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AssTRACT. A dominating set X is an equitable rings dominating set of G if for every vertex v € V(G) \ X,
there exists a vertex u in X such that uv € E(G), | deg(u) — deg(v)| < 1, and v is adjacent to at least two
vertices in V(G) \ X. The equitable rings domination number G is the minimum cardinality of an equitable
rings dominating set of G. Let Y = V(G) \ X, where X is a minimum equitable rings dominating set of
G. A subset Z of Y is said to be an inverse equitable rings dominating set with respect to X if Z is an
equitable rings dominating set of G. The inverse equitable rings domination number of G is the minimum
cardinality of an inverse equitable rings dominating set of G, and is denoted by ~_,}(G). It is known that
there does not exist an equitable rings dominating set in path P, and so its inverse does not exist. In this
study, we present the inverse equitable rings dominating set in graphs and we provide a special result for
the existence of inverse equitable rings dominating set in the join of two paths.
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1. INTRODUCTION

The study of domination in graphs has evolved over the years, introducing various concepts that
explore how certain sets of vertices influence the entire structure. It all started in 1958 when Berge
introduced the idea of domination [5], which was later refined in 1962 by Ore, who formally defined
the terms “dominating set” and “domination number” [20]. A dominating set in a graph, in general,
is a set of vertices D such that each vertex is either in D or is adjacent to a vertex in D [24]. Formally,
a subset X of V(G) is a dominating set of G if for every v € V(G) \ X, there exists u € X such that
uwv € E(G). The minimum cardinality among dominating sets is called the domination number and is

denoted by v(G).
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As the concept gained interest, researchers explored different ways to modify domination to fit
various constraints and applications. This led to several variations, each introducing new conditions
on how domination works in graphs. One important aspect of these studies is the identification of
minimum dominating sets, vy-sets, which serve as the foundation for many extensions of domination
theory. Over time, this concept was extended in various ways, one of which was equitable domination,
first introduced by Anita, Arumugam, and Chellali in 2011 [4], cited in Caay’s paper [6,7,9-11], a
dominating set X of G is an equitable dominating set if for every v € V(G) \ X, there exists u € X such
that uv € E(G) and | deg(u) — deg(v)| < 1. The minimum cardinality of an equitable dominating set is
called the equitable domination number, denoted by 7.(G), and an equitable dominating set whose
cardinality is 7. (G) is called a 7.-set of G.

In 2022, Abed and Al-Harere introduced another variation known as rings domination [ 1], which
imposes a stricter adjacency condition. A dominating set X of GG is a rings dominating set if every
vertex v € V(G) \ X is adjacent to at least two vertices in V(G) \ X. The minimum cardinality of a rings
dominating set is called the rings domination number, denoted by ~,;(G), and a rings dominating set
whose cardinality is 7,;(G) is called a 7,;-set of G. These developments set the stage for Caay’s study,
which combined equitable domination and rings domination . A dominating set X of G is an equitable
rings dominating set if for every v € V(G) \ X, there exists u € X such that uv € E(G), while also
satisfying | deg(u) — deg(v)| < 1, and v is adjacent to at least two vertices in V(G) \ X. The minimum
cardinality of such a set is called the equitable rings domination number, denoted by ~.,;(G), and an
equitable rings dominating set whose cardinality is .;(G) is called a 7eri-set of G [6], [19].

As domination theory evolved, researchers also investigated variations of domination that consider
ways a set can influence a graph, leading to inverse domination, first introduced by Kulli and Sigarkanti
and they defined the inverse domination number ~'(G) as the order of a smallest inverse dominating set
of G [16], shifting the focus toward the resilience of domination in graphs. To establish a relationship
between vertices within a dominating set, Mallinath and Kulkarni (2021) introduced inverse equitable
domination [ 18]. Given an equitable dominating set X, a subset D C V(G)\ X is called an inverse equitable
dominating set with respect to X, if D is also an equitable dominating set of G. The inverse equitable
domination number, denoted by 7.1 (@), is the minimum cardinality of an inverse equitable dominating
set. Their study determined the values of 7. ~1(G) for various standard graphs and established that it
is always bounded above by the standard domination number, 7. ~!(G) < ~v(G). The study of inverse
domination continued in 2022, when Abed and Al-Harere introduced inverse rings domination, and
was further introduced by Lundag and Caay [17]. Let X be a minimum rings dominating set of G
and let Y = V(G) \ X. A rings dominating set Z C Y is an inverse rings dominating set if every vertex

v € V(G) \ Z is adjacent to at least two vertices in Y. The minimum cardinality of an inverse rings
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dominating set Z of G is called the inverse rings domination number of GG, and is denoted by i HG). In
this case, we call a minimum inverse rings dominating set Z of G to be a vri t-set of G [1].

In 2024, Caay introduced the concept of equitable rings domination and established that there does not
exist a Yeri(G)-set in a path graph P,, [6]. Caay’s work also examined this equitable rings domination
in graphs formed by binary operations, including the join of graphs [6]. Since paths fail to satisfy
the conditions for a 7e:i(G)-set, it is natural to explore whether the join operation could influence the
existence of its inverse. Motivated by this, this study considers the join of graphs, examining how this
operation influences inverse equitable rings domination and if it offers the necessary conditions for its
existence. These results provide a foundation for further research, leading to the development of inverse

equitable rings domination, which integrates ideas from inverse, equitable, and rings domination.

2. PRELIMINARIES

This study focuses only on simple connected graphs, which are graphs without loops or multiple
edges. A graph G = (V(G), E(G)) is defined on a set of vertices V, where the elements of V (G) are
called the vertices of G, and those of E(G) are the edges. The reader may refer to [12,14] for some graph
theoretic notions.

We define the neighborhood of v € (G), denoted by N¢(v), as the set
Ng(v) :={ueV(G) : w e E(G)}.
Given a subset X C V(G), the set

Ng(X)=N(X) = | J Ng(v) andtheset Ng[X]=N[X]=XUN(X)
veX

are the open neighborhood and the closed neighborhood of X, respectively.

Given a vertex v € V(G), we define the degree of v, denoted by deg(v), to be the number of edges
incident to v. The maximum degree of G, denoted by A(G), is the degree of the vertex in G having the
maximum degree, and the minimum degree of G, denoted by 6(G), is the degree of the vertex in G having
the minimum degree.

Moreover, a vertex v of G is called a pendant vertex if and only if deg(v) = 1. Otherwise, it is called a
non-pendant vertex.

The join G + H of the two graphs G and H is the graph with vertex set
V(G+H)=V(G)UV(H),
and the edge set
E(G+H)=EG)UH)U{uw : veV(G),veV(H)}.

Given two graphs G and H, we denote degi(u) as the degree of v in G and we denote degy (v) as

the degree of v in H. Unless no join operation is done yet, we use the convention deg(u) and deg(v).



Asia Pac. J. Math. 2025 12:101 40f 16

Remark 2.1. From the definition of join of two graphs, the degree of v in G + H is given by deggm(u) =
degc(u) + m and the degree of v in G + H is given by deggr(v) = degu (v) + n.

We now introduce the concept of domination in graphs.

Definition 2.2. [5] A subset X € V(@) is a dominating set of G if for every v € V(G) \ X, there exists
u € X such that uv € E(G). Thatis, N[X]| = V(G). The minimum cardinality of a dominating set X of
G is called the domination number of G, and is denoted by (G). In this case, we call a dominating set

X of G to be a y-set of G.

Remark 2.3. Let X be a dominating set of G. If there exists v € V(G) \ X such that uv € E(G), we say

that v dominates v or v is dominated by w.

Definition 2.4. [16] Let X be a minimum dominating set of GandletY = V(G) \ X. Asubset Z C Y
is an inverse dominating set of G if for every v € V(G) \ Z, there exists u € Z such that uv € E(G).
The minimum cardinality of an inverse dominating set Z of G is called the inverse domination number of
G, and is denoted by 7~ 1(@G). In this case, we call a minimum inverse dominating set Z of G to be a

v~ l-set of G.
Theorem 2.5. [16] Let P, be a path graph of order n. Then
(%141 ifn =3k forsomek € Z

M ifn#3k

Definition 2.6. [4] A dominating set X of G is an equitable dominating set of G if for every v € V(G)\ X,

V_I(Pn) =

there exists v € X such that uv € V(G) and |deg(u) — deg(v)| < 1. The minimum cardinality of an
equitable dominating set X of G is called the equitable domination number of GG, and is denoted by

7e(G). In this case, we call a minimum equitable dominating set X of G to be a 7.-set of G.

Remark 2.7. Let X be an equitable dominating set of G. If there exists v € V(G) \ X such that uv € E(G),

we say that v equitable dominates v or v is equitable dominated by w.

Definition 2.8. [18] Let X be a minimum equitable dominating set of Gand letY = V(G) \ X. A
subset X C Y is an inverse equitable dominating set if for every v € V(G) \ Z, there exists u € Z such
thatuv € E(G) and |deg(u) —deg(v)| < 1. The minimum cardinality of an inverse equitable dominating
set Z of G is called the inverse equitable domination number of G, and is denoted by fye(G)_l. In this case,

we call a minimum inverse equitable dominating set Z of G to be a 7.~ !-set of G.
Theorem 2.9. [25] Let P, be a path graph of order n. Then v.(P,) = [5].

Remark 2.10. Let P, be a path graph of order n. Since A(P,)) =2 and 6(P,,) = 1, then v(P,) = 7e(P,).
It follows that v~ (P,) = 7. *(Pn).
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Remark 2.11. [16] Let P, be a path graph of order n. If n = 3k for some k € Z, then there exists a
unique minimum dominating set X = {ugn—1 : 1 < h < 5} of P,. Moreover, {u; : ui1 € X} U {u,}

and {u1} U {uj;1 : u; € X} are minimum inverse dominating sets of P,.

Definition 2.12. [1] A dominating set X of G is a rings dominating set of G if every vertex v € V(G)\ X
is adjacent to atleast two vertices V(G) \ X. The minimum cardinality of a rings dominating set X of G
is called the rings domination number of G, and is denoted by 7,;(G). A rings dominating set X of a

graph G whose cardinality is equal to the 7,;(G) is called the ~,;-set of G.

Remark 2.13. Let X be a rings dominating set of G. If there exists v € V(G) \ X such that uv € E(G),

we say that v rings dominates v or v is rings dominated by w.

Definition 2.14. [1] Let X be a minimum rings dominating set of G and letY = V(G) \ X. A rings
dominating set Z C Y is an inverse rings dominating set if every vertex v € V(G) \ Z is adjacent to at
least two vertices in Y. The minimum cardinality of an inverse rings dominating set Z of G is called the
inverse rings domination number of G, and is denoted by v 1(@G). In this case, we call a minimum

inverse rings dominating set Z of G to be a v,; !-set of G.

Remark 2.15. In this paper, if a vertex u rings dominate a vertex v, then we say « is a rings dominator of

a vertex v, or v is a rings dominatee of a vertex w.

Remark 2.16. [1] For a 7,;-set D of any graph G of order n, we have:

(1) The order of Gisn > 4.

(2) Foreachvertexv € V(G) \ D, deg(v) > 3.
(3) 1<|D|<n-3.

(4) 3<|V(G)\D| <n-—1.

(5) 1 <74(G) < |D| <n—3.

Definition 2.17. A dominating set X C V(@) is said to be an equitable rings dominating set of G if
for every v € V(G) \ X, there exists u € X with uwv € E(G) such that |deg(u) — deg(v)| <1, and v is
adjacent to at least two vertices in V' (G) \ X. The minimum cardinality of an equitable rings dominating
set of G is called equitable rings domination number of GG, and is denoted by 7.,i(G). An equitable
rings dominating set X of G with | X| = v.,(G) is said to be 7.,;-set of G.

Remark 2.18. The following remarks are essential in working the concept of this study:.

(1) Given an equitable rings dominating set X of G, if | X | = v.,;(G), then we say that X is a yeri-set
of G.



Asia Pac. J. Math. 2025 12:101 6 of 16

(2) Given an equitable rings dominating set X of G, if there exists v € V(G) \ X, then for every
u € X with wv € E(G), we say that u equitable rings dominates v, or v is equitable rings

dominated by u. In general, a set X is said to equitable rings dominate G.
The following lemmas directly follow from Definition 2.17.

Lemma 2.19. [6] Let G be any graph of order n with A(G) — 6(G) < 1. Then ~eri(G) = 1 if and only if
A(G)=n—1.

Lemma 2.20. [6] Let G be any graph. If u € X C V(Q) with deg(u) = A(G), then X is a ~epi-set of G.
We now introduce the main concept of the study.

Definition 2.21. Let X be a minimum equitable rings dominating set of Gand letY = V(G) \ X. A
subset Z C Y is said to be an inverse equitable rings dominating set of G if for every v € V(G) \ Z,
there exists u € Z with uv € E(G) such that |deg(u) — deg(v)| < 1, and v is adjacent to at least two
vertices in V(G) \ Z. The minimum cardinality of an inverse equitable rings dominating set Z of G is
called the inverse equitable rings domination number of G, and is denoted by 7, 1 (G). In this case, we

call a minimum inverse equitable rings dominating set Z of G to be a Yeri L-set of G.

Remark 2.22. If Z is an inverse equitable rings dominating set of G such that |Z| = 7.,;(G), then we say
Z is a Yeri '-set of G.

Remark 2.23. If there does not exist an inverse equitable rings dominating set of G, we say that
’Yeri_l(G) =0.

Example 2.24. Consider the complete bipartite graph G' = K3 3.

Ficure 1. A Complete Bipartite Graph K3 3

In Figure 1, we have two vertex partitions: N1 = {uy, us, ug} and Ny = {u4, us, us}. Observe that
the vertices in N; can be dominated by just one vertex from N> and vice versa. This means that

the minimum number of vertices we need to dominate the entire graph is 2. Note that deg(u;) = 3
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fori € {1,2,3,4,5,6}. Suppose we take X = {u1,us} to be a minimal dominating set of the graph.
Notice that each vertex in V(G) \ X is also connected to two vertices in V(G) \ X. Hence, X is a rings
dominating set. Now, we can pick a different pair of vertices to be an inverse rings dominating set,
say {u2, u4}. This pair also satisfies the condition for equitable rings domination. Thus, if we choose
one pair to be a v.,;-set, we are still left with two pairs that can be a Yeri *-set. For example, if we take
D = {u1,u4} to be a minimum ~.,;-set. we can choose any different pair of vertices from V(K3 3) \ D,

one from each vertex partition, to be a Yeri ~1-set. Therefore, Ve i (K 33) = Yeri T (K. 33) =2.

3. INnvERSE EQuiTaBLE RiNGs DoMINATION IN GRAPHS

The following lemmas follow directly from Definition 2.21.
Lemma 3.1. If there exist ~eri-set and ~e.; ~'-set of a graph G, then Ye,i(G) < Yeri H(G).

Proof. Let X be a 7.ri-set of G, and Z be a ~.,;~-set of G with respect to S. Then, | X| = 7.,+(G) and
|Z| = Yeri (G by Definition 2.17 and Definition 2.21, respectively. Note that Z is also an equitable
rings dominating set of G. Since X is an equitable rings dominating set of G whose cardinality is

minimum, it follows that | X | < |Z|, which implies that v.,;(G) < Yeri HG). O

Lemma 3.2. Let G be any graph of order n such that A(G) — §(G) < 1 and ~,i(G) = 1. Let X = {u}
be a veri-set of G. Then there exists v € V(G) different from w such that deg(v) = deg(u) if and only if

’Yem'_l (G) =1

Proof. Since A(G) — 0(G) < 1 and v¢(G) = 1, it follows that A(G) = n — 1 by Lemma 2.19. Given
that X = {u} is a yeri-set of G, it follows that deg(u) = n — 1. Assume there exists v € V(G) such
that deg(v) = deg(u). Then deg(v) = n — 1. Take Z = {v}. Since deg(v) = n — 1 = A(G), it follows
by Lemma 2.20 that Z is a .,;-set of G. Therefore, Z is an inverse equitable rings dominating set of
G with respect to X, i.e. 7eri~1(G) = 1. Conversely, assume that 7., *(G) = 1. Let Z C V(G) \ X
be a y.; !-set of G. Since X = {u} is a 7,i-set of G, then Z = {v} for some vertex v in G different
from u. Since Z is a dominating set of G, then v must be adjacent to every vertex in GG. Therefore,

deg(v) =n — 1. O
Theorem 3.3. An inverse equitable rings dominating set T' of G must not contain a pendant.

Proof. Let T' be an inverse equitable rings dominating set of G such that 7' C V(G) \ X for some ~,,;-set
X of G. Suppose T contains a pendant. Let z € T such that degy(z) = 1. This means that z € V(G) \ X.
This is a contradiction to the definition of an equitable rings dominating set X of G that every element
z € V(G) \ S must be adjacent to at least two vertices in z € V(G) \ X. Therefore, T' must not contain a

pendant. O
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Proposition 3.4. There does not exist a ~er; ~-set in a path graph P,
Proposition 3.5. There does not exist a ~ye,; ~-set in a cycle graph C,,.

Propositions 3.4 and 3.5 are easy to prove. In fact, the proof follows from Propositions 4.3 and 4.4

of [6]
Proposition 3.6. Let n > 4. Then yeri(Kp) = 1 = Yeri 1 (Ky).

Proof. In a complete graph K, forn > 4, A(K,) = n — 1 = §(K,,). By Lemma 2.19, it follows that
Yeri(Ky) = 1. Take X = {u} where u is an arbitrary vertex in K,,. Since A(K,,) =n — 1 = §(K,,), then
every vertex in K, has degree n — 1. Therefore, by Lemma 3.2, Yeri HEK,) = 1. O

n—4
-1
Proposition 3.7. Let n > 4. If X is a ~,;-set of Ky, , there are Z (n , ) number of inverse rings dominating
(3
i=1
sets of K, with respect to X.
Proposition 3.8. Let G = Kp, p, ... p, be a complete k-partite graph, k > 2 such that || P;| — |P;|| < 1 for all
i # j. Then veri(G) = .5 (G) if and only if there exist partitions P, and Pj, j # j such that |P| = |P;j| =
min {|Py| | Py is a vertex partition of G’}

Corollary 3.9. There does not exist a Yer;-set of G = Ky, ny.... m,., k > 3, if there exists a vertex partition P,

such that || P;| — |Pj|| > 2, for all i # j.

Corollary 3.10. Let G = K p, p, be a complete bipartite graph such that || Py| — |P|| < 1,and |P;| > 3,1 =1, 2.
Then Yeri(G) = Yeri~*(G). Moreover, if X is a Yeri-set of G, then there are |Py| — 1 x |Py| — 1 number of

Yeri~L-sets with respect to X.
Corollary 3.11. There does not exist a Yer; ~1-set of Kp, ny, if [n1 — na| > 2.

4. THEe INnverse EQuiTABLE RiNGs DOMINATION UNDER A BINARY OPERATION

In this, section, we then modify how we write the degree of a vertex to avoid confusion. Given
two graphs G and H, we denote degg(u) to refer the degree of  in the graph G alone and we denote
degp (v) to refer the degree of v in the graph H alone. Unless no binary operation is done yet, we will

use the convention deg(u) and deg(v).

4.1. Join of Path-to-Path Graphs. Since path graphs have no 7.,;-set [6] and thus have no v.,; ~!-set by
Proposition 3.4, we consider the paths under the binary operation: join of graphs. We explore if there
exists a Yeri-set and 7.~ 1-set in the join of path-to-path graphs. Let P, and P, be path graphs of order
n and m respectively. We denote X as a minimum equitable rings dominating set of the graph P, + P,
and Z as an inverse equitable rings dominating set of the graph. We then determine the ve,;(P, + Pp,)

and ’Yeri_l(Pn + Pm)
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Lemma 4.1. Let V(P,) = {u1,us,...,u,} and V(Pp,) = {v1,v2,...,vn}. The mapping f : V (P, +
Py,) — V(P, + Py,) defined by
Un41—i z'fa =Uu; € V(Pn)
fla) =

Umti—k  ifa=uvy € V(Py)

fori=1,2,...nand for k =1,2,...mis a graph automorphism on Py, + P,,.

Proof. For vertices u; and u; in V (P,), u; is adjacent to u; if and only if |i — j| = 1. Similarly, for vertices
v, and w; in V' (Py,), vy, is adjacent to v; if and only if |k — I| = 1. Moreover, by the definition of join of
two graphs, each vertex in P, is adjacent to every vertex in P,,.
i. Given that 1 < ¢ < n, it follows that —n < —i < —1 and thus, 1 < n + 1 — ¢ < n, implying
that f(u;) = upy1—i € V(P,). Similarly, 1 < k£ < m implies that -m < —k < —1 and
1 <m+1—k <m,implying that f(vx) = vmt1- € V(Pn).
ii. Assume that u; is adjacent is to u;. Then |i — j| = 1. By the definition of the mapping f,
f(ui) = upp1—iand f(uj) = tns1—j. Since |(n+1—4) = (n+1—j)| =[—i+j|=]i—j| =1,
then f(u;) is adjacent to f(u;).
iii. Assume that vy, is adjacent is to v;. Then |k — [| = 1. By the definition of the mapping f,
f(vg) = vmyi1—k and f(v;) = vpq1-. Since [(m+1—k) —(m+1-10)|=|-k+l|=|k-1 =1,
then f(uy) is adjacent to f(u;).
iv. Foreachi =1,2,...n,u; isadjacent to v}, forall k = 1,2, ... m. By the definition of the mapping

f f(ui) = upy1—i € V(Py,) and f(vg) = vmy1—k € V(Pp). Thus, f(u;) is adjacent to f(vy).

Therefore, f is a graph automorphism on P, + P,. O

Remark 4.2. . If X is a vepi-set of P, + P, then Z = {f(a)|a € X} is also a 7eri-set of P, + P,,.
Furthermore, if Z C V(P, + P,,) \ X, then Z is a ., '-set of P, + P,,.

In this part, we let V(P,) = {u1,uz,...,un}and V(Py,) = {vi,v2, ..., v, }. We denote X as our desired
equitable rings dominating set of P, + P,,,, and Z as our desired inverse equitable rings dominating set

of P, + P, with respect to X.
Theorem 4.3. There exists a ~er; ~'-set in the join Py, + P, of path graphs P,, and P, if n = m > 2. Moreover

. 1 ifn=20rn=3
’Yeri(Pn"f'Pm):'Yeri (Pn+Pm):
2 ifn>4

Proof. Let n = m > 2. Consider the following cases.

Case 1. Let n = 2. Then m = 2 and we have P» + P, which is a graph of order 4.
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Vertex Degree
» Pendant ui,ug | 14+m =3
" | Non-pendant | - -
Pendant vi,v2 | 14+n=3
Fm Non-pendant - -

TasLE 1. Degree of vertices in P, + P>

From Table 1, A(Py 4+ P;) =3 = §(P2 + P»). Since A(Py + P2) —§(Pa + P2) = 0and A(Py + P2) =
3 =4 — 1 (recall that the order of the graph is 4), then ~,,;(P> + P>) = 1 by Lemma 2.19. From Table

1, every vertex in P» + P> has degree 3. By Lemma 3.2, it follows that Yeri H(Po + Pp) = 1.

Case 2. Letn = 3. Then m = 3 and we have the graph P3 + P3 with V(P,)) = {u1,u2,u3} and

V(Pn) = {v1,v2,v3}, which is a graph of order 6.

Non-pendant

Vertex Degree
Pendant u,uz | 1+m=4
Fn Non-pendant | u» 24+4m=>5
Pendant v1,v3 | 1+n=4
P

(%) 24+n=5

TaBLE 2. Degree of vertices in P3 + Ps3

From Table 2, A(P; + P3) = 5 and §(P3 + P3) = 4. Since A(P3 + P3) — §(FP3 + P3) = 1 and
A(P3 + P3) =5 =6 — 1 (recall that the order of the graph is 6), then ~.,;(Ps + P3) = 1 by Lemma

2.19. From Table 2, the vertices uz and vz have degree of 5. Without loss of generality, take X = {us}

be a vi-set of P3 + Ps. Since A(Ps + P3) — 6(Ps + P3) = 1 and 7ei(P3 + P3) = 1, and there exists

another vertex vq different from us such that deg(uz) = deg(vs), then ve; 1 (P2 + P2) = 1 by Lemma

3.2

Case 3. Let n > 4. Since n = m, the graph P,, + P, has an order 2n with A(P,, + P,,,) = 2 + n and
(P, + Pn)=1+n.

Vertex Degree | Degree in terms of n
Pendant U, Up 14+m 14+n
Fn Non-pendant | us, us,...,up—1 | 2+m 2+n
Pendant V1, Un, 14+n 14+n
Fm Non-pendant | vg,v3,...,vm—1 | 2+ n 24+n

TasLE 3. Degree of vertices in P, + P,,, where n =m
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Refer to the figure below for a clearer illustration.

1+n 24 n 24 n 24 n 1+n

Ficure 2. Graph P, + P,,, where n = m with the degree of its vertices

If a vertex in P, + P,, is adjacent to every other vertex in the graph, its order must be 2n — 1 (here,
the order of the graph is 2n). But A(P,, + P,,) = 2+ n # 2n — 1 for n > 4, which implies that no
vertex in P, + P, is adjacent to all other vertices in the graph. Consequently, ve,i(Py, + Pr,) # 1.
Take X = {a,b}, wherea € V(P,) and b € V(Fy,).

(a) By the definition of join of two graphs, each vertex in P, is adjacent to every vertex in P,,. Thus,
vertex a is adjacent to every vertex in V(P,,) \ X and vertex b is adjacent to every vertex in
V(P,) \ X. Hence, X is a dominating set of P,, + P,.

(b) A(P, + Pp) =2+ nand 6(P> + P») = 1+ n guarantees that |deg(u) — deg(v)| < 1 for any
adjacent vertices v and v in P,, + P,,, satisfying the condition for equitable domination. Hence,
X is an equitable dominating set of P,, + P,,.

(c) Recall that X = {a,b}, where a € V(P,) and b € V(P,,). Consequently, V(P, + P,) \ X
contains n + m — 2 = (n — 1) + (m — 1) vertices in the graph, particularly n — 1 vertices in P,
and m — 1 = n — 1 vertices in P,,.

In other words, |V (P,) \ X| =n —1 = |V(P,,) \ X|. By the definition of join of two graphs,
each vertex in P, is adjacent to every vertex in P,,. It follows that every vertex in V' (P,) \ X is
adjacent to at least n — 1 > 4 — 1 = 3 vertices in V(P,,) \ X, satisfying the condition for rings
domination. Hence, X is a rings dominating set of P, + F,.

Therefore, X is a yeri-set of P, + Py, and Yeri (P, + Pp) = 2.

Take Z = {c,d}, where ¢ € V(P,) different from a, and d € V(P,,) different from b. It follows
that Z C V(P, + Py) \ X. We only need to show that Z satisfies the conditions for equitable rings
domination.

(a) By the definition of join of two graphs, each vertex in P, is adjacent to every vertex in P,,. Thus,
vertex c is adjacent to every vertex in V(P,,) \ X and vertex d is adjacent to every vertex in

V(P,) \ X. Hence, Z is a dominating set of P, + P,,.
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(b) A(P, + Pp) =2+ nand 6(P> + P») = 1+ n guarantees that |deg(u) — deg(v)| < 1 for any
adjacent vertices u and v in P, + P,,, satisfying the condition for equitable domination. Hence,
Z is an equitable dominating set of P, + P,,.

(c) Recall that Z = {c,d}, wherea # c € V(P,) and b # d € V(P,,). Consequently, V (P, + P,,) \ Z
contains n +m — 2 = (n — 1) + (m — 1) vertices in the graph, particularly n — 1 vertices in P,
and m — 1 = n — 1 vertices in P,,. In other words, |V (P,) \ Z| =n — 1= |V(P,) \ Z|. By the
definition of join of two graphs, each vertex in P, is adjacent to every vertex in P,,. It follows
that every vertex in V(P,) \ Z is adjacent to at leastn — 1 > 4 — 1 = 3 vertices in V(P,,) \ Z,
satisfying the condition for rings domination. Hence, Z is a rings dominating set of P, + P,,.

Therefore, Z is a 7e,; ~!-set of P, + P, and Ve (P + Pp) = 2 for n > 4.
O

Theorem 4.4. There exists a ~y,,-set in the join P, + Py, of path graphs Py, and Py, if |n —m| = 1and n > 2.

Moreover

. 1 ifn=2
’Yeri(Pn'f‘Pm):’Veri (Pn+Pm):

2 ifn>3

Refer to the figure below for a clearer illustration.

FiGure 3. P, + P, where m = n + 1 with the degree of its vertices

The following table summarizes the degree of the vertices in the graph.

Vertex Degree | Degree in terms of n
Pendant U, Up 14+m 2+n
Fn Non-pendant | us, us,...,up—1 | 2+m 3+n
Pendant V1, Un, 1+n 1+n
Fm Non-pendant | vg,v3,...,vm—1 | 2+ n 24+n

TaBLE 4. Degree of vertices in P, + P, wheren =m + 1
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Theorem 4.5. There exists a ~y,,'-set in the join P, + P,, of path graphs Py, and Py, if |n —m| = 2 and n > 2.

Morever,
2 ifn =2
Yeri (P + Pm) =< 3 ifn=30rn=4
[%W +2 ifn>5
and

Yeri(Pn + Pm) ifn#4

4 ifn=4

’Ye'ri_l(an + Pm) =

Refer to the figure below for a clearer illustration.

FiGure 4. P, + P,, where m = n + 2 and n > 5 with the degree of its vertices

The following table summarizes the degree of the vertices in the graph.

Vertex Degree | Degree in terms of n
Pendant U, Up 14+m 3+n
Fn Non-pendant | ug, u3,...,up—1 | 2+m 4+n
Pendant V1, Un 1+n 1+n
Fm Non-pendant | vy, v3,...,0m—1 | 2+n 24+n

TasLE 5. Degree of vertices in P, + P, where n =m + 2

Corollary 4.6. There exists a e ‘-set in the join P, + Py, of path graphs P, and Py, if (|n —m| > 3,
n = 3, and m = 3k + 1 for some k € Z) or (|n —m| > 3 and n > 4). Moreover, Yeri(Py + Pn,) =
'Ye(Pn) + ’Ye(Pm) and ’Yem'_l_l(Pn + Pm) = 'Ye_l(Pn) + ’Ye_l(Pm)'

Refer to the figure below for a clearer illustration:
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n+1
Ficure 5. A Join of Graph P,, + P, where |n —m/| > 3

The following degree of each vertex in the graph is summarized in the table below.

Vertex Degree | Minimum Degree in terms of n
UL, Uy m+1 n+4
Py
U, Uy« « oy Up—1 | M+ 2 n+5
U1, U n+1 n+1
P
V2, V3, .oy Um—1 | T+ 2 n 42

TasLE 6. Degree of vertices in P,, + P, where |n —m| > 3

Hence, for vertices of P, in P, + P,,, we have the following degree difference:
i. |deg(u1) — deg(u1)| = |deg(un) — deg(un)| =0
ii. |deg(u1) — deg(ug)| = |deg(uy,) — deg(un—1)| = |(m+1) — (m+2)| =1
iii. |deg(u;) — deg(u;)| =0
For vertices of P, in P, + P,,, we have the following degree difference:
i |deg(v1) — deg(v1)| = |deg(vm) — deg(vp,)| = 0
ii. |deg(vi) — deg(v2)| = |deg(vm) — deg(vm—1)| = |(m+1) — (m+2)| =1
iii. |deg(v;) — deg(v;)| =0

For any pair of vertices from P, and P,,, we have the following degree difference:

i |deg(u1) — deg(v1)| = |deg(u1) — deg(vn)| = |deg(un) — deg(v1)| = |deg(un) — deg(vm)| =
[(m+1)—(n+1)]=|(n+4) —(n+1)|=3
ii. |deg(u1) — deg(vi)| = |deg(un) — deg(vi) = [(m+1) = (n+2)[ = [(n+4) = (n +2)[ =2
iii. |deg(u;) — deg(v1)| = |deg(ui) — deg(vm)| = [(m +2) — (n+1) 2 [(n+5) — (n+1)| =4
iv. |deg(u;) — deg(v;)] = |(m+2) = (n+2)| > |(n+5) — (n+2)| =3

Theorem 4.7. There does not exist a ve,;~*-set in P, + Py, where n < m, whenever any of the following is

true:

(1) n = 1. Moreover, Yeri (P, + Pp) = 0;
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(2) |n—m| > 3and n = 2. Moreover, Yer; - (Pn + Pn) = 0.
(3) |n—m| >3, n=3,and m = 3k or m = 3k + 2 for some k € Z. Moreovet,
’Yeri_l(Pn + Pm) =0.

Condition Graph | Yeri (P + P) | Yeri H(Po + P)
n=1 P+ P, 0 0
n=2andm =3k >5 Py, + Py 0 0
n=2andm=3k+1>5| P+ P31 [ +1 0
n=2andm=3k+22>5| P, + P32 0 0
n=3andm =3k >6 P+ Py (] +1 0
n=3andm=3k+2>6| P;+ Psjo (5] +1 0

TaBLE 7. Summary of P, + P, graphs with no v.,; !-set

5. CoNcLUDING REMARKS

The notion of inverse equitable rings domination has been successfully introduced in this paper
with some key conditions for the existence of inverse equitable rings dominating sets in graphs, and
determined their inverse equitable rings domination numbers up to a binary operation: join of path-to-
path graphs. One definite extension of this research is the inverse equitable rings domination number
of the join of path-to-cycle, join of cycle-to-cycle, corona of graphs, and cartesian product of graphs that
the authors had already started working on. Meanwhile, the authors recommend other researchers to
study results and existence of this notion to other binary operations not covered in this study. Moreover,
exploring the applications of this concept in other areas of mathematics could be an interesting research

direction.

Authors’ Contributions. All authors have read and approved the final version of the manuscript. The

authors contributed equally to this work.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication

of this paper.

REFERENCES

[1] S. Abed, M. AlHarere, Rings Domination in Graphs, Int. J. Nonlinear Anal. Appl. 13 (2022), 1833-1839. https://doi.
org/10.22075/ijnaa.2022.6544.

[2] S.H. AL-Emrany, M.M.Q. Shubatah, Inverse Domination in Bipolar Fuzzy Graphs, Ann. Fuzzy Math. Inform. 20 (2020),
67-77. https://doi.org/10.30948/AFMI.2020.20.1.67.

[3] J. Alfonso, M. Caay, Independent Rings Dominations in Some Graphs, Asia Pac. J. Math. 12 (2025), 35. https://doi.
org/10.28924/apjm/12-35.


https://doi.org/10.22075/ijnaa.2022.6544
https://doi.org/10.22075/ijnaa.2022.6544
https://doi.org/10.30948/AFMI.2020.20.1.67
https://doi.org/10.28924/apjm/12-35
https://doi.org/10.28924/apjm/12-35

Asia Pac. J. Math. 2025 12:101 16 of 16

[4] A. ANITHA, S. ARUMUGAM, M. CHELLALI, EQUITABLE DOMINATION IN GRAPHS, Discret. Math. Algorithms
Appl. 03 (2011), 311-321. https://doi.org/10.1142/s1793830911001231.
[5] C. Berge, The Theory of Graphs and Its Applications, Greenwood Press, 1982.
[6] M. Caay, Equitable Rings Domination in Graphs, J. Algebr. Syst. 13 (2025), 157-168. https://doi.org/10.22044/jas.
2023.12812.1693.
[7] M. Caay, E.B. Arugay, Perfect Equitable Domination of Some Graphs, Int. Math. Forum 12 (2017), 891-900. https:
//doi.org/10.12988/imf .2017.6792.
[8] M. Caay, D. Dondoyano, On Perfect Rings Dominations in Graphs, Asia Pac. ]. Math. 11 (2024), 44. https://doi.org/
10.28924/apjm/11-44.
[9] M. Caay, M. Durog, On Some Independent Equitable Domination of Graphs, Gulf J. Math. 11 (2021), 57-64. https:
//doi.org/10.56947/gjom.v11i1.668.
[10] M. Caay, A. Hernandez, Perfect Equitable Isolate Dominations in Graphs, Eur. J. Pure Appl. Math. 17 (2024), 969-978.
https://doi.org/10.29020/nybg.ejpam.v17i2.4963.
[11] M. Caay, R. Maza, R. Duarte, S.R. Lana, B. Soriano, et al., Equitable Isolate Domination in Graphs, Gulf J. Math. 19
(2025), 337-346. https://doi.org/10.56947/gjom.v19i1.2603.
12] G. Chartrand, Introductory Graph Theory, Dover Publications, 1984.
] C.F. deJaenisch, Traité des Applications de ’Analyse Mathématique au Jeu des Echecs, St. Petersburg, 1862.
] F. Harary, Graph Theory, Addison-Wesley, 1994.
15] L.L. Kelleher, M.B. Cozzens, Dominating Sets in Social Network Graphs, Math. Soc. Sci. 16 (1988), 267-279. https:
//doi.org/10.1016/0165-4896(88)90041-8.
[16] V.R.Kullj, S.C. Sigarkanti, Inverse Domination in Graphs, Nat. Acad. Sci. Lett. 14 (1991), 473-475.
[17] L.C. Martin-Lundag, M.L. Caay, Inverse Rings Domination, Asia Pac. J. Math. 12 (2025), 88. https://doi.org/10.
28924 /apjm/12-88.
[18] K.S. Mallinath, L.N. Kulkarni, Inverse Equitable Domination in Graphs, J. Emerg. Technol. Innov. Res. 8 (2021), 260-264.
[19] M. Necesito, M. Caay, Rings Convex Dominations in Graphs, Asia Pac. J. Math. 11 (2024), 85. https://doi.org/10.
28924/apjm/11-85.
20] O. Ore, Theory of Graphs, American Mathematical Society, Providence, (1962).
D.P. Salve, E.L. Enriquez, Inverse Perfect Domination in Graphs, Glob. J. Pure Appl. Math. 12 (2016), 1-10.
E.P. Sandueta, Equitable Domination in Some Graphs, Appl. Math. Sci. 13 (2019), 309-314.
23] V. Shalini, I. Rajasingh, Inverse Domination in X-Trees and Sibling Trees, Eur. J. Pure Appl. Math. 17 (2024), 1082-1093.
https://doi.org/10.29020/nybg.ejpam.v17i2.5038.
[24] S.Shukla, V.S. Thankur, Domination and Its Type in Graph Theory, J. Emerg. Technol. Innov. Res. 7 (2020), 1549-1557.
[25] V.Swaminathan, K. Dharmalingam, Degree Equitable Domination on Graphs, Kragujevac J. Math. 35 (2011), 191-197.

]
]
]
]


https://doi.org/10.1142/s1793830911001231
https://doi.org/10.22044/jas.2023.12812.1693
https://doi.org/10.22044/jas.2023.12812.1693
https://doi.org/10.12988/imf.2017.6792
https://doi.org/10.12988/imf.2017.6792
https://doi.org/10.28924/apjm/11-44
https://doi.org/10.28924/apjm/11-44
https://doi.org/10.56947/gjom.v11i1.668
https://doi.org/10.56947/gjom.v11i1.668
https://doi.org/10.29020/nybg.ejpam.v17i2.4963
https://doi.org/10.56947/gjom.v19i1.2603
https://doi.org/10.1016/0165-4896(88)90041-8
https://doi.org/10.1016/0165-4896(88)90041-8
https://doi.org/10.28924/apjm/12-88
https://doi.org/10.28924/apjm/12-88
https://doi.org/10.28924/apjm/11-85
https://doi.org/10.28924/apjm/11-85
https://doi.org/10.29020/nybg.ejpam.v17i2.5038

	1. Introduction
	2. Preliminaries
	3. Inverse Equitable Rings Domination in Graphs
	4. The Inverse Equitable Rings Domination under a Binary Operation
	4.1. Join of Path-to-Path Graphs

	5. Concluding Remarks
	Authors' Contributions
	Conflicts of Interest

	References

