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AsstrACT. In this study, we investigated the non-existence of perfect permutation codes under the crown
poset metric for different types of permutation codes. These include the permutation code generated by
permutation (n +1n + 2 --- 2n), permutation code generated by two permutations (12 3 --- n) and
(n+1n+2n+3 --- 2n), permutation code generated by permutation (135 --- 2n —1)(246 --- 2n),
permutation code generated by permutation (1n +12n +2--- n 2n), and permutation code generated
by permutation (12n22n —1---nn+1).
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1. INTRODUCTION

Slepian [4] introduced the concept of permutation modulation and demonstrated that permutation
codes exhibit a strong performance on an additive white Gaussian noise (AWGN) channel. Moreover,
the maximum-likelihood decoders for these permutation codes were relatively straightforward. How-
ever, the implementation of these codes requires large lookup tables, rendering them quite complex.
Wolf [13] introduced the concept of utilizing permutation codes for the development of high-rate
runlength-limited codes that possess both error detection and correction capabilities. Wolf demon-
strated that these codes asymptotically achieve the capacity of a noiseless, runlength-limited constrained
channel. However, they did not provide efficient encoding or decoding mechanisms. Accordingly,
Datta et al. [22] presented an enumeration scheme designed to encode and decode permutation codes
with low complexity. Although the enumeration scheme is applicable to any use of permutation codes,
the authors focused on its application in the construction of runlength-limited codes. In this case,
enumerative encoding and decoding algorithms based on enumeration of combinations [6] were em-
ployed. However, a limitation of this indirect enumeration technique is its requirement for successive

renumeration of symbols within codewords, as combinations, rather than permutations, are counted.
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In this correspondence, Milenkovic et al. [ 18] proposed an algorithm based on the enumeration of
permutations of a multiset, which obviates the need for renumeration and thereby enhances efficiency.
Ian F. Blake [11] introduced permutation codes for discrete channels by employing the concept pre-
sented in [5]. Permutation codes have garnered renewed interest due to their crucial applications in
data transmission over powerlines [9], [17], [3], [24], [15], as well as their role in designing block
ciphers [7], [25] and advancing multilevel flash memory technologies [1], [2], [8].

In 2015, Buzaglo et al. [23] established novel bounds for the size of permutation codes. They
demonstrated the nonexistence of perfect single-error-correcting codes in \S,, for cases where, n > 4 is
a prime or 3 < n < 11. In 2016, Kong et al. [ 14] established that perfect permutation codes does not
exists by using the Ulam metric. They developed a technique for determining sphere size through
the application of Young tableaux. This approach is crucial for proving the nonexistence of perfect
permutation codes. In 2021, Wang et al. [29] addressed the unresolved problem initially proposed
by Buzaglo and Etzion [23]. They introduced a polynomial expression to represent the size of a ball
in S,, using the Kendall 7 metric for a specified radius r and identified certain conditions that are
sufficient to prove the absence of perfect permutation codes. Moreover, they demonstrated that no
perfect t-error-correcting code exists in S,, under the Kendall 7 metric for the specific valuesof 1 <t < 6
and nor 2(%) < 2t +1 < (%). In 2023, Wang et al. [27] demonstrated the nonexistence of perfect
error-correcting codes in S, under the Hamming metric for an expanded range of values of ¢ and n.
They specifically proposed sufficient conditions for the nonexistence of perfect permutation codes.
Furthermore, they established that no perfect error-correcting code exists in \S,, under the Hamming
metric for certain values of ¢ = 1,2,3,4 and n, or when 2t + 1 < n < max{4t2e=2t1/t — 2 2t 4 1} for
t>2,ormin{svn +2, %52} <t < |25 for n > 7, where, e represents Napier’s constant. In 2024,
Wang et al. [28] conducted a study on the nonexistence of perfect codes in S, under the /., metric.
They established a sufficient condition for the nonexistence of perfect permutation codes within this
metric framework. In addition, they utilized these conditions to demonstrate the absence of perfect
t-error-correcting codes in \S,, under the Hamming metric for certain values of ¢t and n. Specifically,
they proved that no perfect t-error-correcting code exists in .S,, under the /o, metric for 1 < ¢ < 3.
Additionally, they demonstrated that a perfect t-error-correcting code does not exist in \S,, under the [/,
metric for the values of t and n, where, 1 < ¢ < 3and 2¢t+1 < n, or for t and n, where, Ro;+1(n) = 0, 1, 2¢.
Here, 0 < R4(n) < d represents the remainder when n € N is divided by the d € N.

In 1995, Brualdi et al. [20] introduced a metric concept for vector spaces based on partial order over
a finite set, known as a poset. These metrics, referred to as poset metrics, extend both the traditional
Hamming metric and Niederreiter Rosenbloom Tsfasman metric. General poset metric offers new
insights into many classical coding theory invariants, such as minimum distance, packing, and covering

radius, as well as fundamental results related to perfect and MDS codes and syndrome decoding. This
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perspective enhances the understanding of these invariants and properties when viewed through the
lens of the classical and widely used Hamming metric, in which perfect codes with a poset metric are
studied using three different approaches: a) fixing a family of codes, b) fixing a family of posets, and c)
operations on a given perfect code [16]. Utilizing the approach of fixing a family of posets, Ahn et
al. [12] comprehensively characterized the parameters of single and double error-correcting perfect
linear codes with a crown poset structure by solving a Ramanujan—-Nagell-type Diophantine equation.
In [10], Kim et al. provided a more concise proof of the same result by analyzing a generator matrix of a
perfect linear code. Furthermore, they integrated their method with the Johnson bound in coding theory
to demonstrate the non-existence of triple-error-correcting perfect binary codes with a crown-poset
structure. Despite their practical significance and theoretical elegance, the concept of permutation
codes has not been extensively investigated within the framework of poset metrics. Consequently,
driven by the theoretical and practical importance of both poset metrics and permutation codes, this
study examined the nonexistence of certain perfect permutation codes under the crown poset metric.
In this study, we selected a certain permutation codes generated by one or two permutations owing to
their well-defined algebraic structures. These codes naturally interact with the layered dependency
model of the crown poset, enabling a rigorous examination of how group actions influence invariants
of coding theory, such as the minimum distance, packing radius, and covering radius.

In this article, we have worked on nonexistence of certain perfect permutation codes under the crown
poset metric. The paper is organized as follows: In Section 2, definition of poset code is recalled. In
Section 3, permutation codes under the poset metric are defined. In Section 4, permutation codes under
the crown poset metric are presented. Nonexistence of certain perfect permutation codes under crown
poset metric is discussed in Section 5. Section 6 contains concluding remarks.

Abbreviations and Acronyms:

Notation Meaning
G = ({(9)) G is generated by g, i.e., G contains g and all its powers.
I = (supp(x)) I is the smallest ideal containing the support of z.
2n] ={1,2,...,n,n+1,...,2n} | The set of integers from 1 to 2n.

TaBLE 1. List of Notations and Their Meanings

2. PRELIMINARIES

In 1995, Brualdi et al. [20] introduced the concept of a poset metric, which is a metric defined
on a vector space Iy over a field IF,, with partial ordering (<) imposed on a finite set P containing
elements from 1 to n, specifically, P = {1,2,--- ,n}. Anideal I is defined as a subposet of P with the

characteristic that if y € I and z < y, then z € I. The poset weight of vector y € Fy is determined by
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the cardinality of the smallest ideal of P that encompasses the support of y. Formally, this is expressed
as wp(y) = |(supp(y))|, where, supp(y) = {j|y; # 0}. The poset distance between any two vectors y
and z in [y, is defined as dp(y, 2) = wp(y — 2). This distance adheres to all properties of a metric and is
referred to as the poset metric. A linear subspace C' of Iy that possesses a poset metric with dimension

k and minimum distance dp, is termed as a poset code with parameters [n, k, dp].

3. PERMUTATION CODES UNDER POSET METRIC

In this article, [n] denotes the set {1, 2, --- ,n}. The set of all permutation over [n] is called symmetric
group denoted as S,. Let P = ([n], <) be a poset over [n]. Given a permutation = € S,, we define

permutation poset weight of 7 by
wtpp(m) = [{supp(r))]
where, supp(m) = {i € [n] : w(i) # i}.

Definition 3.1. Permutation poset distance between any two permutations in Sy, is defined as dpp(o,m) =
wtpp(o, ) where, wtpp(o, ) = [(supp(o,7))|, supp(o,m) = {i € [n]|o(i) # 7(i)} and (supp(o, ™)) is the
smallest ideal generated by supp(o, ).

Theorem 3.2. [21] If P is a poset of n elements, then permutation poset distance i.e., dpp is a metric on Sy,.
We call the metric dpp(.,.) on S,, as Permutation Poset metric.

Definition 3.3. Permutation codes having length n and minimum distance dpp are defined as a subsets of

symmetric group S,.

Definition 3.4. For a given a permutation code C' C S, Minimum Distance is denoted as dpp(C') and defined

as 6pp(C) == min{dpp(m,0) : 7,0 € C,m # o}

Definition 3.5. For a given a permutation code C' C S,,, ball of radius r is denoted as Bg,,, (7, r) and defined

as Bypp(m,7) = {0 € Syldpp(o,m) < r}.

Definition 3.6. For a given a permutation code C' C Sy, the Packing Radius is denoted as R, (C') and defined
as Ry, (C) = max{r € [n] : By, (m,7) N\ Bap,(o,7) = ¢, Vm,0€C,m#o0c}.

Definition 3.7. For a given a permutation code C C S,,, Covering Radius is denoted as CVy,,,(C) and defined
as CVy,, (C) :==min{r € Z* : S, = |J Bap,(m,7)}.
el

Definition 3.8. Given a subset C of S,, the covering radius of C is denoted as CVy,,,(C), is defined as
CVapp(C) = maxhes, mingec d(g, h). In other words, it is the smallest radius r such that balls of radius r

centered at the elements of C' covers the entire space Sy,.
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Definition 3.9. A permutation code is said to be perfect permutation code if its packing radius is equal to its

covering radius.

Theorem 3.10. [21] For a given permutation code C' having parameter (n, M,épp), the packing radius
Ry, (C) satisfies the following inequalities:
dpp(C) —1
POV < Ry () < dpel0) 1 M
Theorem 3.11. [21] For a given permutation code C having parameter (n, M,dpp), the covering radius
CRy,,(C) satisfies the following inequality:
CRipp(C) <m (2)
4. PERMUTATION CODES UNDER CROWN POSET METRIC
Definition 4.1. Crown Poset is a poset Cr = ([2n], =) where the only relations are:

njcrn+1a n Xer 20 andjjcrn"f’ja jjcrn+j+1> Vlgjgn_l (3)

Let [2n] denotes the set {1,2,--- ,2n}. The set of all permutation over [2n] is called symmetric group
denoted by Sa,,. Let Cr = ([2n], <) be a crown poset over [2n]. Given a permutation 7 € Sa,, we define

permutation crown poset weight of = by
wier (1) = |[(supp(m))|
where, supp(m) = {i € [2n] : w(i) # i}.

Definition 4.2. Permutation crown poset distance between any two permutation belong to Sa, is de-
fined as de.(o,7) = wte(o,m) where, wter(o,m) = |(supp(o, )|, supp(o,m) = {i € [2n]|o(i) #
7(i)} and (supp(o, 7)) is the smallest ideal generated by supp(o, ).

Remark 4.3. Let Cr = ([2n], <) be a crown poset over [2n| then permutation crown poset distance i.e., dc, is a

metric on Sa,.

Definition 4.4. For a given permutation code C' C So,, minimum distance is denoted as d.,(C') and defined as

der (C) := min{dey(m,0) : m,0 € C,w # o}

Definition 4.5. Permutation codes having length 2n, size M and minimum distance d., under crown poset

metric are defined as a subsets of symmetric group Sop,.

Definition 4.6. For a given a permutation code C' C Say,, ball of radius r is denoted as B(w,r) and defined as

B(m,r) = {0 € Soplder(o,m) <1}

Definition 4.7. For a given a permutation code C' C Say,, the Packing Radius is denoted as Ry, (C') and defined
as R, (C) = max{r € 2n] : B(m,r)N B(o,r) = ¢, Vm,0 € C,m # 0o}.
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Definition 4.8. For a given a permutation code C' C Sa,,, Covering Radius is denoted as C'Vy,, (C) and defined
as CVy, (C) :==min{r € Z* : Sop, = |J B(m, 1)}
reC

Definition 4.9. Given a subset C' of Sa,, the covering radius of C' is denoted as CVy,, (C), is defined as
CVa,.. (C) = mazxpes,, mingec d(g, h). In other words, it is the smallest radius r such that balls of radius r

centered at the elements of C' covers the entire space Soy,.

Definition 4.10. A permutation code is said to be perfect permutation code if its packing radius is equal to its

covering radius.

Theorem 4.11. [21] For a given permutation code C' having parameter (2n, M, .., the packing radius R, (C)

satisfies the following inequalities:

der (C)

2 0] < R () < dl) -1 @)

Theorem 4.12. [21] For a given permutation code C' having parameter (2n, M, d.,), the covering radius

CVa,.. (C) satisfies the following inequality:
CVq,,. (C) < 2n (5)

5. NONEXISTENCE OF CERTAIN PERFECT PERMUTATION CODES UNDER CROWN POSET METRIC

Theorem 5.1. The minimum distance of the cyclic group generated by (n +1n + 2 --- 2n) permutation,

denoted as, C is 2n under the crown poset metric.

Proof. The support of any two distinct permutations belong to C; contains {n +1,n+2,n+3,--- ,2n}
elements. Subsequently, its ideal contains {1, 2, - - - ,2n}. Therefore, d.(7,7) = 2n for all 7,7 € C and

7 # 7. Hence, minimum distance of the 'y is 2n under the crown poset metric. [l

Theorem 5.2. The packing radius of Cyisn+ 1, n+ 1 and n + 2 whenn € N\ {1} is odd, n = 0 (mod 4)

and n = 2 (mod 4), respectively, under the crown poset metric.

Proof. As established in the Theorem 4.11 packing radius of C; bounded between | 241 | and 2n — 1.
Casel: If n =1 (mod4),n > 1and n = 3 (mod 4)
To establish that the packing radius of C; forn =1 (mod 4), n > 1 and n = 3 (mod 4) is not n + 2 it is
sufficient to present a counterexample.

Consider, [ as the Identity permutation,c = (n+1n+2 --- 2n) e C; and a = (an n+ 21 n +

n43 .. 2n) € Sy then,
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—1 1
z 7n+n+ , n+3772n}
2 2 2
n+1 n+3 }
.-.,n .

2 7 27

supp(I, c) :{

= (supp(I,a)) =supp(I,a)U { (6)
— dcr(I7a) =n + 2.

Hence, a € B(I,n + 2).

-1 -1
supp(o, @) :{n?,n+1,n+2,--~ ,n—i—L,Qn}

n—3
<Supp(07a)> Zsupp(a, Oé) U {1727 ) 92 y TV — 17”} (7)

= der(0,) =n+2
Therefore, « € B(o,n + 2)

By using (6) and (7), we can conclude that o € B(o,n +2) N B(I,n + 2). Hence, By using definition
of packing radius, we can conclude that packing radius of C; is less than n+2 whenn € N\ {1} is odd.
Now, we will prove that packing radius of C; is n + 1 where, n = 1 (mod 4) and n = 3 (mod 4).
Consider, v,0 € Cy then, supp(v,6) = {n +1,n+2,---,2n} and d.,(v,0) = 2n. Suppose that 5 €
B(v,n+1)NB(O,n+ 1) thend.(v,5) <n+1landd.(6,8) <n+ 1.

If there are ”T“ elements in supp(v, B) fromset {n+1,n+2,-- - ,2n}, thenitsideal contains atleast n+2
elements. Consequently, d., (v, ) > n+2 > n+1, which results in a contradiction. Therefore, supp(v, 3)
contains less than or equal to ”7_1 elements from {n+ 1,n+2,--- ,2n}. If supp(v, 5) contains less than
or equal to ”T_l elements from {n + 1,n + 2,--- ,2n}, then supp(f, 5) contains at least RTH elements
fromset {n+ 1,n+2,---,2n}. Therefore, |(supp(6, 3))| > n + 2, which implies that d..(6,3) > n+2,
leading to a contradiction. Hence, we conclude that B(v,n + 1) N B(¢,n + 1) = ¢. Therefore, the
packing radius of C isn + 1 whenn =1 (mod 4),n > 1,and n =3 (mod 4).

Case 2: If n = 0 (mod 4)

To demonstrate that the packing radius of C for n = 0 (mod 4) is not n + 2 it is sufficient to provide
counterexample.

Consider, I as the Identity permutation, 7 = (n +1n+1+ %) (n +2n+2+ %) e (n +3 2n> €
Ciand a = (n—l—ln—l—l—k%)---(n—k%n%—%%—%) € S5, then,

supp(I, o) = {n+1,n+2,--~ ,n+%,n+1+g,-~- ,n+%

n n n n n
I7 = Ia {1727"'a777 177 27"'77 R }
= (supp(I,a)) = supp(l,a) U 13 + 5 + 5 + 1 n

(8)
= do(I,a) =n+2.

Hence, « € B(I,n +2).
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n n n n n
supp(ﬂ,a)—{n+z+1,n+1+2,--- ,n+§,n+z+1+§,--- ,Qn}

(supp(m, @) = supp(m,a) U {% +1,--

nnomo L non, n_gn }
«  — — —_— —_— —_— ...ni— —_ —_
272 4 "2 4 ’ T4 "2 4 (9)

ol (moa) =n 42
= a € B(m,n+2)

By using (8) and (9), we can infer that o € B(w,n + 2) N B(I,n + 2). Hence, by using definition of
packing radius, we can deduce that packing radius of C'; is less than n 4 2 when n = 0 (mod 4).

Now, we will prove that the packing radius of C is n + 1 where, n = 0(mod 4). Let, v, u € C} then,
supp(v,p) ={n+1,n+2,--- ,2n} and der (v, ) = 2n.

Suppose that v € B(v,n + 1) N B(y,n + 1) then de,r(v,7) < n+ 1 and dep(p,7) < n+ 1. If there
are § + 1 elements in supp(v,~) from the set {n + 1,n + 2,--- ,2n}, then its ideal contains at least
n + 3 elements, therefore, it follows that d.(v,y) > n + 3 > n + 1, which constitutes a contradiction.
Therefore, supp(v, v) must contain fewer than or equal to § elements from the set {n+1,n+2,--- ,2n}.
If supp(v, v) contains fewer than % elements from set {n 4 1,n 4 2,-- -, 2n}, it follows that supp(u, )
must include at least § 4 1 elements from this set. Consequently, |[(supp(u,7))| > n+3 > n + L
This leads to the conclusion that d.,(u,y) > n + 1, which is a contradiction. If supp(v,v) includes %
elements from set {n +1,n+42,-- -, 2n}, it follows that supp(x,y) must contain at least § + 1 elements
from the same set. Consequently, |(supp(i,v))| > n + 3 > n + 1. This leads to the conclusion that
der(p,7y) > n + 1, which is a contradiction. Hence, we deduced that the B(v,n+ 1) N B(u,n + 1) = ¢.
Therefore, Packing radius of C is n + 1 when n = 0 (mod 4).

Case 3: If n = 2 (mod 4)

To refute the claim that the packing radius of 7" for n = 2 (mod 4) is not n + 3 it is adequate to offer a
counterexample.

Consider, I as the Identity permutation,c = (n+1n+2 --- 2n) e Cianda=(n+1n+2 --- n+

5 4 1) € Sz, then,
n
SUPP(I,Q)Z{R+1,n+2,--- ,n—|———|—1}

2
— (supp(I,0)) = supp(L,0) U {12, =+ 1,n}
i (10)
= dcr(I,Oé):TL‘l-?).
Hence, a € B(I,n + 3).
supp(o, ) = {n+g+1,n+g+2,... ,Qn}
n n
— (supp(o,a)) = supp(o, ) U {—, —+1,--- ,n}
2° 2 an

= de(0,a) =n+1

.o € B(o,n+3)
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By using (10) and (11), we can ascertain that o« € B(o, n+3)NB(I,n+3). Hence, By using definition
of packing radius, we can deduce that packing radius of C' is less than n + 3 when n = 2(mod 4).

Now, we will establish that the packing radius of C; is n + 2 where, n = 2(mod 4). Let, v,6 €
Cy then, supp(v,0) = {n + 1,n + 2,---,2n} and d.(v,0) = 2n. Suppose that § € B(v,n + 2) N
B(#,n + 2) then d..(v, 8) < n + 2 and d(6,3) < n + 2. If there are § + 1 elements in supp(v, 3)
from set {n + 1,n + 2,---,2n}, then its ideal must contain at least n + 3 elements. Consequently,
der(v,8) > n+ 3 > n + 2, which results in a contradiction. Therefore, supp(v, ) contains at most
5 elements from set {n + 1,n + 2,---,2n}. If supp(v, §) contains fewer than § elements from set
{n+1,n+2,---,2n}, it follows that supp(#, 3) must include at least § + 1 elements from this set.
Consequently, | (supp(8, 8))| > n+3 > n+2, This leads to the conclusion that d., (0, 3) > n+2, whichisa
contradiction. If supp (v, ) includes § elements from set {n+1,n+2,-- -, 2n}, it follows that supp (0, 3)
must contain at least § + 1 elements from the same set. Consequently, |(supp(0,5))| > n +3 >n +2,
this implies that d.,(6, 3) > n + 2, which is a contradiction. If supp(v, §) contains 5 elements from
theset {n+1,n+2,---,2n}and n = 2 (mod 4), then 7 = o2 is the sole permutation within the set
C that is a product of transpositions, with the number of transpositions being odd. Consider, v = 7
for such 7. Then, the support of (6, 3) contains elements from set {n + 1,n + 2,---,2n} in at least
5 + 1 instances. Consequently, the cardinality of (supp(0, )) is at least n + 3, which exceeds n + 2.
This implies that d..(6, 8) > n + 2, leading to a contradiction. In this case, the second choice for v is
o. Suppose supp(v,a) = {n +1,--- ,n + 5}. This implies that supp(0, 8)={n + §,n+ 5 +1,--- ,2n},
Therefore, |(supp(d, 8))| > n + 3 > n + 2, It implies that d., (0, 3) > n + 2 which is a contradiction.
Hence, it can be concluded that the B(v,n + 2) N B(6,n + 2) = ¢. Therefore, Packing radius of C is
n + 2 when n = 2(mod 4).

By considering all the cases we can conclude that packing radius of Cy isn + 1, n + 1 and n + 2 when

n € N\ {1} isodd, n =0 (mod 4) and n = 2 (mod 4) respectively under the crown poset metric. =~ [J
Theorem 5.3. Covering radius of C is 2n.

Proof. Consider the permutation 5 = (12n)(22n —1)---(nn + 1) € Sy,. For any m € C}, it follows
that supp(w, B) = {1,2,3,--- ,2n}, thereby indicating that its ideal encompasses {1,2,3,--- ,2n}. This
implies that d., (7, ) = 2n. Therefore, the covering radius of C| is at least 2n. Furthermore, according
to Theorem 4.12, the covering radius is less than or equal to 2n. Hence, the covering radius of (' is

2n. O

Theorem 5.4. Cyclic group generated by the (n + 1 n+ 2 --- 2n) permutation denoted as, Cy is not perfect

code for any values of n € N\ {1} under the crown poset metric.

Proof. The packing and covering radii of C; are not the same. Utilizing (4.10), we can deduce that C4

does not constitute perfect code. O
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Example 5.5. Consider n = 3, then permutation code C is generated by the permutation (4 5 6). C; =
{(456), (465), Id(Cy)}. Relation of crown poset are defined as follows: 1 < 4,1 <¢p 5,2 =¢r 5,
2 =2 6,3 = 4,3 24 6. The support of any two distinct permutations belonging to Cy comprises the elements
{4,5,6}. By applying the definitions of an ideal and crown poset, it can be inferred that d., (o, 7) = 6 for all
o,m € Cy where, o # w. Consequently, the minimum distance of C; is determined to be 6 for n = 3. By
constructing program in Magma computational algebra system software [20], it is verified that balls of radius 0,
1, 2, 3, and 4 are disjoint, with the first overlap occurring at radius 5. For instance, consider o = 1d(C1) and
7 = (45 6); the common element in both balls is (1 6 4). Thus, by employing the definition of the packing radius,
we can conclude that the packing radius is 4. Furthermore, using Magma software, it is verified that the covering
radius of Cy is 6 when n is 3. Since, the packing radius and covering radius of Cy are distinct. Utilizing (4.10),

it can be deduced that C; does not constitute a perfect code under the crown poset metric.

Theorem 5.6. If Cy = ({0, 7)) where,0c = (123 --- n)andm = (n+1n+2n+3 --- 2n) then minimum

distance is n under the crown poset metric for n > 1.

Proof. Wehave, 0 = (123 --- n)andnt=(n+1n+2n+3 --- 2n). Consider, A = {1,2,--- ,n} and
B={n+1,n+2,---,2n}. Here o acts only on A and 7 acts only on B so each permutation 1, = 1771
and 7 = 02792 actas for any z € A, 71(z) = 0% (x), 72(z) = 0 (x) and for any z € B, 71 (z) = 7’1 (x),
T9(x) = 772(x) so the comparison 71 (z) # 72(z) reduces toxr € A = o' (z) # 0?(z) andx € B =
71 (z) # 772(x). We split the domain [2n] into the disjoint union A U B. Then supp(r1,72) = {z €
Alo® (z) # 02(x)} U {z € B|n't(x) # 072(x)}. Hence, supp(r1, T2) = supp(c™, 0%2) U supp(rit, m92).
¢,if ot = o2 & w1 = 7J2

[n],if o%t # 0% & 7t = 7i2

supp(T1,T2) = | _ ‘ _
[n+ 1,2n],if 0" = o"2 & w9t #£ qI2

[2n],if o™t # o2 & T £ 72

¢,if ot = o2 & 71 = 7l2

[n],if o™ # o' & 71 = 772
(supp(T1,72)) = ] ) . )
[2n],if o™ = o' & wIt #£ 792

[2n],if %1 # o2 & 7t # 72

0,if o = ¢ & 1t = J2

n,if o # o2 & 1 = 72

dcr(Tl,Tg) = (12)
2n,if o't = o' & 7t #£ 72

2n,if o # o2 & w1 # 72



Asia Pac. J. Math. 2025 12:102 11 of 23

By using the definition of the minimum distance and (12) we can deduce that minimum distance of

Cg isn. O

Theorem 5.7. The packing radii of Co are 5 — 1, 1 and ”T_l whenn > 2 iseven,n =2and n € N\ {1} is odd

respectively, under the crown poset metric.

Proof. Case 1: If n > 2 is even
According to the Theorem 4.11 packing radius of Cs lies between § — 1 and n — 1.
To challenge the assertion that the packing radius of Cs for n is even is not § it is sufficient to provide a
counterexample.

Consider, 0 = (12 --- n) €0y, m = 0?=(1357 --- n—1)(246 --- n) € Oy, | as the identity
permutationand a = (1357 --- n — 1) € Sy, then,

supp(l,a) ={1,3,5,7,---n— 1}

= (supp(l,a)) ={1,3,5,7,--- ,n—1}

n (13)
- dcf,n(_[7 Of) 25
n
Hence, o € B(I, 5).
supp(w, O[) = {2’ 45 65 e ,n}
= (supp(w,a)) = {2a4a67 o ,7’L}
(14)
— der(m,0) = 3
n
RO AS B(ﬂ', 5)

By using (13) and (14), it can be deduced that o € B(I, %) N B(w, §). Consequently, based on the
definition of the packing radius, it can be concluded that the packing radius of Cs is less than 7 .
Furthermore, the packing radius is greater than or equal to § — 1 from the Theorem 4.11. Therefore,
the packing radius of (3 is 5 — 1 when n > 2 is even.

Case 2: Forn = 2
If n is 2 then, C3 includes identity permutation I and a transposition (1 2). Consider, 0 = (12), [ =

Identity permutation and o = (1 2)
supp(0, @) = ¢ = (supp(0, @)) == der(0, ) =0
Supp(la a) = {172} = <supp([, Oé)> == dCT(Iv OL) =2
s.a € B(o,2)and « € B(I,2).

Hence, o € B(0,2) N B(I,2).
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By using the definition of the packing radius we can deduce that the packing radius of C3 is 1 when
n=2.

Case 3: If nisodd and n > 1

According to the Theorem 4.11 packing radius of C constrained between -1 and n — 1 when n is
odd. To demonstrate packing radius of C5 for n is odd is less than %! it is sufficient to prove by
counterexample.

Consider, 0 = (12 --- n) € Cy, I as the identity permutation of Cy and o = (1 2 ... ”TH> € Son

then,
n—+1
S’LLpp(O',Oé) :{ 9 y T 7”}
n+1
= <8upp(0,a)>={ 5 n}
n+1 (15)
= de(0,0) = 5
n—+1
Hence,ozeB(a, 5 )
n—+1
supp(I,0) = {1,2,+ . "=}
n+1
= (supp(I,o)) = [1, 5 }
n+1 (16)
= de(,0) = 5
n+1
Therefore, o € B <I - )

By using (15) and (16), it can concluded that the o € B (a, %) NnB (I , ”T“) Consequently, by
applying the definition of packing radius, it can be inferred that the packing radius of C is less than
2+l when n is odd. According to Theorem 4.11, the packing radius is greater than or equal to %;1.
Therefore, the packing radius of C5 is %5~ L when n > 1 is odd.

Hence, packing radii of Cs are § — 1, 1 and 21 whenn € N\ {2} iseven,n =2and n € N\ {1} is

odd respectively, under the crown poset metric. O
Theorem 5.8. Covering radius of C5 is 2n.

Proof. Consider, the permutation § = (1n+1)(2n+2)---(n2n) € Sa,. For any 7 € Cy, it follows that
supp(m,B) = {1,2,3,--- ,2n}, indicating that its ideal encompasses {1,2,3,--- ,2n}. Consequently,
this implies that d.,.(7, 3) = 2n. Therefore, the covering radius of C; is at least 2n. Furthermore,
according to Theorem 4.12, the covering radius is bounded above by 2n. Thus, the covering radius of

(1 is precisely 2n. O

Theorem 5.9. If Cy = ((o, 7)) where,c = (123 --- n)andm = (n+1n+2n+3 --- 2n) then Cy is not

perfect code for any values of n € N\ {1} under the crown poset metric.
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Proof. The packing radius and covering radius of C are not identical it follows from (4.10) that C»

cannot be classified as a perfect code. O

Theorem 5.10. Minimum distance of the cyclic group generated by (135--- 2n—1) (246 --- 2n) permutation

denoted as, Cs is 2n under the crown poset metric.

Proof. The support of any two distinct permutations belonging to C3 encompasses elements
{1,2,3,4,--- ,2n}. Utilizing the definitions of an ideal and a crown poset, it can be concluded that
der(T,m) = 2n for all 7,m € C5 where, 7 # m. Hence, minimum distance of the Cj is 2n under the crown

poset metric. O

Theorem 5.11. The packing radius of Cs is n, n 4+ 1 when n € N\ {1} is even and odd respectively, under the

crown poset metric.

Proof. Case 1: If n is even

According to the Theorem 4.11 packing radius of C3 lies between LQ"Z;IJ and 2n — 1. To demonstrate

packing radius of C'3 for n is even is less than n 4 1 it is sufficient to prove by counterexample.
Consider, I as the identity permutation, 0 = (135--- 2n —1)(246 --- 2n), 7 = 0™? = (1 n +

DE2n+2)---(3n+%)---(n2n) eCs,anda=(1n+1)(2n+2)--- (5 n+ %) € Sz, then,

SUpp(I,OZ) :{1a27 7gvn+1>n+27n+g}

= (supp(l, ) =supp(I,a) U {n}

(17)
= der(I,a) =n + 1.
Hence, a € B(I,n+1).
supp(m, a) = {E+1,2+2,--~ ,n,n+ﬁ+1,~-- ,2n}
2 2 2
= (supp(m, a)) = supp(m,a)U {2}
2 (18)

= dep(mya) =n+1
S.a € B(myn+1)

By employing (17) and (18), it can be deduced that a € B(I,n + 1) N B(m,n + 1). Consequently,
utilizing the definition of packing radius, it can be inferred that the packing radius of C3 is less than
n+ 1.

Now, we will prove that packing radius of C3 is n when n is even. Let, v, § € C3 then, supp(v,0) =
{1,2,--- ;n,n+1,n+2,--- ,2n}and d., (v, 0) = 2n. Assume that 5 € B(v,n)NB(0,n) thend., (v, 5) <n
and d..(0, 3) < n. If there are § elements in supp(v, 3) from the set {n + 1,n + 2,--- ,2n}, then its

ideal must contain at least n + 1 elements. Consequently, d.,.(v,5) > n + 1 > n, which leads to a
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contradiction. Therefore, supp(v, 3) contains at most § — 1 elements from the set {n +1,n+2,--- ,2n}.
If supp(v, B) contains fewer than § elements from set {n + 1,n + 2,--- ,2n}, it follows that supp (0, 3)
must include at least § + 1 elements from this set. Consequently, |(supp(0, 3))| > n + 3 > n, This leads
to the conclusion that d.-(6,5) > n, which is a contradiction. Therefore, we can conclude that the
B(v,n) N B(8,n) = ¢. Hence, Packing radius of C35 is n when n is even.

Case2: If n = 1(mod 4) and n > 1

To demonstrate that the packing radius of C5 for n = 1 (mod 4) is less than n + 2 it is sufficient to
provide a counterexample.

Consider, I as the identity permutation, 7 = (I1n2n—1n—-22n—-3 --- 3n+2)2n+12nn —
12n—2n—-32n—4n—-52n—-6 ---4n+3)cCsanda=(m2n—1n—-22n—-3n—4 --- 2n —

m—1m+12nn—12n—-2n—-32n—4 --- 2n—mn)€Sznwhere,m:”7_1then,

supp(I,a) ={m,m+1,--- ;n,n+m+1,n+m+2,---,2n}

= (supp(l,a)) =supp(l, a)

(19)
= der(I, ) =n + 2.
Hence, o € B(I,n+2).
supp(mya) ={1,2,--- m+1Lnn+1ln+2--- n+m+1}
= (supp(m, a)) = supp(r, )
(20)

= dep(m, ) =n+2
S.a € B(m,n+2)

By using (19) and (20), it can be concluded that the o € B(I,n + 2) N B(m,n + 2). Hence, By using
definition of packing radius, we can deduce that the packing radius of C3 is less than n + 2.

Let, v, 0 € Cs then, supp(v,0) ={1,2,--- ,n,n+1,n+2,---,2n} and d..(v,0) = 2n. Suppose that
peB,n+1)NB(0,n+1)thend.(v,3) <n+1andd.(0,3) <n+ 1. If there are § + 1 elements
in supp(v, B) from the set {n + 1,n + 2,--- ,2n}, then its ideal must contain at least n + 3 elements.
Consequently, d., (v, ) > n + 1, which leads to a contradiction. Therefore, supp(v, 3) contains at most
”T_l elements from the set {n + 1,n +2,--- ,2n}. If supp(v, 3) contains an element less than or equal
to ”T_l from the set {n + 1,n+2,--- ,2n}, it follows that supp (6, 3) must include at least ”T“ elements
from the same set. Consequently, |(supp(6, 5))| > n + 2 > n + 1. This implies that d..(¢,3) > n+1,
which leads to a contradiction. Hence, we can conclude that B(v,n + 1) N B(6,n + 1) = ¢. Therefore,
Packing radius of C3 is n + 1 when n = 1 (mod 4).

Case 3: If n = 3(mod 4)
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To establish that the packing radius of C3 for n = 3 (mod 4) is less than n + 2 it is sufficient to give a
counterexample.

Consider, I as the identity permutation, 7 = (I1n2n —1n—-22n—-3 --- 3n+2)2n+12nn —
12n—2n—-32n—4n—-52n—6 --- 4n+3)eCsanda=(m2n—1n—-22n—-3n—4 --- m+2n+
m+12nn—12n—-2n—-32n—4--- n+m+2m—|—1n)ESQnWhere,m:”T_lthen,

supp(l,a) ={m,m+1,--- ;n,n+m+1n+m+2,---,2n}

= (supp(l,a)) =supp(l, )

(21)
= dep(I, ) =n + 2.
Hence, a € B(I,n+2).
supp(m,a) ={1,2,--- . m+1,nn+1,n+2,--- ,n+m+1}
= (supp(m,a)) = supp(m, «)
(22)

= dep(m,00) =142
S.a € B(mn+2)
By using (21) and (22), we can conclude that o € B(I,n + 2) N B(m, n+ 2). Hence, By using definition
of packing radius, it can be deduced that the packing radius of C3 is less than n + 2.

Let, v,0 € Cs then, supp(v,0) = {1,2,--- ,n,n+1,n+2,--- ,2n} and d.-(v, ) = 2n. Suppose that
peBv,n+1)NB(O,n+1)thend.,(v,B) <n+1andd.(0,3) < n+ 1. If there are § + 1 elements
in supp(v, B) from the set {n + 1,n + 2,--- ,2n}, then its ideal must contain at least n + 3 elements.
Consequently, d.(v, 5) > n + 1, which leads to a contradiction. Therefore, supp(v, ) contains at most
"T_l elements from the set {n + 1,n +2,--- ,2n}. If supp(v, 3) contains an element less than or equal
to %1 from the set {n + 1,n+2,--- ,2n}, it follows that supp (6, 5) must include at least ”%rl elements
from the same set. Consequently, |(supp(6, 5))| > n + 2 > n + 1. This implies that d..(6,3) > n+1,
which is a contradiction. Hence, we can conclude that B(v,n+1) N B(8,n+ 1) = ¢. Therefore, Packing
radius of C5 is n + 1 when n = 3 (mod 4).

By considering all the cases, we can conclude that packing radius of C'3 is n and n+1 whenn € N\ {1}

is even and odd respectively, under the crown poset metric. O
Theorem 5.12. Covering radius of C3 is 2n.

Proof. Consider, 5 = (1234 --- 2n) € Sy,. For any 7 € C3, we observe that supp(w,3) =
{1,2,3,---,2n}, indicating that its ideal encompasses {1,2,3,---,2n}. Consequently, this implies
that d.,(m, 8) = 2n. Therefore, the covering radius of Cj is at least 2n. Furthermore, as established in
4.12, the covering radius is less than or equal to 2n. Thus, the covering radius of C3 is conclusively

2n. O
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Theorem 5.13. If C3 = ({0)) where,c = (13 --- 2n—1)(246 - - - 2n) then Cs is not a perfect code under the

crown poset metric.

Proof. The packing radius and covering radius of C3 are not equal. By using (4.10) it can be concluded

that Cs is not perfect code. O

Theorem 5.14. Minimum distance of the cyclic group generated by (1 n+12n+ 2--- n 2n) permutation,

denoted as, Cy is 2n under the crown poset metric.

Proof. The support of any two distinct permutations belong to C4 contains {1,2,3,4,--- ,2n} elements.
By applying the concept of ideal and crown poset it can be dedcued that d., (o, 7) = 2n forall o, m € Cy4
where, 0 # 7. Hence, we can conclude that the minimum distance of the Cy is 2n under the crown

poset metric. O
Theorem 5.15. Packing radius of Cy is n + 1 when n € N\ {1} under the crown poset metric.

Proof. Case 1: If n is even

According to the Theorem 4.11 packing radius of Cy lies between | 22-1 | and 2n— 1. To examine whether
the packing radius of Cj for n is even smaller than n 4 2 it is sufficient to provide a counterexample.
Consider,c = (1n+12n+2 --- n2n) € C4, I as the identity permutationanda = (1n+12n+

2. §gn+55+1)€ Sy, then,
SUpp(O',Oé) :{g+1)g+25nan+g+lv ,27’2}

= (supp(o,a)) :{%,n} U [n-i- % +1,2n]|.

(23)
= de(0,0) =n+1.
Hence, o € B(o,n + 1).
n n
supp(I,a) - {1527 )§+1an+1vn+27n+§}
n n
= (supp(l,a)) = [1,— + 1} U [n,n—F *}
2 2 (24)

= dor(I,0) =n +2
Sa€B(I,n+2)

By using (23) and (24), we can conclude that « € B(o,n + 2) N B(I,n + 2). Hence, By using
definition of packing radius, we can conclude that packing radius of Cy is less than n + 2. Now,
we will prove that packing radius of Cy is n + 1 when n is even. Let, 7,v € Cj then, d..(7,v) = 2n.
Suppose that 8 € B(r,n + 1) N B(v,n + 1) then d.. (7, 8) < n+ 1 and d., (v, ) < n+ 1. If supp(r, B)

contains fewer than § — 1 elements from the set {n + 1,n + 2,---,2n}, then supp(v, 3) must

contain more than 5 + 1 elements from this set. Assume that supp(v, 3) includes § + 2 elements
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from {n + 1,n + 2,---,2n}. This assumption implies that |(supp(v, 5))| > n + 5; consequently,
der(v, B) > n+ 1, which leads to a contradiction. Therefore, it follows that 5 ¢ B(v,n + 1). Consider
the scenario where, supp(7, 3) contains exactly § — 1 elements from the set {n + 1,7 +2,--- ,2n} of
the crown poset. Assume that the elements {n +1,n+2,--- ,n+ § — 1} are the only ones from the set
{n+1,n+2,---,2n} present in supp(r, 3). Consequently, it follows that {n+ %,--- ,2n} C supp(v, o).
This implies that supp(v, 3) must contain at least (3 + 1) elements from the set {n 4+ 1,n 4 2,--- ,2n}.
Therefore, the cardinality |(supp(v, 8))| equals n + 3. Consequently, d..(v, 3) = n + 3, which leads
to a contradiction. Hence, it can be concluded that 5 ¢ B(v,n + 1). Therefore, we can deduce that,

B(r,n+1) N B(v,n+ 1) = ¢, V7,v € Cy. Hence, Packing radius of Cy is n + 1 when n is even.

Case 2: If nisodd and n > 1
To examine packing radius of C4 for n is odd is less than n + 2 it is sufficient to prove by counterexample.
Consider I as the Identity permutation,c = (1n+12n+2 --- n2n) e Cyanda=(1n+12n+

2 ... mn+mm—|—1)ESQnWhere,m:”7_1

supp(I,a) = [1, n—;—l} U [

— (supp(1,0)) = [1," 23] U [mon+ "] (25)
= dep(l,0) =n+1
— ac€B(I,n+2)
supp(o, o) = {n_gl,n}u[n—kn;lﬂn}
= (supp(o,a)) = {nglm} U [nJrn—QH’Q } (26)

= der(0,0) =n+ 2.
.o € B(o,n+2).
By using (25) and (26), we can conclude that & € B(o,n+2)NB(I,n+2). Hence, By using definition of
packing radius, we can conclude that packing radius of C is less than n + 2. Now, we have to prove that
packing radius of Cy is n + 1 when n is odd. Let, 7,v € Cy then v(z) # 7(z),Vx € [2n] = der(T,v) =
2n. Suppose that § € B(t,n+ 1) N B(v,n + 1) then d.,(8,7) < n+ 1, der(B,v) < n + 1. If there are
2+l elements in supp(r, 8) from the set {n + 1,n + 2,---,2n}, then it follows that |(supp(7, B))| =
n+2>n+1. Consequently, the number of elements in supp(r, 3) from the set {n + 1,n +2,--- ,2n}
must be less than or equal to 1. Assume that supp(7, 3) contains less than or equal to 5! elements
from set {n +1,n+2,---,2n} w1th1n the crown poset. Consequently, supp(v, #) must contain more
than 27! elements in the same set. Further, suppose that supp(v, ) comprises “}! elements from

{n+ 1, n+2,---,2n}. This implies that | (supp(v, 8))| > n+2 > n+ 1, indicating that d..(v, 3) > n+ 1.
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Therefore, 8 ¢ B(v,n + 1). Therefore, we can conclude that, B(t,n + 1) N B(v,n+ 1) = ¢, V1,v € Ch.
Hence, Packing radius of Cy is n + 1 when n > 1 is odd.
By considering all cases, we can conclude that packing radius of Cy is n + 1 whenn € N\ {1} under

the crown poset metric. U
Theorem 5.16. Covering radius of Cy is 2n — 1.

Proof. Let,i € {1,2,--- ,n—1,n,n+1,--- ,2n—1,2n}. Consider, o € Sy, such that a(i) = j. According
to the definition of Cy , itis evident the there exist 7 € Cy such that 7 (i) = j. Let,i = n+1so, a(n+1) = j
and w(n + 1) = j it implies that n + 1 ¢ supp(«, 7). Hence, dep (o, m) < 2n —1Vm € Cy .

Clearly, 5 = (I,n+1) € So. Let, 0 = (I1n+12n+23n+ 3---n 2n) then by using the
definition of Cy we can obtain that Cy = {0?|1 <i < 2n}so,0(1) =n+1& o (n+ 1) = 1. Hence,
ol(1) #n+1Vie 2n]\ (1) & o' (n+1) # 1Vi € [2n]\ (—1). Therefore, supp(c?, 3)=[2n] Vi € [2n]\ A
where, A = {1, -1}.
supp(o, B) = [2n]\ {1} then, d., (o, 8) = 2nand supp(c—1, B) = [2n]\ {n+1} then, d. (071, B) = 2n—1.
Therefore, min{d., (¢, )} = 2n—1. Hence, max min{d,.(c*, 3) }=2n—1. By using (4.9), we can conclude

that covering radius of Cy is 2n — 1. O

Theorem 5.17. Cyclic group generated by the (1 n +12n + 2--- ,2n) permutation denoted as, Cy is not

perfect code for any values of n € N\ {1} under the crown poset metric.

Proof. The packing radius and covering radius of Cy are not identical. By implying (4.10) it can be

inferred that C} is not perfect code. O

Theorem 5.18. Minimum distance of the cyclic group generated by (12n 2 2n — 1---nn + 1) permutation,

denoted as, Cs is 2n under the crown poset metric.

Proof. The support of any two distinct permutations belong to C5 contains {1,2,3,4,--- ,2n} elements.
By using the definition of the ideal and crown poset we can conclude that d.. (o, 7) = 2n forall o, 7 €

Cs where, o # 7. Hence, minimum distance of the Cj is 2n under the crown poset metric. O

Theorem 5.19. The packing radii of Cs are n + 1, n + 1 and n when n € N\ {1} is odd, n = 0(mod 4) and

n = 2(mod 4) respectively, under the crown poset metric.

Proof. According to the Theorem 4.11 packing radius of C; bounded between |21 | and 2n — 1.
Case 1: If n is even

Case 1:.1 If n = 0(mod 4)

To demonstrate packing radius of Cs for n is n = 0(mod 4) is less than n + 2 it is sufficient to prove by

counterexample.
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Consider,c = (12n22n—-1---q¢2n—q+1qg+12n—q ---n—qn+q+1---nn+1) € Cs, I as
the identity permutationand o = (¢+12n—qq+22n—q¢—1---n—gn+qg+1n—q+1) € Sop

where, m = 5 and ¢ = 7 then,

supp(o,a) ={1,2,--- ,¢,n—q+1,--- ,nyn+1,--- n+q,2n,2n—1,--- 2n—q+ 1}

= (supp(o, a)) =supp(o,a) U{n —q}.

(27)
= der(0,0) =n+ 1.
Hence, o € B(o,n+ 2).
supp([,a) :{Q+17Q+27 am7m+17"' 7n_q7n_Q+172n_Q7"' 7n+Q+1}
= (supp(l, ) = supp(I, ) U{q} 28)

= de(l,a) =n+2

sa€B(I,n+2)

By using (27) and (28), we can conclude that o € B(o,n+2) N B(I,n + 2). Hence, By using definition
of packing radius, we can conclude that packing radius of Cj is less than n + 2. Now, we will prove
that packing radius of Cs is n + 1 when n = 0(mod 4) . Let, 7,v € Cs then, d..(7,v) = 2n. Suppose
that 8 € B(r,n+ 1) N B(v,n + 1) then, d., (7, ) < n+1and d. (v, ) < n+ 1. If supp(7, B) contains
fewer than 3 + 1 elements from set {n + 1,n + 2,--- ,2n}, then its ideal must include at least n + 3
elements, which leads to a contradiction. Therefore, the number of elements in supp(7, #) from the
set {n + 1,n + 2,---,2n} is less than or equal to . If supp(r, 3) contains fewer than % elements
from the set {n + 1,n + 2,--- ,2n}, then supp(v, ) must contain more than § + 1 elements from
the same set. This condition implies that |(supp(v, 5))| > n + 3; consequently, d..(v,3) > n + 1,
which results in a contradiction. Therefore, it follows that 5 ¢ B(v,n + 1). If supp(r, 8) precisely
contains 5 elements from the set {n + 1,n +2,--- ,2n}, then supp(v, 3) comprises 5 elements from
{n+1,n+2,---,2n}. Assuming that {n +1,n+2,--- ,n+ 5} C supp(r, 3), it follows that the ideal
encompasses (1, 5|U[n, n+ 5], then the [, n]U[n+ 5 +1, 2n] is contained within the ideal of supp(v, 3).
Furthermore, in a scenario where n = 0(mod 4), it is possible to identify a v € {1,2,--- ,n} such that
either v € supp(7, 8) or v € supp(v, 3). If v € supp(7,3) and v ¢ {1,2,---, 5,n}, this implies that
|(supp(T, B))| > n + 2. Consequently, d..(7,3) > n + 1, which constitutes a contradiction. Thus,
B ¢ B(t,n + 1). Therefore, we can conclude that, B(7,n + 1) N B(v,n + 1) = ¢, V7,v € Cs. Hence,
Packing radius of C5 is n + 1 when n = 0(mod 4).
Case 1:.2 If n = 2(mod 4)
To establish packing radius of C5 for n is n = 2(mod 4) is less than n + 1 it is sufficient to prove by

counterexample.
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Consider,o = (12n22n—1 ---¢2n—q+1q+12n—q ---n—qn+q+1n—qg+1ln+q---nn+1) € Cs,
I as the identity permutationand a = (¢2n —g+1¢+12n—q ---n—qgn+q+1n—q+1) € Sy,

where, m = 5 and ¢ = ”TJFQ then,

supp(o,a) ={1,2,--- ;¢g—1l,n—q+1,--- nn+1,n+2,--- ,n+gq}
u{2n,2n—1,---,2n—q+ 2}
= (supp(o, a)) =supp(o, @) U {q}. (29)
= der(0,0) =n+ 1.

Hence, a € B(o,n + 1).

Supp(Iva):{q7Q+17Q+27 7n_Q7n_q+172n_Q72n_q+17 ,TL+C]+1}
= (supp(I, ) = supp(I, a)
(30)
= d(I,a) =n+1
sa€B(I,n+1)

By using (29) and (30), we can conclude that « € B(o,n+ 1) N B(I,n+ 1). Hence, By using definition
of packing radius, we can conclude that packing radius of Cj is less than n + 1. Now, we will prove
that packing radius of C5 is n when n = 2(mod 4) . Let, 7,v € Cs then, d.,(7,v) = 2n. Suppose that
B € B(r,n)NB(v,n) thend (1, 3) <nandd.(v,3) < n. If supp(, 3) contains & elements from the set

{n+1,n+2,---,2n}, then its ideal must include at least n + 1 elements, which leads to a contradiction.
Therefore, the number of elements in supp(7, 3) from the set {n + 1,n + 2,--- ,2n} must be less than
or equal to § — 1. If supp(7, 3) contains fewer than 3 — 1 elements from set {n + 1,n +2,--- ,2n},

then supp (v, 3) must contain more than 5 + 1 elements from the same set. This condition implies that
|(supp(v, B))| > n + 3. Consequently, d..(v, 3) > n, which leads to a contradiction. So, it follows that
B ¢ B(v,n + 1). Therefore, we can conclude that, B(7,n) N B(v,n) = ¢, Vr,v € Cs. Hence, Packing
radius of Cs is n when n = 2(mod 4).
Case2: Ifnisoddand n > 1

To examine packing radius of C5 for n is odd is less than n + 2 it is sufficient to prove by counterexample.
Consider, I as the Identity permutation, 0 = (12n22n—1 --- nn+1),0 2=(1nn—1--- 32)(n+
In42---2n)anda=(mm—1---321n)(n+1n+2--- n+m) € Sy, where, m = 2L

2
1 1
supp(l,a):[l,n+ }U[n,n—i—n;r ]

2
1 1
= (supp(I,a)) = [1,%} U [n,n—i— n;— ]

(31)
= do(l,a) =n+2

= a€ B(I,n+2)
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1 1
supp(o ™2, a) = [n+ + 1,n} U [n—&— nt ,Qn}
—1 1
(supp(o~2,a)) = [*==,n] U [n+ "=, 20]

(32)
cde(072,0) =n+2.

— a€B(o %n+2).

By using (31) and (32), we can conclude that « € B(c~2,n + 2) N B(I,n + 2). Hence, By using
definition of packing radius, we can conclude that packing radius of Cj is less than n + 2. Now,
we have to prove that packing radius of Cs is n + 1 when n is odd. Let, 7,v € Cj5 then, v(z) #
7(x),Vz € 2n] = d.(7,v) = 2n. Suppose that § € B(t,n+ 1) N B(rv,n+ 1) thend..(5,7) <n+1,
der(B,v) < n+1.1f there are ”T“ elements in supp(7, §) from the set {n+1,n+2,--- ,2n} of the crown
poset, then it follows that |(supp(7, 3))| = n + 2 > n + 1. Consequently, the number of elements in
supp(t, B) from the set {n + 1,n + 2,--- ,2n} of the crown poset is less than or equal to ”7*1 Assume

that supp(r, §) contains less than or equal to "7*1 elements from set {n + 1,n + 2,--- ,2n} within

n—1

5 elements in the same set.

the crown poset. Consequently, supp(v, 5) must contain more than
Further, suppose that supp(v, §) comprises %rl elements from {n + 1,7 +2,--- ,2n}. This implies that
|(supp(v, B))| > n+ 2 > n+ 1, which indicates that d..(v, 8) > n+ 1. So, 5 ¢ B(v,n + 1). Therefore,
we can conclude that, B(7,n+ 1) N B(v,n+ 1) = ¢, V7,v € Cs. Hence, Packing radius of Cs isn + 1
when n > 1 is odd.

By considering the all the cases we can deduce that the packing radii of Cs are n+1, n+1 and n when

n € N\ {1} is odd, n = 0(mod 4) and n = 2(mod 4) respectively, under the crown poset metric. O
Theorem 5.20. Covering radius of Cs is 2n — 1.

Proof. Consider, i € {1,2,--- ,n,---,2n}. Let a € Sy, such that a(i) = j. Based on the definition of
(s, it is clear that there exist 7 € C5 such that 7(i) = j. Let,i =n+1so,a(n+1) =jand n(n+1) = j
it implies that n + 1 ¢ supp(c, w). Therefore, der (o, m) < 2n — 1V 7 €Cs.

We have, 5 = (1,2n) € Si,. Consider, 0 = (12n 2 2n — 1---n n + 1) then by applying the
definition of C5 we can get that C5= {¢*|1 < i < 2n} so, o(1) = 2n & 071(2n) = 1. Therefore,
ol(1) #£2nVie [2n]\ (1) & o'(2n) # 1V i € [2n] \ (—1). Hence, supp(c?, 8)=[2n] Vi € [2n] \ Q where,
Q={1,-1}.
supp(a, B) = [2n]\{1} then, d. (6" *1, ) = 2nand supp(c 1, B) = [2n]\{2n} then, d..(¢ 71, B) = 2n—1.
Therefore, min{d..(c%, 8)}= 2n — 1. Hence, max min{d..(o?, 3)}=2n — 1. By applying (4.9), we can
deduce that the covering radius of Cs is 2n — 1. 0

Theorem 5.21. Cyclic group generated by (12n 22n —1--- nn+ 1) permutation denoted as, Cs is not perfect

code for any values of n € N\ {1} under the crown poset metric.
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Proof. The packing radius and covering radius of Cs are distinct. By applying (4.10) it can be deduced
that Cj is not perfect code. 0

6. CoNCLUSION

In this study, we have worked on the nonexistence of perfect permutation code under crown poset
metrics for different types of permutation codes such as Cy, Cs, C3, C4 and Cs where, C is the
permutation code generated by the permutation (n +1n + 2 --- 2n), Cy is the permutation code
generated by two permutationssuchas (123 --- n)and (n+1n+2n+3 --- 2n), Cs is the permutation
code generated by the permutation (135 --- 2n—1)(246 - -- 2n), C4 is the permutation code generated
by permutation (1n+12n+2--- n2n) and Cs is the permutation code generated by permutation

(12n22n—1---nn+1).
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