(a11a12 + a222)− 3a12a22|A|

6|A|3
− 8a322

27|A|3

} 1
3

and

ω2 =


(
81a211a

2
21|A|4 + 96a411a21|A|3 − 108a211a21(a21a22 + a211)|A|3

) 1
2

18|A|4

+
12(a21a22 + a211)

3|A|2 − 12a211(a21a22 + a211)
2|A|2

18|A|4

+
2a11(a21a22 + a211)− 3a11a21|A|

6|A|3
− 8a311

27|A|3

} 1
3

Case 2: a11 = 0 and a22 = 0

The following system  a11λ
2
1 + a12λ

2
2 + λ1 = 0

a21λ
2
1 + a22λ

2
2 + λ2 = 0
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becomes  a12λ
2
2 + λ1 = 0

a21λ
2
1 + λ2 = 0

We solve for λ1 and λ2 and substitute to x1 =
λ1
t

and x2 =
λ2
t
.

The nonzero real solution of the system of differential equations is:
x1 = − 1

t 3
√
a12a221

x2 = − 1

t 3
√
a212a21

Case 3: a11 = 0 and a22 6= 0

The following system  a11λ
2
1 + a12λ

2
2 + λ1 = 0

a21λ
2
1 + a22λ

2
2 + λ2 = 0

becomes  a12λ
2
2 + λ1 = 0

a21λ
2
1 + a22λ

2
2 + λ2 = 0

We solve for λ1 from the first equation.
λ1 = −a12λ22

Substitute this to the second equation.

a212a21λ
4
2 + a22λ

2
2 + λ2 = 0

or
λ2 = 0 or a212a21λ32 + a22λ2 + 1 = 0

We solve for λ1 and λ2 and substitute to x1 =
λ1
t

and x2 =
λ2
t
.

The nonzero real solution of the system of differential equations is:
x1 = −a12

t

(
ω3 −

a22
3a212a21ω3

)2

x2 =
1

t

(
ω3 −

a22
3a212a21ω3

)
where

ω3 =

(
1

6a212a21

√
4a322

3a212a21
+ 9− 1

2a212a21

) 1
3

Case 4: a11 6= 0 and a22 = 0

The following system  a11λ
2
1 + a12λ

2
2 + λ1 = 0

a21λ
2
1 + a22λ

2
2 + λ2 = 0
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becomes  a11λ
2
1 + a12λ

2
2 + λ1 = 0

a21λ
2
1 + λ2 = 0

We solve for λ2 from the second equation.

λ2 = −a21λ21

Substitute this to the second equation.

a12a
2
21λ

4
1 + a11λ

2
1 + λ1 = 0

or

λ1 = 0 or a12a221λ31 + a11λ1 + 1 = 0

We solve for λ1 and λ2 and substitute to x1 =
λ1
t

and x2 =
λ2
t
.

The nonzero real solution of the system of differential equations is:
x1 =

1

t

(
ω4 −

a11
3a12a221ω4

)
x2 = −a21

t

(
ω4 −

a11
3a12a221ω4

)2

where

ω4 =

(
1

6a12a221

√
4a311

3a12a221
+ 9− 1

2a12a221

) 1
3

This completes the proof. �

Remark 2.1. The rest of the solutions of system of differential equations
dx1
dt

= a11x
2
1 + a12x

2
2

dx2
dt

= a21x
2
1 + a22x

2
2

are given for each case:

Case 1: If a11 6= 0 and a22 6= 0, then the zero and complex solutions are x1 = 0

x2 = 0
,


x1 =

1

t

[(
−1 +

√
3i
)
ω1

2
−
(
1 +
√

3i
) (

4a222 − 3a11a12 − 3a222
)

18|A|2ω1

− 2a22
|A|

]

x2 =
1

t

[(
−1−

√
3i
)
ω2

2
−
(
1−
√

3i
) (

4a211 − 3a21a22 − 3a211
)

18|A|2ω2

− 2a11
|A|

]
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and 
x1 =

1

t

[(
−1−

√
3i
)
ω1

2
−
(
1−
√

3i
) (

4a222 − 3a11a12 − 3a222
)

18|A|2ω1

− 2a22
|A|

]

x2 =
1

t

[(
−1 +

√
3i
)
ω2

2
−
(
1 +
√

3i
) (

4a211 − 3a21a22 − 3a211
)

18|A|2ω2

− 2a11
|A|

]
where

ω1 =

{
(81a212a

2
22|A|4 + 96a12a

4
22|A|3 − 108a12a

2
22(a11a12 + a222)|A|3

18|A|4

+
12(a11a12 + a222)

3|A|2 − 12a222(a11a12 + a222)
2|A|2)

1
2

18|A|4

+
2a22(a11a12 + a222)− 3a12a22|A|

6|A|3
− 8a322

27|A|3

} 1
3

and

ω2 =


(
81a211a

2
21|A|4 + 96a411a21|A|3 − 108a211a21(a21a22 + a211)|A|3

) 1
2

18|A|4

+
12(a21a22 + a211)

3|A|2 − 12a211(a21a22 + a211)
2|A|2

18|A|4

+
2a11(a21a22 + a211)− 3a11a21|A|

6|A|3
− 8a311

27|A|3

} 1
3

Case 2: If a11 = 0 and a22 = 0, then the zero and complex solutions are

 x1 = 0

x2 = 0
,


x1 =

1 +
√

3i

2t 3
√
a12a221

x2 =
1−
√

3i

2t 3
√
a212a21

and


x1 =

1−
√

3i

2t 3
√
a12a221

x2 =
1 +
√

3i

2t 3
√
a212a21

Case 3: If a11 = 0 and a22 6= 0, then the zero and complex solutions are

 x1 = 0

x2 = 0
,


x1 = −a12

t

((
−1 +

√
3i
)
ω3

2
+

(
1 +
√

3i
)
a22

6a212a21ω3

)2

x2 =

(
−1 +

√
3i
)
ω3

2
+

(
1 +
√

3i
)
a22

6a212a21ω3

and 
x1 = −a12

t

((
−1−

√
3i
)
ω3

2
+

(
1−
√

3i
)
a22

6a212a21ω3

)2

x2 =

(
−1−

√
3i
)
ω3

2
+

(
1−
√

3i
)
a22

6a212a21ω3

where

ω3 =

(
1

6a212a21

√
4a322

3a212a21
+ 9− 1

2a212a21

) 1
3
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Case 4: If a11 6= 0 and a22 = 0, then the zero and complex solutions are

 x1 = 0

x2 = 0
,


x1 =

(
−1 +

√
3i
)
ω4

2
+

(
1 +
√

3i
)
a11

6a12a221ω4

x2 = −a21
t

((
−1 +

√
3i
)
ω4

2
+

(
1 +
√

3i
)
a11

6a12a221ω4

)2

and 
x1 =

(
−1−

√
3i
)
ω4

2
+

(
1−
√

3i
)
a11

6a12a221ω4

x2 = −a21
t

((
−1−

√
3i
)
ω4

2
+

(
1−
√

3i
)
a11

6a12a221ω4

)2

where

ω4 =

(
1

6a12a221

√
4a311

3a12a221
+ 9− 1

2a12a221

) 1
3

Example 2.1. Find the nonzero real solutions of the following system of differential equations
dx

dt
= −(x− 1)2 +

3

2
(y − 1)2

dy

dt
= −1

3
(x− 1)2 + (y − 1)2

(2.7)

Solution:

Let x1 = x− 1 and x2 = y − 1. Then dx1
dt

=
dx

dt
and dx2

dt
=
dy

dt
.

Now, 
dx1
dt

= −x21 +
3

2
x22

dx2
dt

= −1

3
x21 + x22

We have a11 = −1, a12 =
3

2
, a21 = −1

3
and a22 = 1. Since a11 6= 0 and a22 6= 0, by Corollary 2.1, the

nonzero real solution is of the form:
x1 =

1

t

(
ω1 +

4a222 − 3a11a12 − 3a222
9|A|2ω1

− 2a22
|A|

)
x2 =

1

t

(
ω2 +

4a211 − 3a21a22 − 3a211
9|A|2ω2

− 2a11
|A|

)
where

ω1 =

{
(81a212a

2
22|A|4 + 96a12a

4
22|A|3 − 108a12a

2
22(a11a12 + a222)|A|3

18|A|4

+
12(a11a12 + a222)

3|A|2 − 12a222(a11a12 + a222)
2|A|2)

1
2

18|A|4

+
2a22(a11a12 + a222)− 3a12a22|A|

6|A|3
− 8a322

27|A|3

} 1
3

and
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ω2 =


(
81a211a

2
21|A|4 + 96a411a21|A|3 − 108a211a21(a21a22 + a211)|A|3

) 1
2

18|A|4

+
12(a21a22 + a211)

3|A|2 − 12a211(a21a22 + a211)
2|A|2

18|A|4

+
2a11(a21a22 + a211)− 3a11a21|A|

6|A|3
− 8a311

27|A|3

} 1
3

Substituting the values, we get the nonzero real solutions rounded to five decimal places:
x1 =

4.13263

t

x2 = −4.58710

t

,


x1 =

1.14043

t

x2 = −4.24298

t

,


x1 = −1.27307

t

x2 =
0.66478

t

,


x1 = −1.27307

t

x2 = −0.80301

t

and


x1 = −1.27307

t

x2 = −3.86176

t

Since x1 = x− 1 and x2 = y − 1, we obtain the nonzero real solutions of the system (3.5):
x =

4.13263 + t

t

y =
t− 4.58710

t

,


x =

1.14043 + t

t

y =
t− 4.24298

t

,


x =

t− 1.27307

t

y =
0.66478 + t

t

,


x =

t− 1.27307

t

y =
t− 0.80301

t

and


x =

t− 1.27307

t

y =
t− 3.86176

t

Corollary 2.2. The system of differential equations involving quadratic terms
dx1
dt

=
∑3

j=1 a1jx
2
j

dx2
dt

=
∑3

j=1 a2jx
2
j

dx3
dt

=
∑3

j=1 a3jx
2
j

has a nonzero real solution. Moreover, the nonzero real solution is

(x1, x2, x3) =

(
λ1
t
,
λ2
t
,
λ3
t

)
where λ1, λ2 and λ3 are nonzero real roots of P1(y1), P2(y2) and P3(y3), respectively such that

P1(y1) = π1,0 + π1,1y1 + π1,2y
2
1 + π1,3y

3
1 + π1,4y

4
1 + π1,5y

5
1 + π1,6y

6
1 + π1,7y

7
1,

P2(y2) = π2,0 + π2,1y2 + π2,2y
2
2 + π2,3y

3
2 + π2,4y

4
2 + π2,5y

5
2 + π2,6y

6
2 + π2,7y

7
2

and

P3(y3) = π3,0 + π3,1y3 + π3,2y
2
3 + π3,3y

3
3 + π3,4y

4
3 + π3,5y

5
3 + π3,6y

6
3 + π3,7y

7
3
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where

π1,0 = δ21,0 (a12a13∆(1, 1)δ1,1 − a12a13δ1,3 + a32δ1,0δ1,7)

π1,1 = δ1,0
(
a12a13δ1,0δ1,1|A|+ a12a13δ1,0δ1,2 + ∆(1, 1)2δ1,4 + δ21,3

− 2∆(1, 1)δ1,1δ1,3 − δ21,0δ1,6 )

π1,2 = 2δ1,0 (∆(1, 1)|A|δ1,4 − δ1,3(δ1,1|A|+ δ1,2)

+ ∆(1, 1)δ1,1(δ1,2 + ∆(1, 1)2δ1,0) −∆(1, 1)2δ1,0δ1,3 − 2δ31,0δ1,5
)

π1,3 = δ1,0(δ1,4|A|2 + δ1,2(2|A|δ1,1 + δ1,3 + 2∆(1, 1)2δ1,0)

+ 6∆(1, 1)2δ1,0δ1,1|A| − 4∆(1, 1)δ1,0δ1,3|A|+ ∆(1, 1)4δ21,0

+ 4∆(3, 2)∆(2, 3)δ31,0)

π1,4 = 2δ21,0|A|2
(
(3∆(1, 1)δ1,1δ1,3)|A|+ 2∆(1, 1)δ1,2 + 2∆(1, 1)3δ1,0

)
π1,5 = 2δ21,0|A|2

(
δ1,1|A|+ δ1,2 + 3∆(1, 1)2δ1,0

)
π1,6 = 4∆(1, 1)δ31,0|A|3

π1,7 = δ31,0|A|4

π2,0 = δ22,0 (a21a23∆(2, 2)δ2,1 − a21a23δ2,3 + a31δ2,0δ2,7)

π2,1 = δ2,0
(
a21a23δ2,0δ2,1|A|+ a21a23δ2,0δ2,2 + ∆(2, 2)2δ2,4 + δ22,3

− 2∆(2, 2)δ2,1δ2,3 − δ22,0δ2,6
)

π2,2 = 2δ2,0 (∆(2, 2)|A|δ2,4 − δ2,3(δ2,1|A|+ δ2,2)

+∆(2, 2)δ2,1(δ2,2 + ∆(2, 2)2δ2,0)−∆(2, 2)2δ2,0δ2,3 − 2δ32,0δ2,5
)

π2,3 = δ2,0(δ2,4|A|2 + δ2,2(2|A|δ2,1 + δ2,3 + 2∆(2, 2)2δ2,0)

+ 6∆(2, 2)2δ2,0δ2,1|A| − 4∆(2, 2)δ2,0δ2,3|A|

+ ∆(2, 2)4δ22,0 + 4∆(3, 1)∆(1, 3)δ32,0)

π2,4 = 2δ22,0|A|2
(
(3∆(2, 2)δ2,1δ2,3)|A|+ 2∆(2, 2)δ2,2 + 2∆(2, 2)3δ2,0

)
π2,5 = 2δ22,0|A|2

(
δ2,1|A|+ δ2,2 + 3∆(2, 2)2δ2,0

)
π2,6 = 4∆(2, 2)δ32,0|A|3

π2,7 = δ32,0|A|4

π3,0 = δ23,0 (a32a31∆(3, 3)δ3,1 − a32a31δ3,3 + a12δ3,0δ3,7)

π3,1 = δ3,0
(
a32a31δ3,0δ3,1|A|+ a32a31δ3,0δ3,2 + ∆(3, 3)2δ3,4 + δ23,3

−2∆(3, 3)δ3,1δ3,3 − δ23,0δ3,6
)
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π3,2 = 2δ3,0 (∆(3, 3)|A|δ3,4 − δ3,3(δ3,1|A|+ δ3,2)

+∆(3, 3)δ3,1(δ3,2 + ∆(3, 3)2δ3,0)−∆(3, 3)2δ3,0δ3,3 − 2δ33,0δ3,5
)

π3,3 = δ3,0(δ3,4|A|2 + δ3,2(2|A|δ3,1 + δ3,3 + 2∆(3, 3)2δ3,0)

+ 6∆(3, 3)2δ3,0δ3,1|A| − 4∆(3, 3)δ3,0δ3,3|A|+ ∆(3, 3)4δ23,0

+ 4∆(1, 2)∆(2, 1)δ33,0)

π3,4 = 2δ23,0|A|2
(
(3∆(3, 3)δ3,1δ3,3)|A|+ 2∆(3, 3)δ3,2 + 2∆(3, 3)3δ3,0

)
π3,5 = 2δ23,0|A|2

(
δ3,1|A|+ δ3,2 + 3∆(3, 3)2δ3,0

)
π3,6 = 4∆(3, 3)δ33,0|A|3

π3,7 = δ33,0|A|4

and

δ1,0 = ∆(2, 1)∆(3, 1)

δ1,1 = a13∆(2, 1)2 + a12∆(3, 1)2

δ1,2 = ∆(3, 2)∆(2, 1)3 −∆(2, 3)∆(3, 1)3

δ1,3 = a23∆(2, 1)3 − a32∆(3, 1)3

δ1,4 = a213∆(2, 1)4 + a212∆(3, 1)4 + 3a12a13∆(2, 1)2∆(3, 1)2

δ1,5 = a23∆(2, 3) + a32∆(3, 2)

δ1,6 = a213∆(2, 1)∆(2, 3)− a212∆(3, 1)∆(3, 2)− 4a23a32∆(2, 1)∆(3, 1)

δ1,7 = a213∆(2, 1)− a212∆(3, 1)

δ2,0 = ∆(1, 2)∆(3, 2)

δ2,1 = a23∆(1, 2)2 + a21∆(3, 2)2

δ2,2 = ∆(3, 1)∆(1, 2)3 −∆(1, 3)∆(3, 2)3

δ2,3 = a13∆(1, 2)3 − a31∆(3, 2)3

δ2,4 = a223∆(1, 2)4 + a221∆(3, 2)4 + 3a21a23∆(1, 2)2∆(3, 2)2

δ2,5 = a13∆(1, 3) + a31∆(3, 1)

δ2,6 = a223∆(1, 2)∆(1, 3)− a221∆(3, 2)∆(3, 1)− 4a13a31∆(1, 2)∆(3, 2)

δ2,7 = a223∆(1, 2)− a221∆(3, 2)

δ3,0 = ∆(2, 3)∆(1, 3)

δ3,1 = a13∆(2, 3)2 + a32∆(1, 3)2

δ3,2 = ∆(1, 2)∆(2, 3)3 −∆(2, 1)∆(1, 3)3

δ3,3 = a21∆(2, 3)3 − a12∆(1, 3)3

δ3,4 = a231∆(2, 3)4 + a232∆(1, 3)4 + 3a32a31∆(2, 3)2∆(1, 3)2

δ3,5 = a21∆(2, 1) + a12∆(1, 2)

δ3,6 = a231∆(2, 3)∆(2, 1)− a232∆(1, 3)∆(1, 2)− 4a21a12∆(2, 3)∆(1, 3)
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δ3,7 = a231∆(2, 3)− a232∆(1, 3)

Proof. Consider the system of differential equations:
dx1
dt

=
∑3

j=1 a1jx
2
j

dx2
dt

=
∑3

j=1 a2jx
2
j

dx3
dt

=
∑3

j=1 a3jx
2
j

(2.8)

By Theorem 2.1, the system (2.8) has a nonzero real solution whenever the system of equations
∑3

j=1 a1jy
2
j + y1 = 0∑3

j=1 a2jy
2
j + y2 = 0∑3

j=1 a3jy
2
j + y3 = 0

(2.9)

has a nonzero real solution.
If there exists a nonzero real solution (y1, y2, y3) = (λ1, λ2, λ3) of the system (2.9), then (x1, x2, x3) =(
λ1
t
,
λ2
t
,
λ3
t

)
where t > 0 is a nonzero real solution of the system (2.8).

Now, we form the following system of equations:
∑3

j=1 a1jλ
2
j + λ1 = 0 (1)∑3

j=1 a2jλ
2
j + λ2 = 0 (2)∑3

j=1 a3jλ
2
j + λ3 = 0 (3)

Evaluate a23(1)− a13(2) and solve for λ2 yields:

λ2 =
a13 ±

√
a213 − 4 (a12a23 − a13a22)

[
(a11a23 − a13a21)λ21 + a23λ1

]
2 (a12a23 − a13a22)

Evaluate a32(1)− a12(3) and solve for λ3 yields:

λ3 =
a12 ±

√
a212 − 4 (a13a32 − a12a33)

[
(a11a32 − a12a31)λ21 + a32λ1

]
2 (a13a32 − a12a33)

We substitute λ2 and λ3 to (1). After a lengthy algebraic manipulation, we get λ1 = 0 or λ1 is a nonzero
real root of P1(y1) such that

P1(y1) = π1,0 + π1,1y1 + π1,2y
2
1 + π1,3y

3
1 + π1,4y

4
1 + π1,5y

5
1 + π1,6y

6
1 + π1,7y

7
1

where
π1,0 = δ21,0 (a12a13∆(1, 1)δ1,1 − a12a13δ1,3 + a32δ1,0δ1,7)

π1,1 = δ1,0
(
a12a13δ1,0δ1,1|A|+ a12a13δ1,0δ1,2 + ∆(1, 1)2δ1,4 + δ21,3

− 2∆(1, 1)δ1,1δ1,3 − δ21,0δ1,6 )
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π1,2 = 2δ1,0 (∆(1, 1)|A|δ1,4 − δ1,3(δ1,1|A|+ δ1,2)

+ ∆(1, 1)δ1,1(δ1,2 + ∆(1, 1)2δ1,0) −∆(1, 1)2δ1,0δ1,3 − 2δ31,0δ1,5
)

π1,3 = δ1,0(δ1,4|A|2 + δ1,2(2|A|δ1,1 + δ1,3 + 2∆(1, 1)2δ1,0)

+ 6∆(1, 1)2δ1,0δ1,1|A| − 4∆(1, 1)δ1,0δ1,3|A|+ ∆(1, 1)4δ21,0

+ 4∆(3, 2)∆(2, 3)δ31,0)

π1,4 = 2δ21,0|A|2
(
(3∆(1, 1)δ1,1δ1,3)|A|+ 2∆(1, 1)δ1,2 + 2∆(1, 1)3δ1,0

)
π1,5 = 2δ21,0|A|2

(
δ1,1|A|+ δ1,2 + 3∆(1, 1)2δ1,0

)
π1,6 = 4∆(1, 1)δ31,0|A|3

π1,7 = δ31,0|A|4

and
δ1,0 = ∆(2, 1)∆(3, 1)

δ1,1 = a13∆(2, 1)2 + a12∆(3, 1)2

δ1,2 = ∆(3, 2)∆(2, 1)3 −∆(2, 3)∆(3, 1)3

δ1,3 = a23∆(2, 1)3 − a32∆(3, 1)3

δ1,4 = a213∆(2, 1)4 + a212∆(3, 1)4 + 3a12a13∆(2, 1)2∆(3, 1)2

δ1,5 = a23∆(2, 3) + a32∆(3, 2)

δ1,6 = a213∆(2, 1)∆(2, 3)− a212∆(3, 1)∆(3, 2)− 4a23a32∆(2, 1)∆(3, 1)

δ1,7 = a213∆(2, 1)− a212∆(3, 1)

We do the same line of reasoning in solving λ2 and λ3.
After a lengthy algebraic manipulation for λ2, we get λ2 = 0 or λ2 is a nonzero real root of P2(y2) such
that

P2(y2) = π2,0 + π2,1y2 + π2,2y
2
2 + π2,3y

3
2 + π2,4y

4
2 + π2,5y

5
2 + π2,6y

6
2 + π2,7y

7
2

where
π2,0 = δ22,0 (a21a23∆(2, 2)δ2,1 − a21a23δ2,3 + a31δ2,0δ2,7)

π2,1 = δ2,0
(
a21a23δ2,0δ2,1|A|+ a21a23δ2,0δ2,2 + ∆(2, 2)2δ2,4 + δ22,3

− 2∆(2, 2)δ2,1δ2,3 − δ22,0δ2,6
)

π2,2 = 2δ2,0 (∆(2, 2)|A|δ2,4 − δ2,3(δ2,1|A|+ δ2,2)

+∆(2, 2)δ2,1(δ2,2 + ∆(2, 2)2δ2,0)−∆(2, 2)2δ2,0δ2,3 − 2δ32,0δ2,5
)
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π2,3 = δ2,0(δ2,4|A|2 + δ2,2(2|A|δ2,1 + δ2,3 + 2∆(2, 2)2δ2,0)

+ 6∆(2, 2)2δ2,0δ2,1|A| − 4∆(2, 2)δ2,0δ2,3|A|

+ ∆(2, 2)4δ22,0 + 4∆(3, 1)∆(1, 3)δ32,0)

π2,4 = 2δ22,0|A|2
(
(3∆(2, 2)δ2,1δ2,3)|A|+ 2∆(2, 2)δ2,2 + 2∆(2, 2)3δ2,0

)
π2,5 = 2δ22,0|A|2

(
δ2,1|A|+ δ2,2 + 3∆(2, 2)2δ2,0

)
π2,6 = 4∆(2, 2)δ32,0|A|3

π2,7 = δ32,0|A|4

and
δ2,0 = ∆(1, 2)∆(3, 2)

δ2,1 = a23∆(1, 2)2 + a21∆(3, 2)2

δ2,2 = ∆(3, 1)∆(1, 2)3 −∆(1, 3)∆(3, 2)3

δ2,3 = a13∆(1, 2)3 − a31∆(3, 2)3

δ2,4 = a223∆(1, 2)4 + a221∆(3, 2)4 + 3a21a23∆(1, 2)2∆(3, 2)2

δ2,5 = a13∆(1, 3) + a31∆(3, 1)

δ2,6 = a223∆(1, 2)∆(1, 3)− a221∆(3, 2)∆(3, 1)− 4a13a31∆(1, 2)∆(3, 2)

δ2,7 = a223∆(1, 2)− a221∆(3, 2)

After a lengthy algebraic manipulation for λ3, we get λ3 = 0 or λ3 is a nonzero real root of P3(y3) such
that

P3(y3) = π3,0 + π3,1y3 + π3,2y
2
3 + π3,3y

3
3 + π3,4y

4
3 + π3,5y

5
3 + π3,6y

6
3 + π3,7y

7
3

where
π3,0 = δ23,0 (a32a31∆(3, 3)δ3,1 − a32a31δ3,3 + a12δ3,0δ3,7)

π3,1 = δ3,0
(
a32a31δ3,0δ3,1|A|+ a32a31δ3,0δ3,2 + ∆(3, 3)2δ3,4 + δ23,3

−2∆(3, 3)δ3,1δ3,3 − δ23,0δ3,6
)

π3,2 = 2δ3,0 (∆(3, 3)|A|δ3,4 − δ3,3(δ3,1|A|+ δ3,2)

+∆(3, 3)δ3,1(δ3,2 + ∆(3, 3)2δ3,0)−∆(3, 3)2δ3,0δ3,3 − 2δ33,0δ3,5
)

π3,3 = δ3,0(δ3,4|A|2 + δ3,2(2|A|δ3,1 + δ3,3 + 2∆(3, 3)2δ3,0)

+ 6∆(3, 3)2δ3,0δ3,1|A| − 4∆(3, 3)δ3,0δ3,3|A|+ ∆(3, 3)4δ23,0

+ 4∆(1, 2)∆(2, 1)δ33,0)

π3,4 = 2δ23,0|A|2
(
(3∆(3, 3)δ3,1δ3,3)|A|+ 2∆(3, 3)δ3,2 + 2∆(3, 3)3δ3,0

)
π3,5 = 2δ23,0|A|2

(
δ3,1|A|+ δ3,2 + 3∆(3, 3)2δ3,0

)
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π3,6 = 4∆(3, 3)δ33,0|A|3

π3,7 = δ33,0|A|4

and
δ3,0 = ∆(2, 3)∆(1, 3)

δ3,1 = a13∆(2, 3)2 + a32∆(1, 3)2

δ3,2 = ∆(1, 2)∆(2, 3)3 −∆(2, 1)∆(1, 3)3

δ3,3 = a21∆(2, 3)3 − a12∆(1, 3)3

δ3,4 = a231∆(2, 3)4 + a232∆(1, 3)4 + 3a32a31∆(2, 3)2∆(1, 3)2

δ3,5 = a21∆(2, 1) + a12∆(1, 2)

δ3,6 = a231∆(2, 3)∆(2, 1)− a232∆(1, 3)∆(1, 2)− 4a21a12∆(2, 3)∆(1, 3)

δ3,7 = a231∆(2, 3)− a232∆(1, 3)

Observe that P1(y1), P2(y2) and P3(y3) are odd degree polynomials with nonzero constant terms. This
means that there exists a nonzero real root λ1 for P (y1), λ2 for P (y2) and λ3 for P (y3). Hence, there
exists a nonzero real solution (x1, x2, x3) =

(
λ1
t
,
λ2
t
,
λ3
t

)
of the system of differential equations. �

Example 2.2. Find the nonzero real solutions of the following system of differential equations


dx

dt
= −1

2
(x− 1)2 − 9

8
(y − 1)2

dy

dt
=

3

4
(y − 1)2 +

1

3
(z − 1)2

dz

dt
= −1

2
(x− 1)2 − 9

8
(y − 1)2 − 2(z − 1)2

(2.10)

Solution:

Let x1 = x− 1, x2 = y − 1 and x3 = z − 1. Then dx1
dt

=
dx

dt
, dx2
dt

=
dy

dt
and dx3

dt
=
dz

dt
.

Now, 
dx1
dt

= −1

2
x21 −

9

8
x22

dx2
dt

=
3

4
x22 +

1

3
x23

dx3
dt

= −1

2
x21 −

9

8
x22 − 2x23

(2.11)

We have a11 = −1

2
, a12 = −9

8
, a13 = 0, a21 = 0, a22 =

3

4
, a23 =

1

3
, a31 = −1

2
, a32 = −9

8
and a33 = −2.

By Corollary 3.5.1, the nonzero real solution of the system is of the form (x1, x2, x3) =

(
λ1
t
,
λ2
t
,
λ3
t

)
where (y1, y2, y3) = (λ1, λ2, λ3) is a nonzero real solution of the system

−1

2
y21 −

9

8
y22 + y1 = 0

3

4
y22 +

1

3
y23 + y2 = 0

−1

2
y21 −

9

8
y22 − 2y23 + y3 = 0

(2.12)
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We get the nonzero real solution of system (2.12) rounded to five decimal places:


λ1 = 0.00837

λ2 = −0.08608

λ3 = −0.49149

The nonzero real solution of the system (2.11) is


x1 =
0.00837

t

x2 = −0.08608

t

x3 = −0.49149

t

Since x1 = x− 1, x2 = y − 1 and x3 = z − 1, the nonzero real solution of the system (2.10) is


x =
t+ 0.00837

t

y =
t− 0.08608

t

z =
t− 0.49149

t

3. Quadratic Approximation of a System of Nonlinear Ordinary Differential Equations

Consider the system of nonlinear ordinary differential equations of the form



dz1
dt

= f1 (z1, z2, . . . zn)

dz2
dt

= f2 (z1, z2, . . . zn)

...
dzn
dt

= fn (z1, z2, . . . zn)

(3.1)

Using only the quadratic terms of the Taylor Series Expansion, the approximation of the system is as
follows: 

dz1
dt

=
∑n

j=1 a1j (zj − aj)2

dz2
dt

=
∑n

j=1 a2j (zj − aj)2

...
dzn
dt

=
∑n

j=1 anj (zj − aj)2

(3.2)

where a = (a1, a2, . . . , an) is an equilibrium point.
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Let xj = zj−aj where 1 ≤ j ≤ n. Then the quadratic estimate for the system of differential equations
becomes 

dx1
dt

=
∑n

j=1 a1jx
2
j

dx2
dt

=
∑n

j=1 a2jx
2
j

...
dxn
dt

=
∑n

j=1 anjx
2
j

(3.3)

The initial corollaries and theorem from the previous section show that it is possible to obtain a
nonzero real solution for a system of differential equations involving quadratic terms. It is worth noting
that the proof of the existence of a nonzero real solution for a system of differential equations with
quadratic terms is typically non-trivial and requires advanced mathematical techniques. However,
once it is established, it can provide valuable insights into the system’s behavior.

We consider the following system of nonlinear differential equations for which an exact solution
is known. We would like to approximate this system using a system of differential equations with
quadratic terms by using a Taylor series expansion. Specifically, we will retain the quadratic terms of
the expansion and discard higher-order terms. Then we will compare the solutions of the system of
nonlinear differential equations and system of differential equations with quadratic.

Example 3.1. Find the approximate solutions of the following system of nonlinear differential equations
dx

dt
=

1

2
xy3 − 1

2x
dy

dt
=

1

3y2
− 1

3
x2y

(3.4)

Solution:

Observe that the solution for this system is
x =

√
t+ 1

t

y = 3

√
t− 1

t

where t ≥ 1.
We will solve for the equilibrium points of the system by setting dx

dt
= 0 and dy

dt
= 0.

1

2
xy3 − 1

2x
= 0

1

3y2
− 1

3
x2y = 0

We obtain (x0, y0) = (1, 1) as one of the equilibrium points.
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We will find the approximate system of differential equations of the system (3.4) at the point (1, 1)

by collecting the quadratic terms of the Taylor expansion and discard higher-order terms.
Let F1(x, y) =

1

2
xy3− 1

2x
and F2(x, y) =

1

3y2
− 1

3
x2y. Then the estimate system of differential equations

is given by 
dx

dt
=

1

2

(
∂2F1

∂x2
(1, 1)(x− 1)2 +

∂2F1

∂y2
(1, 1)(y − 1)2

)
dy

dt
=

1

2

(
∂2F2

∂x2
(1, 1)(x− 1)2 +

∂2F2

∂y2
(1, 1)(y − 1)2

)
We evaluate the right-hand side of both equations. So we have

dx

dt
= −(x− 1)2 +

3

2
(y − 1)2

dy

dt
= −1

3
(x− 1)2 + (y − 1)2

(3.5)

Note that the solution of this system of differential equations are
x =

t+ 4.13263

t

y =
t− 4.58710

t

,


x =

t+ 1.14043

t

y =
t− 4.24298

t

,


x =

t− 1.27307

t

y =
t+ 0.66478

t

,


x =

t− 1.27307

t

y =
t− 0.80301

t

and


x =

t− 1.27307

t

y =
t− 3.86176

t
where t > 0.

The following figures show that the solutions of the system of nonlinear differential equations and
the estimate system of differential equations gets closer and closer as t→∞.

Figure 1. Solutions x of the system and the estimates over time

The figure 1 illustrates the behavior of solutions x over time t, with the black curve representing the
exact solution and the other colored curves (purple, red, and blue) showing quadratic approximations.
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The exact solution decreases steadily, approaching zero as t increases. All the colored approximations
(purple, red, and blue) are relatively close to the exact solution, with the red and blue approximations
closely following the exact behavior, showing only minor deviations as t increases. The purple approxi-
mation slightly overestimates the solution, but it still remains close to the exact curve for a significant
portion of the time interval.

Figure 2. Solutions y of the system and the estimates over time

The figure 2 shows the behavior of solutions y over time t, with the black curve representing the
exact solution and the other colored curves (blue, green, purple, red, and orange) depicting various
quadratic approximations. All the colored approximations are generally close to the exact solution, with
the blue and green curves providing the closest estimates. The other approximations (purple, red, and
orange) also follow the overall trend of the exact solution, converging towards it as t increases, though
with slight deviations. Despite minor differences, the approximations remain relatively accurate in
capturing the behavior of the exact solution throughout the time interval.

Example 3.2. Find the approximate solution of the following system of nonlinear differential equations
dx

dt
= −1

4
x2 +

1

2
xy − 1

4
y2

dy

dt
=

1

4
x2 − 1

2
yz +

1

4
z2

dz

dt
= −1

4
x2 − 1

4
y2 − z2 − 1

2
xy + xz + yz

(3.6)

Solution:

Observe that the solution for this system is

x =

√
t+ 1

t

y =

√
t− 1

t

z =

√
t+ 1

t
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where t ≥ 1.
We will solve for the equilibrium points of the system by setting dx

dt
= 0, dy

dt
= 0 and dz

dt
= 0.

−1

4
x2 +

1

2
xy − 1

4
y2 = 0

1

4
x2 − 1

2
yz +

1

4
z2 = 0

−1

4
x2 − 1

4
y2 − z2 − 1

2
xy + xz + yz = 0

We obtain (x0, y0, z0) = (1, 1, 1) as one of the equilibrium points.
We will find the estimate system of differential equations of the system (3.6) at the point (1, 1, 1) by
collecting the quadratic terms of the Taylor expansion and discard higher-order terms.
Let F1(x, y, z) = −1

4
x2 +

1

2
xy − 1

4
y2, F2(x, y, z) =

1

4
x2 − 1

2
yz +

1

4
z2 and F3(x, y, z) = −1

4
x2 − 1

4
y2 −

z2 − 1

2
xy + xz + yz. Then the estimate system of differential equations is given by

dx

dt
=

1

2

(
∂2F1

∂x2
(1, 1, 1)(x− 1)2 +

∂2F1

∂y2
(1, 1, 1)(y − 1)2 +

∂2F1

∂z2
(1, 1, 1)(z − 1)2

)
dy

dt
=

1

2

(
∂2F2

∂x2
(1, 1, 1)(x− 1)2 +

∂2F2

∂y2
(1, 1, 1)(y − 1)2 +

∂2F2

∂z2
(1, 1, 1)(z − 1)2

)
dz

dt
=

1

2

(
∂2F3

∂x2
(1, 1, 1)(x− 1)2 +

∂2F3

∂y2
(1, 1, 1)(y − 1)2 +

∂2F3

∂z2
(1, 1, 1)(z − 1)2

)
We evaluate the right-hand side of the equations. So we have

dx

dt
= −1

2
(x− 1)2 − 9

8
(y − 1)2

dy

dt
=

3

4
(y − 1)2 +

1

3
(z − 1)2

dz

dt
= −1

2
(x− 1)2 − 9

8
(y − 1)2 − 2(z − 1)2

(3.7)

Note that the solution of system (3.7) is 
x =

t+ 0.00837

t

y =
t− 0.08608

t

z =
t− 0.49149

t

where t > 0.

The following figures show that the solutions of the system of nonlinear differential equations and
the estimate system of differential equations with quadratic terms gets closer and closer as t→∞.

Figures 3, 4, and 5 all illustrate the solutions of the system over time, with black curves representing
the exact solutions and green curves showing the quadratic approximations. In each case, the approx-
imations are generally very close to the exact solutions, with only minimal deviations observed. In
Figure 3, the approximation for x follows the exact solution closely, with only a small difference as t
increases. Similarly, in Figure 4, the approximation for y accurately tracks the exact curve, showing



Asia Pac. J. Math. 2025 12:10 24 of 25

Figure 3. Solutions x of the system and the estimates over time

Figure 4. Solutions y of the system and the estimates over time

Figure 5. Solutions z of the system and the estimates over time

alignment throughout. In Figure 5, the approximation for z initially underestimates the exact solution
but converges toward it as time progresses. Overall, the green approximations in all three figures
remain close to the exact solutions.
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4. Conclusion

This study shows that quadratic approximations provide a valuable alternative for analyzing the
behavior of nonlinear systems governed by ordinary differential equations. By focusing exclusively on
quadratic terms, these approximations may offer enhanced accuracy, particularly in capturing nonlinear
dynamics. The existence of nonzero real solutions further demonstrates the practical utility of these
approximations. Through a series of examples, we have shown that quadratic approximations can
closely align with exact solutions, thus expanding the range of tools available for studying nonlinear
systems. This approach opens new avenues for better understanding and predicting the behavior of
complex systems in various scientific disciplines.
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