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Abstract. A dominating setX is an equitable rings dominating set of G if for every vertex v ∈ V (G) \X ,
there exists a vertex u inX such that uv ∈ E(G), |deg(u)− deg(v)| ≤ 1, and v is adjacent to at least two
vertices in V (G)\X . The equitable rings domination numberG is the minimum cardinality of an equitable
rings dominating set of G. Let Y = V (G) \X , whereX is a minimum equitable rings dominating set of
G. A subset Z of Y is said to be an inverse equitable rings dominating set with respect to X if Z is an
equitable rings dominating set of G. The inverse equitable rings domination number of G is the minimum
cardinality of an inverse equitable rings dominating set of G, and is denoted by γ−1

eri(G). It is known that
there does not exist an equitable rings dominating set in path Pk, and so its inverse does not exist. In this
study, we present the inverse equitable rings dominating set in graphs and we provide a special result for
the existence of inverse equitable rings dominating set in the join of two paths.
2020 Mathematics Subject Classification. 05C69; 05C38.
Key words and phrases. dominating set; rings dominating set; equitable dominating set; equitable rings
dominating set; inverse dominating set; inverse equitable rings dominating set.

1. Introduction

The study of domination in graphs has evolved over the years, introducing various concepts that
explore how certain sets of vertices influence the entire structure. It all started in 1958 when Berge
introduced the idea of domination [5], which was later refined in 1962 by Ore, who formally defined
the terms “dominating set” and “domination number” [20]. A dominating set in a graph, in general,
is a set of vertices D such that each vertex is either in D or is adjacent to a vertex in D [24]. Formally,
a subset X of V (G) is a dominating set of G if for every v ∈ V (G) \X , there exists u ∈ X such that
uv ∈ E(G). The minimum cardinality among dominating sets is called the domination number and is
denoted by γ(G).
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As the concept gained interest, researchers explored different ways to modify domination to fit
various constraints and applications. This led to several variations, each introducing new conditions
on how domination works in graphs. One important aspect of these studies is the identification of
minimum dominating sets, γ-sets, which serve as the foundation for many extensions of domination
theory. Over time, this concept was extended in various ways, one of which was equitable domination,
first introduced by Anita, Arumugam, and Chellali in 2011 [4], cited in Caay’s paper [6, 7, 9–11], a
dominating setX ofG is an equitable dominating set if for every v ∈ V (G) \X , there exists u ∈ X such
that uv ∈ E(G) and |deg(u)− deg(v)| ≤ 1. The minimum cardinality of an equitable dominating set is
called the equitable domination number, denoted by γe(G), and an equitable dominating set whose
cardinality is γe(G) is called a γe-set of G.

In 2022, Abed and Al-Harere introduced another variation known as rings domination [1], which
imposes a stricter adjacency condition. A dominating set X of G is a rings dominating set if every
vertex v ∈ V (G) \X is adjacent to at least two vertices in V (G) \X . The minimum cardinality of a rings
dominating set is called the rings domination number, denoted by γri(G), and a rings dominating set
whose cardinality is γri(G) is called a γri-set of G. These developments set the stage for Caay’s study,
which combined equitable domination and rings domination . A dominating setX of G is an equitable
rings dominating set if for every v ∈ V (G) \X , there exists u ∈ X such that uv ∈ E(G), while also
satisfying | deg(u)− deg(v)| ≤ 1, and v is adjacent to at least two vertices in V (G) \X . The minimum
cardinality of such a set is called the equitable rings domination number, denoted by γeri(G), and an
equitable rings dominating set whose cardinality is γeri(G) is called a γeri-set of G [6], [19].

As domination theory evolved, researchers also investigated variations of domination that consider
ways a set can influence a graph, leading to inverse domination, first introduced by Kulli and Sigarkanti
and they defined the inverse domination number γ′(G) as the order of a smallest inverse dominating set
of G [16], shifting the focus toward the resilience of domination in graphs. To establish a relationship
between vertices within a dominating set, Mallinath and Kulkarni (2021) introduced inverse equitable

domination [18]. Given an equitable dominating setX , a subsetD ⊆ V (G)\X is called an inverse equitable

dominating set with respect to X , if D is also an equitable dominating set of G. The inverse equitable

domination number, denoted by γe−1(G), is the minimum cardinality of an inverse equitable dominating
set. Their study determined the values of γe−1(G) for various standard graphs and established that it
is always bounded above by the standard domination number, γe−1(G) ≤ γ(G). The study of inverse
domination continued in 2022, when Abed and Al-Harere introduced inverse rings domination, and
was further introduced by Lundag and Caay [17]. Let X be a minimum rings dominating set of G
and let Y = V (G) \X . A rings dominating set Z ⊆ Y is an inverse rings dominating set if every vertex
v ∈ V (G) \ Z is adjacent to at least two vertices in Y . The minimum cardinality of an inverse rings
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dominating set Z of G is called the inverse rings domination number of G, and is denoted by γri−1(G). In
this case, we call a minimum inverse rings dominating set Z of G to be a γri−1-set of G [1].

In 2024, Caay introduced the concept of equitable rings domination and established that there does not
exist a γeri(G)-set in a path graph Pn [6]. Caay’s work also examined this equitable rings domination
in graphs formed by binary operations, including the join of graphs [6]. Since paths fail to satisfy
the conditions for a γeri(G)-set, it is natural to explore whether the join operation could influence the
existence of its inverse. Motivated by this, this study considers the join of graphs, examining how this
operation influences inverse equitable rings domination and if it offers the necessary conditions for its
existence. These results provide a foundation for further research, leading to the development of inverse
equitable rings domination, which integrates ideas from inverse, equitable, and rings domination.

2. Preliminaries

This study focuses only on simple connected graphs, which are graphs without loops or multiple
edges. A graph G = (V (G), E(G)) is defined on a set of vertices V , where the elements of V (G) are
called the vertices of G, and those of E(G) are the edges. The reader may refer to [12,14] for some graph
theoretic notions.

We define the neighborhood of v ∈ (G), denoted by NG(v), as the set

NG(v) := {u ∈ V (G) : uv ∈ E(G)} .

Given a subset X ⊆ V (G), the set

NG(X) = N(X) =
⋃
v∈X

NG(v) and the set NG[X] = N [X] = X ∪N(X)

are the open neighborhood and the closed neighborhood of X , respectively.
Given a vertex v ∈ V (G), we define the degree of v, denoted by deg(v), to be the number of edges

incident to v. The maximum degree of G, denoted by ∆(G), is the degree of the vertex in G having the
maximum degree, and theminimum degree ofG, denoted by δ(G), is the degree of the vertex inG having
the minimum degree.

Moreover, a vertex v of G is called a pendant vertex if and only if deg(v) = 1. Otherwise, it is called a
non-pendant vertex.

The join G+H of the two graphs G and H is the graph with vertex set

V (G+H) = V (G) ∪ V (H),

and the edge set
E(G+H) = E(G) ∪ (H) ∪ {uv : u ∈ V (G), v ∈ V (H)} .

Given two graphs G and H , we denote degG(u) as the degree of u in G and we denote degH(v) as
the degree of v in H . Unless no join operation is done yet, we use the convention deg(u) and deg(v).
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Remark 2.1. From the definition of join of two graphs, the degree of u inG+H is given by degG+H(u) =

degG(u) +m and the degree of v in G+H is given by degG+H(v) = degH(v) + n.

We now introduce the concept of domination in graphs.

Definition 2.2. [5] A subset X ∈ V (G) is a dominating set of G if for every v ∈ V (G) \X , there exists
u ∈ X such that uv ∈ E(G). That is, N [X] = V (G). The minimum cardinality of a dominating setX of
G is called the domination number of G, and is denoted by γ(G). In this case, we call a dominating set
X of G to be a γ-set of G.

Remark 2.3. Let X be a dominating set of G. If there exists v ∈ V (G) \X such that uv ∈ E(G), we say
that u dominates v or v is dominated by u.

Definition 2.4. [16] LetX be a minimum dominating set of G and let Y = V (G) \X . A subset Z ⊆ Y
is an inverse dominating set of G if for every v ∈ V (G) \ Z, there exists u ∈ Z such that uv ∈ E(G).
The minimum cardinality of an inverse dominating set Z of G is called the inverse domination number of
G, and is denoted by γ−1(G). In this case, we call a minimum inverse dominating set Z of G to be a
γ−1-set of G.

Theorem 2.5. [16] Let Pn be a path graph of order n. Then

γ−1(Pn) =

d
n
3 e+ 1 if n = 3k for some k ∈ Z

dn3 e if n 6= 3k.

Definition 2.6. [4] Adominating setX ofG is an equitable dominating set ofG if for every v ∈ V (G)\X ,
there exists u ∈ X such that uv ∈ V (G) and |deg(u)− deg(v)| ≤ 1. The minimum cardinality of an
equitable dominating set X of G is called the equitable domination number of G, and is denoted by
γe(G). In this case, we call a minimum equitable dominating set X of G to be a γe-set of G.

Remark 2.7. LetX be an equitable dominating set ofG. If there exists v ∈ V (G)\X such that uv ∈ E(G),
we say that u equitable dominates v or v is equitable dominated by u.

Definition 2.8. [18] Let X be a minimum equitable dominating set of G and let Y = V (G) \X . A
subset X ⊆ Y is an inverse equitable dominating set if for every v ∈ V (G) \ Z, there exists u ∈ Z such
that uv ∈ E(G) and |deg(u)−deg(v)| ≤ 1. The minimum cardinality of an inverse equitable dominating
set Z of G is called the inverse equitable domination number of G, and is denoted by γe(G)−1. In this case,
we call a minimum inverse equitable dominating set Z of G to be a γe−1-set of G.

Theorem 2.9. [25] Let Pn be a path graph of order n. Then γe(Pn) = dn3 e.

Remark 2.10. Let Pn be a path graph of order n. Since ∆(Pn) = 2 and δ(Pn) = 1, then γ(Pn) = γe(Pn).
It follows that γ−1(Pn) = γ−1e (Pn).
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Remark 2.11. [16] Let Pn be a path graph of order n. If n = 3k for some k ∈ Z, then there exists a
unique minimum dominating set X = {u3h−1 : 1 ≤ h ≤ n

3 } of Pn. Moreover, {ui : ui+1 ∈ X} ∪ {un}

and {u1} ∪ {uj+1 : uj ∈ X} are minimum inverse dominating sets of Pn.

Definition 2.12. [1] A dominating setX ofG is a rings dominating set ofG if every vertex v ∈ V (G)\X

is adjacent to atleast two vertices V (G) \X . The minimum cardinality of a rings dominating setX of G
is called the rings domination number of G, and is denoted by γri(G). A rings dominating set X of a
graph Gwhose cardinality is equal to the γri(G) is called the γri-set of G.

Remark 2.13. Let X be a rings dominating set of G. If there exists v ∈ V (G) \X such that uv ∈ E(G),
we say that u rings dominates v or v is rings dominated by u.

Definition 2.14. [1] Let X be a minimum rings dominating set of G and let Y = V (G) \X . A rings
dominating set Z ⊆ Y is an inverse rings dominating set if every vertex v ∈ V (G) \ Z is adjacent to at
least two vertices in Y . The minimum cardinality of an inverse rings dominating set Z ofG is called the
inverse rings domination number of G, and is denoted by γri−1(G). In this case, we call a minimum
inverse rings dominating set Z of G to be a γri−1-set of G.

Remark 2.15. In this paper, if a vertex u rings dominate a vertex v, then we say u is a rings dominator of
a vertex v, or v is a rings dominatee of a vertex u.

Remark 2.16. [1] For a γri-set D of any graph G of order n, we have:

(1) The order of G is n ≥ 4.

(2) For each vertex v ∈ V (G) \D, deg(v) ≥ 3.
(3) 1 ≤ |D| ≤ n− 3.

(4) 3 ≤ |V (G) \D| ≤ n− 1.

(5) 1 ≤ γri(G) ≤ |D| ≤ n− 3.

Definition 2.17. A dominating set X ⊆ V (G) is said to be an equitable rings dominating set of G if
for every v ∈ V (G) \X , there exists u ∈ X with uv ∈ E(G) such that |deg(u)− deg(v)| ≤ 1, and v is
adjacent to at least two vertices in V (G)\X . The minimum cardinality of an equitable rings dominating
set of G is called equitable rings domination number of G, and is denoted by γeri(G). An equitable
rings dominating set X of Gwith |X| = γeri(G) is said to be γeri-set of G.

Remark 2.18. The following remarks are essential in working the concept of this study.

(1) Given an equitable rings dominating setX ofG, if |X| = γeri(G), then we say thatX is a γeri-set
of G.
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(2) Given an equitable rings dominating set X of G, if there exists v ∈ V (G) \X , then for every
u ∈ X with uv ∈ E(G), we say that u equitable rings dominates v, or v is equitable rings
dominated by u. In general, a set X is said to equitable rings dominate G.

The following lemmas directly follow from Definition 2.17.

Lemma 2.19. [6] Let G be any graph of order n with ∆(G) − δ(G) ≤ 1. Then γeri(G) = 1 if and only if

∆(G) = n− 1.

Lemma 2.20. [6] Let G be any graph. If u ∈ X ⊆ V (G) with deg(u) = ∆(G), then X is a γeri-set of G.

We now introduce the main concept of the study.

Definition 2.21. Let X be a minimum equitable rings dominating set of G and let Y = V (G) \X . A
subset Z ⊆ Y is said to be an inverse equitable rings dominating set of G if for every v ∈ V (G) \ Z,
there exists u ∈ Z with uv ∈ E(G) such that |deg(u) − deg(v)| ≤ 1, and v is adjacent to at least two
vertices in V (G) \ Z. The minimum cardinality of an inverse equitable rings dominating set Z of G is
called the inverse equitable rings domination number of G, and is denoted by γeri−1(G). In this case, we
call a minimum inverse equitable rings dominating set Z of G to be a γeri−1-set of G.

Remark 2.22. If Z is an inverse equitable rings dominating set of G such that |Z| = γeri(G), then we say
Z is a γeri−1-set of G.

Remark 2.23. If there does not exist an inverse equitable rings dominating set of G, we say that
γeri

−1(G) = 0.

Example 2.24. Consider the complete bipartite graph G = K3,3.

Figure 1. A Complete Bipartite GraphK3,3

In Figure 1, we have two vertex partitions: N1 = {u1, u2, u3} and N2 = {u4, u5, u6}. Observe that
the vertices in N1 can be dominated by just one vertex from N2 and vice versa. This means that
the minimum number of vertices we need to dominate the entire graph is 2. Note that deg(ui) = 3
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for i ∈ {1, 2, 3, 4, 5, 6}. Suppose we take X = {u1, u4} to be a minimal dominating set of the graph.
Notice that each vertex in V (G) \X is also connected to two vertices in V (G) \X . Hence, X is a rings
dominating set. Now, we can pick a different pair of vertices to be an inverse rings dominating set,
say {u2, u4}. This pair also satisfies the condition for equitable rings domination. Thus, if we choose
one pair to be a γeri-set, we are still left with two pairs that can be a γeri−1-set. For example, if we take
D = {u1, u4} to be a minimum γeri-set. we can choose any different pair of vertices from V (K3,3) \D,
one from each vertex partition, to be a γeri−1-set. Therefore, γeri(K3,3) = γeri

−1(K3,3) = 2 .

3. Inverse Equitable Rings Domination in Graphs

The following lemmas follow directly from Definition 2.21.

Lemma 3.1. If there exist γeri-set and γeri−1-set of a graph G, then γeri(G) ≤ γeri−1(G).

Proof. Let X be a γeri-set of G, and Z be a γeri−1-set of G with respect to S. Then, |X| = γeri(G) and
|Z| = γeri

−1(G) by Definition 2.17 and Definition 2.21, respectively. Note that Z is also an equitable
rings dominating set of G. Since X is an equitable rings dominating set of G whose cardinality is
minimum, it follows that |X| ≤ |Z|, which implies that γeri(G) ≤ γeri−1(G). �

Lemma 3.2. Let G be any graph of order n such that ∆(G) − δ(G) ≤ 1 and γeri(G) = 1. Let X = {u}

be a γeri-set of G. Then there exists v ∈ V (G) different from u such that deg(v) = deg(u) if and only if

γeri
−1(G) = 1.

Proof. Since ∆(G) − δ(G) ≤ 1 and γeri(G) = 1, it follows that ∆(G) = n − 1 by Lemma 2.19. Given
that X = {u} is a γeri-set of G, it follows that deg(u) = n − 1. Assume there exists v ∈ V (G) such
that deg(v) = deg(u). Then deg(v) = n − 1. Take Z = {v}. Since deg(v) = n − 1 = ∆(G), it follows
by Lemma 2.20 that Z is a γeri-set of G. Therefore, Z is an inverse equitable rings dominating set of
G with respect to X , i.e. γeri−1(G) = 1. Conversely, assume that γeri−1(G) = 1. Let Z ⊆ V (G) \ X

be a γeri−1-set of G. Since X = {u} is a γeri-set of G, then Z = {v} for some vertex v in G different
from u. Since Z is a dominating set of G, then v must be adjacent to every vertex in G. Therefore,
deg(v) = n− 1. �

Theorem 3.3. An inverse equitable rings dominating set T of G must not contain a pendant.

Proof. Let T be an inverse equitable rings dominating set ofG such that T ⊆ V (G) \X for some γeri-set
X ofG. Suppose T contains a pendant. Let x ∈ T such that degT (x) = 1. This means that x ∈ V (G)\X .
This is a contradiction to the definition of an equitable rings dominating set X of G that every element
x ∈ V (G) \ S must be adjacent to at least two vertices in x ∈ V (G) \X . Therefore, T must not contain a
pendant. �



Asia Pac. J. Math. 2025 12:101 8 of 16

Proposition 3.4. There does not exist a γeri−1-set in a path graph Pn.

Proposition 3.5. There does not exist a γeri−1-set in a cycle graph Cn.

Propositions 3.4 and 3.5 are easy to prove. In fact, the proof follows from Propositions 4.3 and 4.4
of [6]

Proposition 3.6. Let n ≥ 4. Then γeri(Kn) = 1 = γeri
−1(Kn).

Proof. In a complete graph Kn for n ≥ 4, ∆(Kn) = n − 1 = δ(Kn). By Lemma 2.19, it follows that
γeri(Kn) = 1. Take X = {u} where u is an arbitrary vertex inKn. Since ∆(Kn) = n− 1 = δ(Kn), then
every vertex inKn has degree n− 1. Therefore, by Lemma 3.2, γeri−1(Kn) = 1. �

Proposition 3.7. Let n ≥ 4. IfX is a γri-set ofKn , there are
n−4∑
i=1

(
n− 1

i

)
number of inverse rings dominating

sets ofKn with respect to X .

Proposition 3.8. Let G = KP1,P2,··· ,Pk
be a complete k-partite graph, k ≥ 2 such that ||Pi| − |Pj || ≤ 1 for all

i 6= j. Then γeri(G) = γ−1eri(G) if and only if there exist partitions Pi and Pj , j 6= j such that |P1| = |Pj | =

min {|Pk| | Pk is a vertex partition of G}

Corollary 3.9. There does not exist a γeri−1-set of G = Kn1,n2,··· ,nk
, k ≥ 3, if there exists a vertex partition Pi

such that ||Pi| − |Pj || ≥ 2, for all i 6= j.

Corollary 3.10. LetG = KP1,P2 be a complete bipartite graph such that ||P1| − |P2|| ≤ 1, and |Pi| ≥ 3, i = 1, 2.

Then γeri(G) = γeri
−1(G). Moreover, if X is a γeri-set of G, then there are |P1| − 1 × |P2| − 1 number of

γeri
−1-sets with respect to X .

Corollary 3.11. There does not exist a γeri−1-set ofKn1,n2 , if |n1 − n2| ≥ 2.

4. The Inverse Equitable Rings Domination under a Binary Operation

In this, section, we then modify how we write the degree of a vertex to avoid confusion. Given
two graphs G and H , we denote degG(u) to refer the degree of u in the graph G alone and we denote
degH(v) to refer the degree of v in the graph H alone. Unless no binary operation is done yet, we will
use the convention deg(u) and deg(v).

4.1. Join of Path-to-Path Graphs. Since path graphs have no γeri-set [6] and thus have no γeri−1-set by
Proposition 3.4, we consider the paths under the binary operation: join of graphs. We explore if there
exists a γeri-set and γeri−1-set in the join of path-to-path graphs. Let Pn and Pm be path graphs of order
n andm respectively. We denoteX as a minimum equitable rings dominating set of the graph Pn +Pm,
and Z as an inverse equitable rings dominating set of the graph. We then determine the γeri(Pn + Pm)

and γeri−1(Pn + Pm).
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Lemma 4.1. Let V (Pn) = {u1, u2, . . . , un} and V (Pm) = {v1, v2, . . . , vm}. The mapping f : V (Pn +

Pm) −→ V (Pn + Pm) defined by

f(a) =

un+1−i if a = ui ∈ V (Pn)

vm+1−k if a = vk ∈ V (Pm)

for i = 1, 2, . . . n and for k = 1, 2, . . .m is a graph automorphism on Pn + Pm.

Proof. For vertices ui and uj in V (Pn), ui is adjacent to uj if and only if |i− j| = 1. Similarly, for vertices
vk and ul in V (Pm), vk is adjacent to vl if and only if |k − l| = 1. Moreover, by the definition of join of
two graphs, each vertex in Pn is adjacent to every vertex in Pm.

i. Given that 1 ≤ i ≤ n, it follows that −n ≤ −i ≤ −1 and thus, 1 ≤ n + 1 − i ≤ n, implying
that f(ui) = un+1−i ∈ V (Pn). Similarly, 1 ≤ k ≤ m implies that −m ≤ −k ≤ −1 and
1 ≤ m+ 1− k ≤ m, implying that f(vk) = vm+1−k ∈ V (Pm).

ii. Assume that ui is adjacent is to uj . Then |i − j| = 1. By the definition of the mapping f ,
f(ui) = un+1−i and f(uj) = un+1−j . Since |(n+ 1− i)− (n+ 1− j)| = | − i+ j| = |i− j| = 1,
then f(ui) is adjacent to f(uj).

iii. Assume that vk is adjacent is to vl. Then |k − l| = 1. By the definition of the mapping f ,
f(vk) = vm+1−k and f(vl) = vn+1−l. Since |(m+ 1− k)− (m+ 1− l)| = | − k+ l| = |k− l| = 1,
then f(uk) is adjacent to f(ul).

iv. For each i = 1, 2, . . . n, ui is adjacent to vk for all k = 1, 2, . . .m. By the definition of the mapping
f , f(ui) = un+1−i ∈ V (Pn) and f(vk) = vm+1−k ∈ V (Pm). Thus, f(ui) is adjacent to f(vk).

Therefore, f is a graph automorphism on Pn + Pm. �

Remark 4.2. . If X is a γeri-set of Pn + Pm, then Z = {f(a) | a ∈ X} is also a γeri-set of Pn + Pm.
Furthermore, if Z ⊆ V (Pn + Pm) \X , then Z is a γeri−1-set of Pn + Pm.

In this part, we let V (Pn) = {u1, u2, . . . , un} and V (Pm) = {v1, v2, . . . , vm}. We denoteX as our desired
equitable rings dominating set of Pn +Pm, and Z as our desired inverse equitable rings dominating set
of Pn + Pm with respect to X .

Theorem 4.3. There exists a γeri−1-set in the join Pn +Pm of path graphs Pn and Pm if n = m ≥ 2. Moreover

γeri(Pn + Pm) = γeri
−1(Pn + Pm) =

1 if n = 2 or n = 3

2 if n ≥ 4
.

Proof. Let n = m ≥ 2. Consider the following cases.

Case 1. Let n = 2. Thenm = 2 and we have P2 + P2, which is a graph of order 4.
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Vertex Degree

Pn

Pendant u1, u2 1 +m = 3

Non-pendant - -

Pm

Pendant v1, v2 1 + n = 3

Non-pendant - -

Table 1. Degree of vertices in P2 + P2

From Table 1, ∆(P2 +P2) = 3 = δ(P2 +P2). Since ∆(P2 +P2)− δ(P2 + P2) = 0 and ∆(P2 +P2) =

3 = 4− 1 (recall that the order of the graph is 4), then γeri(P2 + P2) = 1 by Lemma 2.19. From Table
1, every vertex in P2 + P2 has degree 3. By Lemma 3.2, it follows that γeri−1(P2 + P2) = 1.
Case 2. Let n = 3. Then m = 3 and we have the graph P3 + P3 with V (Pn) = {u1, u2, u3} and
V (Pm) = {v1, v2, v3}, which is a graph of order 6.

Vertex Degree

Pn

Pendant u1, u3 1 +m = 4

Non-pendant u2 2 +m = 5

Pm

Pendant v1, v3 1 + n = 4

Non-pendant v2 2 + n = 5

Table 2. Degree of vertices in P3 + P3

From Table 2, ∆(P3 + P3) = 5 and δ(P3 + P3) = 4. Since ∆(P3 + P3) − δ(P3 + P3) = 1 and
∆(P3 + P3) = 5 = 6− 1 (recall that the order of the graph is 6), then γeri(P3 + P3) = 1 by Lemma
2.19. From Table 2, the vertices u2 and v2 have degree of 5. Without loss of generality, take X = {u2}

be a γeri-set of P3 + P3. Since ∆(P3 + P3)− δ(P3 + P3) = 1 and γeri(P3 + P3) = 1, and there exists
another vertex v2 different from u2 such that deg(u2) = deg(v2), then γeri−1(P2 + P2) = 1 by Lemma
3.2.
Case 3. Let n ≥ 4. Since n = m, the graph Pn + Pm has an order 2nwith ∆(Pn + Pm) = 2 + n and
δ(Pn + Pm) = 1 + n.

Vertex Degree Degree in terms of n

Pn

Pendant u1, un 1 +m 1 + n

Non-pendant u2, u3, . . . , un−1 2 +m 2 + n

Pm

Pendant v1, vn 1 + n 1 + n

Non-pendant v2, v3, . . . , vm−1 2 + n 2 + n

Table 3. Degree of vertices in Pn + Pm where n = m



Asia Pac. J. Math. 2025 12:101 11 of 16

Refer to the figure below for a clearer illustration.

Figure 2. Graph Pn + Pm where n = mwith the degree of its vertices

If a vertex in Pn + Pm is adjacent to every other vertex in the graph, its order must be 2n− 1 (here,
the order of the graph is 2n). But ∆(Pn + Pm) = 2 + n 6= 2n − 1 for n ≥ 4, which implies that no
vertex in Pn + Pm is adjacent to all other vertices in the graph. Consequently, γeri(Pn + Pm) 6= 1.
Take X = {a, b}, where a ∈ V (Pn) and b ∈ V (Pm).
(a) By the definition of join of two graphs, each vertex in Pn is adjacent to every vertex in Pm. Thus,

vertex a is adjacent to every vertex in V (Pm) \ X and vertex b is adjacent to every vertex in
V (Pn) \X . Hence, X is a dominating set of Pn + Pm.

(b) ∆(Pn + Pm) = 2 + n and δ(P2 + P2) = 1 + n guarantees that |deg(u) − deg(v)| ≤ 1 for any
adjacent vertices u and v in Pn + Pm, satisfying the condition for equitable domination. Hence,
X is an equitable dominating set of Pn + Pm.

(c) Recall that X = {a, b}, where a ∈ V (Pn) and b ∈ V (Pm). Consequently, V (Pn + Pm) \ X

contains n+m− 2 = (n− 1) + (m− 1) vertices in the graph, particularly n− 1 vertices in Pn

andm− 1 = n− 1 vertices in Pm.
In other words, |V (Pn) \X| = n − 1 = |V (Pm) \X|. By the definition of join of two graphs,
each vertex in Pn is adjacent to every vertex in Pm. It follows that every vertex in V (Pn) \X is
adjacent to at least n− 1 ≥ 4− 1 = 3 vertices in V (Pm) \X , satisfying the condition for rings
domination. Hence, X is a rings dominating set of Pn + Pm.

Therefore, X is a γeri-set of Pn + Pm and γeri(Pn + Pm) = 2.
Take Z = {c, d}, where c ∈ V (Pn) different from a, and d ∈ V (Pm) different from b. It follows

that Z ⊆ V (Pn + Pm) \X . We only need to show that Z satisfies the conditions for equitable rings
domination.
(a) By the definition of join of two graphs, each vertex in Pn is adjacent to every vertex in Pm. Thus,

vertex c is adjacent to every vertex in V (Pm) \ X and vertex d is adjacent to every vertex in
V (Pn) \X . Hence, Z is a dominating set of Pn + Pm.
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(b) ∆(Pn + Pm) = 2 + n and δ(P2 + P2) = 1 + n guarantees that |deg(u) − deg(v)| ≤ 1 for any
adjacent vertices u and v in Pn + Pm, satisfying the condition for equitable domination. Hence,
Z is an equitable dominating set of Pn + Pm.

(c) Recall that Z = {c, d}, where a 6= c ∈ V (Pn) and b 6= d ∈ V (Pm). Consequently, V (Pn +Pm) \Z

contains n+m− 2 = (n− 1) + (m− 1) vertices in the graph, particularly n− 1 vertices in Pn

andm− 1 = n− 1 vertices in Pm. In other words, |V (Pn) \ Z| = n− 1 = |V (Pm) \ Z|. By the
definition of join of two graphs, each vertex in Pn is adjacent to every vertex in Pm. It follows
that every vertex in V (Pn) \ Z is adjacent to at least n − 1 ≥ 4 − 1 = 3 vertices in V (Pm) \ Z,
satisfying the condition for rings domination. Hence, Z is a rings dominating set of Pn + Pm.

Therefore, Z is a γeri−1-set of Pn + Pm and γeri−1(Pn + Pm) = 2 for n ≥ 4.

�

Theorem 4.4. There exists a γ−1eri -set in the join Pn + Pm of path graphs Pn and Pm if |n−m| = 1 and n ≥ 2.

Moreover

γeri(Pn + Pm) = γeri
−1(Pn + Pm) =

1 if n = 2

2 if n ≥ 3
.

Refer to the figure below for a clearer illustration.

Figure 3. Pn + Pm wherem = n+ 1 with the degree of its vertices

The following table summarizes the degree of the vertices in the graph.

Vertex Degree Degree in terms of n

Pn

Pendant u1, un 1 +m 2 + n

Non-pendant u2, u3, . . . , un−1 2 +m 3 + n

Pm

Pendant v1, vn 1 + n 1 + n

Non-pendant v2, v3, . . . , vm−1 2 + n 2 + n

Table 4. Degree of vertices in Pn + Pm where n = m+ 1
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Theorem 4.5. There exists a γ−1eri -set in the join Pn + Pm of path graphs Pn and Pm if |n−m| = 2 and n ≥ 2.

Morever,

γeri(Pn + Pm) =


2 if n = 2

3 if n = 3 or n = 4⌈n
3

⌉
+ 2 if n ≥ 5

and

γeri
−1(Pn + Pm) =

γeri(Pn + Pm) if n 6= 4

4 if n = 4

Refer to the figure below for a clearer illustration.

Figure 4. Pn + Pm wherem = n+ 2 and n ≥ 5 with the degree of its vertices

The following table summarizes the degree of the vertices in the graph.

Vertex Degree Degree in terms of n

Pn

Pendant u1, un 1 +m 3 + n

Non-pendant u2, u3, . . . , un−1 2 +m 4 + n

Pm

Pendant v1, vn 1 + n 1 + n

Non-pendant v2, v3, . . . , vm−1 2 + n 2 + n

Table 5. Degree of vertices in Pn + Pm where n = m+ 2

Corollary 4.6. There exists a γeri−1-set in the join Pn + Pm of path graphs Pn and Pm if (|n − m| ≥ 3,

n = 3, and m = 3k + 1 for some k ∈ Z) or (|n − m| ≥ 3 and n ≥ 4). Moreover, γeri(Pn + Pm) =

γe(Pn) + γe(Pm) and γeri−1−1(Pn + Pm) = γ−1e (Pn) + γ−1e (Pm).

Refer to the figure below for a clearer illustration:
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Figure 5. A Join of Graph Pn + Pm where |n−m| ≥ 3

The following degree of each vertex in the graph is summarized in the table below.

Vertex Degree Minimum Degree in terms of n

Pn

u1, un m+ 1 n+ 4

u2, u3, . . . , un−1 m+ 2 n+ 5

Pm

v1, vm n+ 1 n+ 1

v2, v3, . . . , vm−1 n+ 2 n+ 2

Table 6. Degree of vertices in Pn + Pm where |n−m| ≥ 3

Hence, for vertices of Pn in Pn + Pm, we have the following degree difference:
i. |deg(u1)− deg(u1)| = |deg(un)− deg(un)| = 0

ii. |deg(u1)− deg(u2)| = |deg(un)− deg(un−1)| = |(m+ 1)− (m+ 2)| = 1

iii. |deg(ui)− deg(ui)| = 0

For vertices of Pm in Pn + Pm, we have the following degree difference:
i. |deg(v1)− deg(v1)| = |deg(vm)− deg(vm)| = 0

ii. |deg(v1)− deg(v2)| = |deg(vm)− deg(vm−1)| = |(m+ 1)− (m+ 2)| = 1

iii. |deg(vi)− deg(vi)| = 0

For any pair of vertices from Pn and Pm, we have the following degree difference:
i. |deg(u1) − deg(v1)| = |deg(u1) − deg(vn)| = |deg(un) − deg(v1)| = |deg(un) − deg(vm)| =

|(m+ 1)− (n+ 1)| ≥ |(n+ 4)− (n+ 1)| = 3

ii. |deg(u1)− deg(vi)| = |deg(un)− deg(vi) = |(m+ 1)− (n+ 2)| ≥ |(n+ 4)− (n+ 2)| = 2

iii. |deg(ui)− deg(v1)| = |deg(ui)− deg(vm)| = |(m+ 2)− (n+ 1) ≥ |(n+ 5)− (n+ 1)| = 4

iv. |deg(ui)− deg(vj)| = |(m+ 2)− (n+ 2)| ≥ |(n+ 5)− (n+ 2)| = 3

Theorem 4.7. There does not exist a γeri−1-set in Pn + Pm, where n ≤ m, whenever any of the following is

true:

(1) n = 1. Moreover, γeri−1(Pn + Pm) = 0;
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(2) |n−m| ≥ 3 and n = 2. Moreover, γeri−1(Pn + Pm) = 0.

(3) |n−m| ≥ 3, n = 3, andm = 3k orm = 3k + 2 for some k ∈ Z. Moreover,

γeri
−1(Pn + Pm) = 0.

Condition Graph γeri(Pn + Pm) γeri
−1(Pn + Pm)

n = 1 P1 + Pm 0 0
n = 2 andm = 3k ≥ 5 P2 + P3k 0 0

n = 2 andm = 3k + 1 ≥ 5 P2 + P3k+1 dm3 e+ 1 0
n = 2 andm = 3k + 2 ≥ 5 P2 + P3k+2 0 0
n = 3 andm = 3k ≥ 6 P3 + P3k dm3 e+ 1 0

n = 3 andm = 3k + 2 ≥ 6 P3 + P3k+2 dm3 e+ 1 0

Table 7. Summary of Pn + Pm graphs with no γeri−1-set

5. Concluding Remarks

The notion of inverse equitable rings domination has been successfully introduced in this paper
with some key conditions for the existence of inverse equitable rings dominating sets in graphs, and
determined their inverse equitable rings domination numbers up to a binary operation: join of path-to-
path graphs. One definite extension of this research is the inverse equitable rings domination number
of the join of path-to-cycle, join of cycle-to-cycle, corona of graphs, and cartesian product of graphs that
the authors had already started working on. Meanwhile, the authors recommend other researchers to
study results and existence of this notion to other binary operations not covered in this study. Moreover,
exploring the applications of this concept in other areas of mathematics could be an interesting research
direction.

Authors’ Contributions. All authors have read and approved the final version of the manuscript. The
authors contributed equally to this work.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication
of this paper.
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