
Asia Pac. J. Math. 2025 12:102

ON THE NONEXISTENCE OF CERTAIN PERFECT PERMUTATION CODES UNDER
CROWN POSET METRICS

ROHINI BALIRAMMORE, VENKATRAJAMMARKA∗

Department of Mathematics, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh, India
∗Corresponding author: mvraaz.nitw@gmail.com

Received Sep. 3, 2025

Abstract. In this study, we investigated the non-existence of perfect permutation codes under the crown
poset metric for different types of permutation codes. These include the permutation code generated by
permutation (n + 1 n + 2 · · · 2n), permutation code generated by two permutations (1 2 3 · · · n) and
(n+ 1 n+ 2 n+ 3 · · · 2n), permutation code generated by permutation (1 3 5 · · · 2n− 1)(2 4 6 · · · 2n),
permutation code generated by permutation (1 n+ 1 2 n+ 2 · · · n 2n), and permutation code generated
by permutation (1 2n 2 2n− 1 · · ·n n+ 1).
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1. Introduction

Slepian [4] introduced the concept of permutation modulation and demonstrated that permutation
codes exhibit a strong performance on an additive white Gaussian noise (AWGN) channel. Moreover,
the maximum-likelihood decoders for these permutation codes were relatively straightforward. How-
ever, the implementation of these codes requires large lookup tables, rendering them quite complex.
Wolf [13] introduced the concept of utilizing permutation codes for the development of high-rate
runlength-limited codes that possess both error detection and correction capabilities. Wolf demon-
strated that these codes asymptotically achieve the capacity of a noiseless, runlength-limited constrained
channel. However, they did not provide efficient encoding or decoding mechanisms. Accordingly,
Datta et al. [22] presented an enumeration scheme designed to encode and decode permutation codes
with low complexity. Although the enumeration scheme is applicable to any use of permutation codes,
the authors focused on its application in the construction of runlength-limited codes. In this case,
enumerative encoding and decoding algorithms based on enumeration of combinations [6] were em-
ployed. However, a limitation of this indirect enumeration technique is its requirement for successive
renumeration of symbols within codewords, as combinations, rather than permutations, are counted.
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In this correspondence, Milenkovic et al. [18] proposed an algorithm based on the enumeration of
permutations of a multiset, which obviates the need for renumeration and thereby enhances efficiency.
Ian F. Blake [11] introduced permutation codes for discrete channels by employing the concept pre-
sented in [5]. Permutation codes have garnered renewed interest due to their crucial applications in
data transmission over powerlines [9], [17], [3], [24], [15], as well as their role in designing block
ciphers [7], [25] and advancing multilevel flash memory technologies [1], [2], [8].

In 2015, Buzaglo et al. [23] established novel bounds for the size of permutation codes. They
demonstrated the nonexistence of perfect single-error-correcting codes in Sn for cases where, n > 4 is
a prime or 3 < n < 11. In 2016, Kong et al. [14] established that perfect permutation codes does not
exists by using the Ulam metric. They developed a technique for determining sphere size through
the application of Young tableaux. This approach is crucial for proving the nonexistence of perfect
permutation codes. In 2021, Wang et al. [29] addressed the unresolved problem initially proposed
by Buzaglo and Etzion [23]. They introduced a polynomial expression to represent the size of a ball
in Sn using the Kendall τ metric for a specified radius r and identified certain conditions that are
sufficient to prove the absence of perfect permutation codes. Moreover, they demonstrated that no
perfect t-error-correcting code exists in Sn under the Kendall τ metric for the specific values of 1 < t < 6

and n or 5
8(
n
2 ) ≤ 2t + 1 ≤ (n2 ). In 2023, Wang et al. [27] demonstrated the nonexistence of perfect

error-correcting codes in Sn under the Hamming metric for an expanded range of values of t and n.
They specifically proposed sufficient conditions for the nonexistence of perfect permutation codes.
Furthermore, they established that no perfect error-correcting code exists in Sn under the Hamming
metric for certain values of t = 1, 2, 3, 4 and n, or when 2t+ 1 ≤ n ≤ max{4t2e−2+1/t − 2, 2t+ 1} for
t ≥ 2, ormin{ e2

√
n+ 2, bn−12 c} ≤ t ≤ b

n−1
2 c for n ≥ 7, where, e represents Napier’s constant. In 2024,

Wang et al. [28] conducted a study on the nonexistence of perfect codes in Sn under the l∞ metric.
They established a sufficient condition for the nonexistence of perfect permutation codes within this
metric framework. In addition, they utilized these conditions to demonstrate the absence of perfect
t-error-correcting codes in Sn under the Hamming metric for certain values of t and n. Specifically,
they proved that no perfect t-error-correcting code exists in Sn under the l∞ metric for 1 ≤ t ≤ 3.
Additionally, they demonstrated that a perfect t-error-correcting code does not exist in Sn under the l∞
metric for the values of t and n, where, 1 ≤ t ≤ 3 and 2t+1 ≤ n, or for t and n, where,R2t+1(n) = 0, 1, 2t.
Here, 0 ≤ Rd(n) ≤ d represents the remainder when n ∈ N is divided by the d ∈ N.

In 1995, Brualdi et al. [20] introduced a metric concept for vector spaces based on partial order over
a finite set, known as a poset. These metrics, referred to as poset metrics, extend both the traditional
Hamming metric and Niederreiter Rosenbloom Tsfasman metric. General poset metric offers new
insights into many classical coding theory invariants, such as minimum distance, packing, and covering
radius, as well as fundamental results related to perfect and MDS codes and syndrome decoding. This
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perspective enhances the understanding of these invariants and properties when viewed through the
lens of the classical and widely used Hamming metric, in which perfect codes with a poset metric are
studied using three different approaches: a) fixing a family of codes, b) fixing a family of posets, and c)
operations on a given perfect code [16]. Utilizing the approach of fixing a family of posets, Ahn et
al. [12] comprehensively characterized the parameters of single and double error-correcting perfect
linear codes with a crown poset structure by solving a Ramanujan–Nagell-type Diophantine equation.
In [10], Kim et al. provided a more concise proof of the same result by analyzing a generator matrix of a
perfect linear code. Furthermore, they integrated their methodwith the Johnson bound in coding theory
to demonstrate the non-existence of triple-error-correcting perfect binary codes with a crown-poset
structure. Despite their practical significance and theoretical elegance, the concept of permutation
codes has not been extensively investigated within the framework of poset metrics. Consequently,
driven by the theoretical and practical importance of both poset metrics and permutation codes, this
study examined the nonexistence of certain perfect permutation codes under the crown poset metric.
In this study, we selected a certain permutation codes generated by one or two permutations owing to
their well-defined algebraic structures. These codes naturally interact with the layered dependency
model of the crown poset, enabling a rigorous examination of how group actions influence invariants
of coding theory, such as the minimum distance, packing radius, and covering radius.

In this article, we have worked on nonexistence of certain perfect permutation codes under the crown
poset metric. The paper is organized as follows: In Section 2, definition of poset code is recalled. In
Section 3, permutation codes under the poset metric are defined. In Section 4, permutation codes under
the crown poset metric are presented. Nonexistence of certain perfect permutation codes under crown
poset metric is discussed in Section 5. Section 6 contains concluding remarks.

Abbreviations and Acronyms:

Notation Meaning

G = 〈〈g〉〉 G is generated by g, i.e.,G contains g and all its powers.
I = 〈supp(x)〉 I is the smallest ideal containing the support of x.

[2n] = {1, 2, . . . , n, n+ 1, . . . , 2n} The set of integers from 1 to 2n.
Table 1. List of Notations and Their Meanings

2. Preliminaries

In 1995, Brualdi et al. [20] introduced the concept of a poset metric, which is a metric defined
on a vector space Fnq over a field Fq, with partial ordering (�) imposed on a finite set P containing
elements from 1 to n, specifically, P = {1, 2, · · · , n}. An ideal I is defined as a subposet of P with the
characteristic that if y ∈ I and z � y, then z ∈ I . The poset weight of vector y ∈ Fnq is determined by
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the cardinality of the smallest ideal of P that encompasses the support of y. Formally, this is expressed
as $P (y) = |〈supp(y)〉|, where, supp(y) = {j|yj 6= 0}. The poset distance between any two vectors y
and z in Fnq is defined as dP (y, z) = $P (y− z). This distance adheres to all properties of a metric and is
referred to as the poset metric. A linear subspace C of Fnq that possesses a poset metric with dimension
k and minimum distance dP , is termed as a poset code with parameters [n, k, dP ].

3. Permutation codes under poset metric

In this article, [n] denotes the set {1, 2, · · · , n}. The set of all permutation over [n] is called symmetric
group denoted as Sn. Let P = ([n],�) be a poset over [n]. Given a permutation π ∈ Sn we define
permutation poset weight of π by

wtPP (π) = |〈supp(π)〉|

where, supp(π) = {i ∈ [n] : π(i) 6= i}.

Definition 3.1. Permutation poset distance between any two permutations in Sn is defined as dPP (σ, π) =

wtPP (σ, π) where, wtPP (σ, π) = |〈supp(σ, π)〉|, supp(σ, π) = {i ∈ [n]|σ(i) 6= π(i)} and 〈supp(σ, π)〉 is the

smallest ideal generated by supp(σ, π).

Theorem 3.2. [21] If P is a poset of n elements, then permutation poset distance i.e., dPP is a metric on Sn.

We call the metric dPP (., .) on Sn as Permutation Poset metric.

Definition 3.3. Permutation codes having length n and minimum distance δPP are defined as a subsets of

symmetric group Sn.

Definition 3.4. For a given a permutation code C ⊂ Sn, Minimum Distance is denoted as δPP (C) and defined

as δPP (C) := min{dPP (π, σ) : π, σ ∈ C, π 6= σ}.

Definition 3.5. For a given a permutation code C ⊂ Sn, ball of radius r is denoted as BdPP
(π, r) and defined

as BdPP
(π, r) = {σ ∈ Sn|dPP (σ, π) ≤ r}.

Definition 3.6. For a given a permutation code C ⊂ Sn, the Packing Radius is denoted as RdPP
(C) and defined

as RdPP
(C) = max{r ∈ [n] : BdPP

(π, r) ∩BdPP
(σ, r) = φ, ∀ π, σ ∈ C, π 6= σ}.

Definition 3.7. For a given a permutation code C ⊂ Sn, Covering Radius is denoted as CVdPP
(C) and defined

as CVdPP
(C) := min{r ∈ Z+ : Sn =

⋃
π∈C

BdPP
(π, r)}.

Definition 3.8. Given a subset C of Sn, the covering radius of C is denoted as CVdPP
(C), is defined as

CVdPP
(C) = maxh∈Snming∈C d(g, h). In other words, it is the smallest radius r such that balls of radius r

centered at the elements of C covers the entire space Sn.
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Definition 3.9. A permutation code is said to be perfect permutation code if its packing radius is equal to its

covering radius.

Theorem 3.10. [21] For a given permutation code C having parameter (n,M, δPP ), the packing radius

RdPP
(C) satisfies the following inequalities:

bδPP (C)− 1

2
c ≤ RdPP

(C) ≤ δPP (C)− 1 (1)

Theorem 3.11. [21] For a given permutation code C having parameter (n,M, δPP ), the covering radius

CRdPP
(C) satisfies the following inequality:

CRdPP
(C) ≤ n (2)

4. Permutation codes under crown poset metric

Definition 4.1. Crown Poset is a poset Cr = ([2n],�cr) where the only relations are:

n �cr n+ 1, n �cr 2n and j �cr n+ j, j �cr n+ j + 1, ∀ 1 ≤ j ≤ n− 1. (3)

Let [2n] denotes the set {1, 2, · · · , 2n}. The set of all permutation over [2n] is called symmetric group
denoted by S2n. Let Cr = ([2n],�) be a crown poset over [2n]. Given a permutation π ∈ S2n we define
permutation crown poset weight of π by

wtcr(π) = |〈supp(π)〉|

where, supp(π) = {i ∈ [2n] : π(i) 6= i}.

Definition 4.2. Permutation crown poset distance between any two permutation belong to S2n is de-

fined as dcr(σ, π) = wtcr(σ, π) where, wtcr(σ, π) = |〈supp(σ, π)〉|, supp(σ, π) = {i ∈ [2n]|σ(i) 6=

π(i)} and 〈supp(σ, π)〉 is the smallest ideal generated by supp(σ, π).

Remark 4.3. Let Cr = ([2n],�) be a crown poset over [2n] then permutation crown poset distance i.e., dcr is a

metric on S2n.

Definition 4.4. For a given permutation code C ⊂ S2n, minimum distance is denoted as δcr(C) and defined as

δcr(C) := min{dcr(π, σ) : π, σ ∈ C, π 6= σ}.

Definition 4.5. Permutation codes having length 2n, sizeM and minimum distance δcr under crown poset

metric are defined as a subsets of symmetric group S2n.

Definition 4.6. For a given a permutation code C ⊂ S2n, ball of radius r is denoted as B(π, r) and defined as

B(π, r) = {σ ∈ S2n|dcr(σ, π) ≤ r}.

Definition 4.7. For a given a permutation code C ⊂ S2n, the Packing Radius is denoted as Rdcr(C) and defined

as Rdcr(C) = max{r ∈ [2n] : B(π, r) ∩B(σ, r) = φ, ∀ π, σ ∈ C, π 6= σ}.
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Definition 4.8. For a given a permutation code C ⊂ S2n, Covering Radius is denoted as CVdcr(C) and defined

as CVdcr(C) := min{r ∈ Z+ : S2n =
⋃
π∈C

B(π, r)}.

Definition 4.9. Given a subset C of S2n, the covering radius of C is denoted as CVdcr(C), is defined as

CVdcr(C) = maxh∈S2nming∈C d(g, h). In other words, it is the smallest radius r such that balls of radius r

centered at the elements of C covers the entire space S2n.

Definition 4.10. A permutation code is said to be perfect permutation code if its packing radius is equal to its

covering radius.

Theorem 4.11. [21] For a given permutation codeC having parameter (2n,M, δcr), the packing radiusRdcr(C)

satisfies the following inequalities:

bδcr(C)− 1

2
c ≤ Rdcr(C) ≤ δcr(C)− 1 (4)

Theorem 4.12. [21] For a given permutation code C having parameter (2n,M, δcr), the covering radius

CVdcr(C) satisfies the following inequality:

CVdcr(C) ≤ 2n (5)

5. Nonexistence of certain perfect permutation codes under crown poset metric

Theorem 5.1. The minimum distance of the cyclic group generated by (n + 1 n + 2 · · · 2n) permutation,

denoted as, C1 is 2n under the crown poset metric.

Proof. The support of any two distinct permutations belong to C1 contains {n+ 1, n+ 2, n+ 3, · · · , 2n}

elements. Subsequently, its ideal contains {1, 2, · · · , 2n}. Therefore, dcr(τ, π) = 2n for all τ, π ∈ C1 and
τ 6= π. Hence, minimum distance of the C1 is 2n under the crown poset metric. �

Theorem 5.2. The packing radius of C1 is n+ 1, n+ 1 and n+ 2 when n ∈ N \ {1} is odd, n ≡ 0 (mod 4)

and n ≡ 2 (mod 4), respectively, under the crown poset metric.

Proof. As established in the Theorem 4.11 packing radius of C1 bounded between b2n−12 c and 2n− 1.
Case 1: If n ≡ 1 (mod 4), n > 1 and n ≡ 3 (mod 4)

To establish that the packing radius of C1 for n ≡ 1 (mod 4), n > 1 and n ≡ 3 (mod 4) is not n+ 2 it is
sufficient to present a counterexample.

Consider, I as the Identity permutation, σ = (n+ 1 n+ 2 · · · 2n) ∈ C1 and α =
(
n−1
2 n+ n+1

2 n+

n+3
2 · · · 2n

)
∈ S2n then,
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supp(I, α) =
{n− 1

2
, n+

n+ 1

2
, n+

n+ 3

2
, · · · , 2n

}
=⇒ 〈supp(I, α)〉 =supp(I, α) ∪

{n+ 1

2
,
n+ 3

2
, · · · , n

}
.

=⇒ dcr(I, α) =n+ 2.

Hence, α ∈ B(I, n+ 2).

(6)

supp(σ, α) =
{n− 1

2
, n+ 1, n+ 2, · · · , n+

n− 1

2
, 2n
}

〈supp(σ, α)〉 =supp(σ, α) ∪
{
1, 2, · · · , n− 3

2
, n− 1, n

}
=⇒ dcr(σ, α) = n+ 2

Therefore, α ∈ B(σ, n+ 2)

(7)

By using (6) and (7), we can conclude that α ∈ B(σ, n+2)∩B(I, n+2). Hence, By using definition
of packing radius, we can conclude that packing radius of C1 is less than n+2when n ∈ N \ {1} is odd.
Now, we will prove that packing radius of C1 is n + 1 where, n ≡ 1 (mod 4) and n ≡ 3 (mod 4).
Consider, ν, θ ∈ C1 then, supp(ν, θ) = {n + 1, n + 2, · · · , 2n} and dcr(ν, θ) = 2n. Suppose that β ∈
B(ν, n+ 1) ∩B(θ, n+ 1) then dcr(ν, β) ≤ n+ 1 and dcr(θ, β) ≤ n+ 1.

If there are n+1
2 elements in supp(ν, β) from set {n+1, n+2, · · · , 2n}, then its ideal contains at leastn+2

elements. Consequently, dcr(ν, β) ≥ n+2 > n+1, which results in a contradiction. Therefore, supp(ν, β)
contains less than or equal to n−1

2 elements from {n+ 1, n+ 2, · · · , 2n}. If supp(ν, β) contains less than
or equal to n−1

2 elements from {n + 1, n + 2, · · · , 2n}, then supp(θ, β) contains at least n+1
2 elements

from set {n+ 1, n+ 2, · · · , 2n}. Therefore, |〈supp(θ, β)〉| ≥ n+ 2, which implies that dcr(θ, β) ≥ n+ 2,
leading to a contradiction. Hence, we conclude that B(ν, n + 1) ∩ B(θ, n + 1) = φ. Therefore, the
packing radius of C1 is n+ 1 when n ≡ 1 (mod 4), n > 1, and n ≡ 3 (mod 4).

Case 2: If n ≡ 0 (mod 4)

To demonstrate that the packing radius of C1 for n ≡ 0 (mod 4) is not n+ 2 it is sufficient to provide
counterexample.

Consider, I as the Identity permutation, π =
(
n+ 1 n+ 1 + n

2

)(
n+ 2 n+ 2 + n

2

)
· · ·
(
n+ n

2 2n
)
∈

C1 and α =
(
n+ 1 n+ 1 + n

2

)
· · ·
(
n+ n

4 n+ n
4 + n

2

)
∈ S2n then,

supp(I, α) =
{
n+ 1, n+ 2, · · · , n+

n

4
, n+ 1 +

n

2
, · · · , n+

n

4
+
n

2

}
=⇒ 〈supp(I, α)〉 = supp(I, α) ∪

{
1, 2, · · · , n

4
,
n

2
+ 1,

n

2
+ 2, · · · , n

2
+
n

4
,
n

2
, n
}
.

=⇒ dcr(I, α) = n+ 2.

Hence, α ∈ B(I, n+ 2).

(8)
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supp(π, α) =
{
n+

n

4
+ 1, n+

n

4
+ 2, · · · , n+

n

2
, n+

n

4
+ 1 +

n

2
, · · · , 2n

}
〈supp(π, α)〉 = supp(π, α) ∪

{n
4
+ 1, · · · , n

2
,
n

2
+
n

4
+ 1,

n

2
+
n

4
+ 2, · · · , n, n

4
− 1,

n

2
+
n

4

}
∴ dcr(π, α) = n+ 2

=⇒ α ∈ B(π, n+ 2)

(9)

By using (8) and (9), we can infer that α ∈ B(π, n+ 2) ∩ B(I, n+ 2). Hence, by using definition of
packing radius, we can deduce that packing radius of C1 is less than n+ 2 when n ≡ 0 (mod 4).

Now, we will prove that the packing radius of C1 is n+ 1where, n ≡ 0(mod 4). Let, ν, µ ∈ C1 then,
supp(ν, µ) = {n+ 1, n+ 2, · · · , 2n} and dcr(ν, µ) = 2n.

Suppose that γ ∈ B(ν, n + 1) ∩ B(µ, n + 1) then dcr(ν, γ) ≤ n + 1 and dcr(µ, γ) ≤ n + 1. If there
are n

2 + 1 elements in supp(ν, γ) from the set {n + 1, n + 2, · · · , 2n}, then its ideal contains at least
n+ 3 elements, therefore, it follows that dcr(ν, γ) ≥ n+ 3 > n+ 1, which constitutes a contradiction.
Therefore, supp(ν, γ)must contain fewer than or equal to n

2 elements from the set {n+1, n+2, · · · , 2n}.
If supp(ν, γ) contains fewer than n

2 elements from set {n+ 1, n+ 2, · · · , 2n}, it follows that supp(µ, γ)
must include at least n

2 + 1 elements from this set. Consequently, |〈supp(µ, γ)〉| ≥ n + 3 > n + 1.
This leads to the conclusion that dcr(µ, γ) > n+ 1, which is a contradiction. If supp(ν, γ) includes n

2

elements from set {n+1, n+2, · · · , 2n}, it follows that supp(µ, γ) must contain at least n2 +1 elements
from the same set. Consequently, |〈supp(µ, γ)〉| ≥ n + 3 > n + 1. This leads to the conclusion that
dcr(µ, γ) > n+ 1, which is a contradiction. Hence, we deduced that the B(ν, n+ 1) ∩B(µ, n+ 1) = φ.
Therefore, Packing radius of C1 is n+ 1 when n ≡ 0 (mod 4).

Case 3: If n ≡ 2 (mod 4)

To refute the claim that the packing radius of T for n ≡ 2 (mod 4) is not n+ 3 it is adequate to offer a
counterexample.

Consider, I as the Identity permutation, σ = (n+ 1 n+ 2 · · · 2n) ∈ C1 and α = (n+ 1 n+ 2 · · · n+

n
2 + 1) ∈ S2n then,

supp(I, α) =
{
n+ 1, n+ 2, · · · , n+

n

2
+ 1
}

=⇒ 〈supp(I, α)〉 = supp(I, α) ∪
{
1, 2, · · · , n

2
+ 1, n

}
=⇒ dcr(I, α) = n+ 3.

Hence, α ∈ B(I, n+ 3).

(10)

supp(σ, α) =
{
n+

n

2
+ 1, n+

n

2
+ 2, · · · , 2n

}
=⇒ 〈supp(σ, α)〉 = supp(σ, α) ∪

{n
2
,
n

2
+ 1, · · · , n

}
=⇒ dcr(σ, α) = n+ 1

∴ α ∈ B(σ, n+ 3)

(11)
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By using (10) and (11), we can ascertain that α ∈ B(σ, n+3)∩B(I, n+3). Hence, By using definition
of packing radius, we can deduce that packing radius of C1 is less than n+ 3 when n ≡ 2(mod 4).

Now, we will establish that the packing radius of C1 is n + 2 where, n ≡ 2(mod 4). Let, ν, θ ∈
C1 then, supp(ν, θ) = {n + 1, n + 2, · · · , 2n} and dcr(ν, θ) = 2n. Suppose that β ∈ B(ν, n + 2) ∩

B(θ, n + 2) then dcr(ν, β) ≤ n + 2 and dcr(θ, β) ≤ n + 2. If there are n
2 + 1 elements in supp(ν, β)

from set {n + 1, n + 2, · · · , 2n}, then its ideal must contain at least n + 3 elements. Consequently,
dcr(ν, β) ≥ n + 3 > n + 2, which results in a contradiction. Therefore, supp(ν, β) contains at most
n
2 elements from set {n + 1, n + 2, · · · , 2n}. If supp(ν, β) contains fewer than n

2 elements from set
{n + 1, n + 2, · · · , 2n}, it follows that supp(θ, β) must include at least n2 + 1 elements from this set.
Consequently, |〈supp(θ, β)〉| ≥ n+3 > n+2, This leads to the conclusion that dcr(θ, β) ≥ n+2, which is a
contradiction. If supp(ν, β) includes n2 elements from set {n+1, n+2, · · · , 2n}, it follows that supp(θ, β)
must contain at least n2 + 1 elements from the same set. Consequently, |〈supp(θ, β)〉| ≥ n+ 3 > n+ 2,
this implies that dcr(θ, β) > n + 2, which is a contradiction. If supp(ν, β) contains n

2 elements from
the set {n+ 1, n+ 2, · · · , 2n} and n ≡ 2 (mod 4), then π = σ

n
2 is the sole permutation within the set

C1 that is a product of transpositions, with the number of transpositions being odd. Consider, ν = π

for such π. Then, the support of (θ, β) contains elements from set {n + 1, n + 2, · · · , 2n} in at least
n
2 + 1 instances. Consequently, the cardinality of 〈supp(θ, β)〉 is at least n + 3, which exceeds n + 2.
This implies that dcr(θ, β) > n+ 2, leading to a contradiction. In this case, the second choice for ν is
σ. Suppose supp(ν, α) = {n+ 1, · · · , n+ n

2 }. This implies that supp(θ, β)={n+ n
2 , n+ n

2 + 1, · · · , 2n},
Therefore, |〈supp(θ, β)〉| ≥ n + 3 > n + 2, It implies that dcr(θ, β) > n + 2 which is a contradiction.
Hence, it can be concluded that the B(ν, n+ 2) ∩B(θ, n+ 2) = φ. Therefore, Packing radius of C1 is
n+ 2 when n ≡ 2(mod 4).

By considering all the cases we can conclude that packing radius of C1 is n+1, n+1 and n+2when
n ∈ N \ {1} is odd, n ≡ 0 (mod 4) and n ≡ 2 (mod 4) respectively under the crown poset metric. �

Theorem 5.3. Covering radius of C1 is 2n.

Proof. Consider the permutation β = (1 2n)(2 2n − 1) · · · (n n + 1) ∈ S2n. For any π ∈ C1, it follows
that supp(π, β) = {1, 2, 3, · · · , 2n}, thereby indicating that its ideal encompasses {1, 2, 3, · · · , 2n}. This
implies that dcr(π, β) = 2n. Therefore, the covering radius of C1 is at least 2n. Furthermore, according
to Theorem 4.12, the covering radius is less than or equal to 2n. Hence, the covering radius of C1 is
2n. �

Theorem 5.4. Cyclic group generated by the (n+ 1 n+ 2 · · · 2n) permutation denoted as, C1 is not perfect

code for any values of n ∈ N \ {1} under the crown poset metric.

Proof. The packing and covering radii of C1 are not the same. Utilizing (4.10), we can deduce that C1

does not constitute perfect code. �
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Example 5.5. Consider n = 3, then permutation code C1 is generated by the permutation (4 5 6). C1 =

{(4 5 6), (4 6 5), Id(C1)}. Relation of crown poset are defined as follows: 1 �cr 4, 1 �cr 5, 2 �cr 5,

2 �cr 6, 3 �cr 4, 3 �cr 6. The support of any two distinct permutations belonging to C1 comprises the elements

{4, 5, 6}. By applying the definitions of an ideal and crown poset, it can be inferred that dcr(σ, π) = 6 for all

σ, π ∈ C1 where, σ 6= π. Consequently, the minimum distance of C1 is determined to be 6 for n = 3. By

constructing program in Magma computational algebra system software [26], it is verified that balls of radius 0,

1, 2, 3, and 4 are disjoint, with the first overlap occurring at radius 5. For instance, consider σ = Id(C1) and

π = (4 5 6); the common element in both balls is (1 6 4). Thus, by employing the definition of the packing radius,

we can conclude that the packing radius is 4. Furthermore, using Magma software, it is verified that the covering

radius of C1 is 6 when n is 3. Since, the packing radius and covering radius of C1 are distinct. Utilizing (4.10),
it can be deduced that C1 does not constitute a perfect code under the crown poset metric.

Theorem 5.6. If C2 = 〈〈σ, π〉〉 where, σ = (1 2 3 · · · n) and π = (n+ 1 n+ 2 n+ 3 · · · 2n) then minimum

distance is n under the crown poset metric for n > 1.

Proof. We have, σ = (1 2 3 · · · n) and π = (n+ 1 n+ 2 n+ 3 · · · 2n). Consider, A = {1, 2, · · · , n} and
B = {n+1, n+2, · · · , 2n}. Here σ acts only onA and π acts only onB so each permutation τ1 = σi1πj1

and τ2 = σi2πj2 act as for any x ∈ A, τ1(x) = σi1(x), τ2(x) = σi2(x) and for any x ∈ B, τ1(x) = πj1(x),
τ2(x) = πj2(x) so the comparison τ1(x) 6= τ2(x) reduces to x ∈ A =⇒ σi1(x) 6= σi2(x) and x ∈ B =⇒
πj1(x) 6= πj2(x). We split the domain [2n] into the disjoint union A ∪ B. Then supp(τ1, τ2) = {x ∈
A|σi1(x) 6= σi2(x)} ∪ {x ∈ B|πj1(x) 6= σj2(x)}. Hence, supp(τ1, τ2) = supp(σi1 , σi2) ∪ supp(πj1 , πj2).

supp(τ1, τ2) =



φ, if σi1 = σi2 & πj1 = πj2

[n], if σi1 6= σi2 & πj1 = πj2

[n+ 1, 2n], if σi1 = σi2 & πj1 6= πj2

[2n], if σi1 6= σi2 & πj1 6= πj2

〈supp(τ1, τ2)〉 =



φ, if σi1 = σi2 & πj1 = πj2

[n], if σi1 6= σi2 & πj1 = πj2

[2n], if σi1 = σi2 & πj1 6= πj2

[2n], if σi1 6= σi2 & πj1 6= πj2

dcr(τ1, τ2) =



0, if σi1 = σi2 & πj1 = πj2

n, if σi1 6= σi2 & πj1 = πj2

2n, if σi1 = σi2 & πj1 6= πj2

2n, if σi1 6= σi2 & πj1 6= πj2

(12)
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By using the definition of the minimum distance and (12) we can deduce that minimum distance of
C2 is n. �

Theorem 5.7. The packing radii of C2 are n2 − 1, 1 and n−1
2 when n > 2 is even, n = 2 and n ∈ N \ {1} is odd

respectively, under the crown poset metric.

Proof. Case 1: If n > 2 is even
According to the Theorem 4.11 packing radius of C2 lies between n

2 − 1 and n− 1.
To challenge the assertion that the packing radius of C2 for n is even is not n2 it is sufficient to provide a
counterexample.

Consider, σ = (1 2 · · · n) ∈C2, π = σ2=(1 3 5 7 · · · n − 1)(2 4 6 · · · n) ∈ C2, I as the identity
permutation and α = (1 3 5 7 · · · n− 1) ∈ S2n then,

supp(I, α) ={1, 3, 5, 7, · · ·n− 1}

=⇒ 〈supp(I, α)〉 ={1, 3, 5, 7, · · · , n− 1}

=⇒ dcr(I, α) =
n

2
.

Hence, α ∈ B
(
I,
n

2

)
.

(13)

supp(π, α) = {2, 4, 6, · · · , n}

=⇒ 〈supp(π, α)〉 = {2, 4, 6, · · · , n}

=⇒ dcr(π, α) =
n

2

∴ α ∈ B
(
π,
n

2

)
(14)

By using (13) and (14), it can be deduced that α ∈ B(I, n2 ) ∩ B(π, n2 ). Consequently, based on the
definition of the packing radius, it can be concluded that the packing radius of C2 is less than n

2 .
Furthermore, the packing radius is greater than or equal to n

2 − 1 from the Theorem 4.11. Therefore,
the packing radius of C2 is n

2 − 1 when n > 2 is even.
Case 2: For n = 2

If n is 2 then, C2 includes identity permutation I and a transposition (1 2). Consider, σ = (1 2), I =

Identity permutation and α = (1 2)

supp(σ, α) = φ = 〈supp(σ, α)〉 =⇒ dcr(σ, α) = 0

supp(I, α) = {1, 2} = 〈supp(I, α)〉 =⇒ dcr(I, α) = 2

∴ α ∈ B(σ, 2) and α ∈ B(I, 2).

Hence, α ∈ B(σ, 2) ∩B(I, 2).
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By using the definition of the packing radius we can deduce that the packing radius of C2 is 1when
n = 2.
Case 3: If n is odd and n > 1

According to the Theorem 4.11 packing radius of C2 constrained between n−1
2 and n − 1 when n is

odd. To demonstrate packing radius of C2 for n is odd is less than n+1
2 it is sufficient to prove by

counterexample.
Consider, σ = (1 2 · · · n) ∈ C2, I as the identity permutation of C2 and α =

(
1 2 · · · n+1

2

)
∈ S2n

then,

supp(σ, α) =
{n+ 1

2
, · · · , n

}
=⇒ 〈supp(σ, α)〉 =

[n+ 1

2
, n
]

=⇒ dcr(σ, α) =
n+ 1

2
.

Hence, α ∈ B
(
σ,
n+ 1

2

)
.

(15)

supp(I, α) =
{
1, 2, · · · , n+ 1

2

}
=⇒ 〈supp(I, α)〉 =

[
1,
n+ 1

2

]
=⇒ dcr(I, α) =

n+ 1

2

Therefore, α ∈ B
(
I,
n+ 1

2

)
(16)

By using (15) and (16), it can concluded that the α ∈ B
(
σ, n+1

2

)
∩ B

(
I, n+1

2

)
. Consequently, by

applying the definition of packing radius, it can be inferred that the packing radius of C2 is less than
n+1
2 when n is odd. According to Theorem 4.11, the packing radius is greater than or equal to n−1

2 .
Therefore, the packing radius of C2 is n−1

2 when n > 1 is odd.
Hence, packing radii of C2 are n

2 − 1, 1 and n−1
2 when n ∈ N \ {2} is even, n = 2 and n ∈ N \ {1} is

odd respectively, under the crown poset metric. �

Theorem 5.8. Covering radius of C2 is 2n.

Proof. Consider, the permutation β = (1 n+ 1)(2 n+ 2) · · · (n 2n) ∈ S2n. For any π ∈ C2, it follows that
supp(π, β) = {1, 2, 3, · · · , 2n}, indicating that its ideal encompasses {1, 2, 3, · · · , 2n}. Consequently,
this implies that dcr(π, β) = 2n. Therefore, the covering radius of C2 is at least 2n. Furthermore,
according to Theorem 4.12, the covering radius is bounded above by 2n. Thus, the covering radius of
C2 is precisely 2n. �

Theorem 5.9. If C2 = 〈〈σ, π〉〉 where, σ = (1 2 3 · · · n) and π = (n+ 1 n+ 2 n+ 3 · · · 2n) then C2 is not

perfect code for any values of n ∈ N \ {1} under the crown poset metric.
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Proof. The packing radius and covering radius of C2 are not identical it follows from (4.10) that C2

cannot be classified as a perfect code. �

Theorem 5.10. Minimum distance of the cyclic group generated by (1 3 5 · · · 2n−1) (2 4 6 · · · 2n) permutation

denoted as, C3 is 2n under the crown poset metric.

Proof. The support of any two distinct permutations belonging to C3 encompasses elements
{1, 2, 3, 4, · · · , 2n}. Utilizing the definitions of an ideal and a crown poset, it can be concluded that
dcr(τ, π) = 2n for all τ, π ∈ C3 where, τ 6= π. Hence, minimum distance of the C3 is 2n under the crown
poset metric. �

Theorem 5.11. The packing radius of C3 is n, n+ 1 when n ∈ N \ {1} is even and odd respectively, under the

crown poset metric.

Proof. Case 1: If n is even
According to the Theorem 4.11 packing radius of C3 lies between b2n−12 c and 2n− 1. To demonstrate
packing radius of C3 for n is even is less than n+ 1 it is sufficient to prove by counterexample.

Consider, I as the identity permutation, σ = (1 3 5 · · · 2n − 1)(2 4 6 · · · 2n), π = σn/2 = (1 n +

1)(2 n+ 2) · · · (n2 n+ n
2 ) · · · (n 2n) ∈C3, and α = (1 n+ 1)(2 n+ 2) · · · (n2 n+ n

2 ) ∈ S2n then,

supp(I, α) =
{
1, 2, · · · , n

2
, n+ 1, n+ 2, · · ·n+

n

2

}
=⇒ 〈supp(I, α)〉 =supp(I, α) ∪ {n}

=⇒ dcr(I, α) =n+ 1.

Hence, α ∈ B(I, n+ 1).

(17)

supp(π, α) =
{n
2
+ 1,

n

2
+ 2, · · · , n, n+

n

2
+ 1, · · · , 2n

}
=⇒ 〈supp(π, α)〉 = supp(π, α) ∪

{n
2

}
=⇒ dcr(π, α) = n+ 1

∴ α ∈ B(π, n+ 1)

(18)

By employing (17) and (18), it can be deduced that α ∈ B(I, n + 1) ∩ B(π, n + 1). Consequently,
utilizing the definition of packing radius, it can be inferred that the packing radius of C3 is less than
n+ 1.

Now, we will prove that packing radius of C3 is nwhen n is even. Let, ν, θ ∈ C3 then, supp(ν, θ) =
{1, 2, · · · , n, n+1, n+2, · · · , 2n} and dcr(ν, θ) = 2n. Assume that β ∈ B(ν, n)∩B(θ, n) then dcr(ν, β) ≤ n
and dcr(θ, β) ≤ n. If there are n

2 elements in supp(ν, β) from the set {n + 1, n + 2, · · · , 2n}, then its
ideal must contain at least n + 1 elements. Consequently, dcr(ν, β) ≥ n + 1 > n, which leads to a
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contradiction. Therefore, supp(ν, β) contains at most n2 − 1 elements from the set {n+1, n+2, · · · , 2n}.
If supp(ν, β) contains fewer than n

2 elements from set {n+ 1, n+ 2, · · · , 2n}, it follows that supp(θ, β)
must include at least n2 + 1 elements from this set. Consequently, |〈supp(θ, β)〉| ≥ n+ 3 > n, This leads
to the conclusion that dcr(θ, β) > n, which is a contradiction. Therefore, we can conclude that the
B(ν, n) ∩B(θ, n) = φ. Hence, Packing radius of C3 is nwhen n is even.

Case 2: If n ≡ 1(mod 4) and n > 1

To demonstrate that the packing radius of C3 for n ≡ 1 (mod 4) is less than n+ 2 it is sufficient to
provide a counterexample.

Consider, I as the identity permutation, π = (1 n 2n − 1 n − 2 2n − 3 · · · 3 n + 2)(2 n + 1 2n n −

1 2n − 2 n − 3 2n − 4 n − 5 2n − 6 · · · 4 n + 3) ∈ C3 and α = (m 2n − 1 n − 2 2n − 3 n − 4 · · · 2n −

[m− 1]m+ 1 2n n− 1 2n− 2 n− 3 2n− 4 · · · 2n−m n) ∈ S2n where,m = n−1
2 then,

supp(I, α) ={m,m+ 1, · · · , n, n+m+ 1, n+m+ 2, · · · , 2n}

=⇒ 〈supp(I, α)〉 =supp(I, α)

=⇒ dcr(I, α) =n+ 2.

Hence, α ∈ B(I, n+ 2).

(19)

supp(π, α) = {1, 2, · · · ,m+ 1, n, n+ 1, n+ 2, · · · , n+m+ 1}

=⇒ 〈supp(π, α)〉 = supp(π, α)

=⇒ dcr(π, α) = n+ 2

∴ α ∈ B(π, n+ 2)

(20)

By using (19) and (20), it can be concluded that the α ∈ B(I, n+ 2) ∩ B(π, n+ 2). Hence, By using
definition of packing radius, we can deduce that the packing radius of C3 is less than n+ 2.

Let, ν, θ ∈ C3 then, supp(ν, θ) = {1, 2, · · · , n, n+ 1, n+ 2, · · · , 2n} and dcr(ν, θ) = 2n. Suppose that
β ∈ B(ν, n+ 1) ∩B(θ, n+ 1) then dcr(ν, β) ≤ n+ 1 and dcr(θ, β) ≤ n+ 1. If there are n

2 + 1 elements
in supp(ν, β) from the set {n + 1, n + 2, · · · , 2n}, then its ideal must contain at least n + 3 elements.
Consequently, dcr(ν, β) > n+ 1, which leads to a contradiction. Therefore, supp(ν, β) contains at most
n−1
2 elements from the set {n+ 1, n+ 2, · · · , 2n}. If supp(ν, β) contains an element less than or equal

to n−1
2 from the set {n+ 1, n+ 2, · · · , 2n}, it follows that supp(θ, β) must include at least n+1

2 elements
from the same set. Consequently, |〈supp(θ, β)〉| ≥ n + 2 > n + 1. This implies that dcr(θ, β) > n + 1,
which leads to a contradiction. Hence, we can conclude that B(ν, n+ 1) ∩B(θ, n+ 1) = φ. Therefore,
Packing radius of C3 is n+ 1 when n ≡ 1 (mod 4).

Case 3: If n ≡ 3(mod 4)
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To establish that the packing radius of C3 for n ≡ 3 (mod 4) is less than n+ 2 it is sufficient to give a
counterexample.

Consider, I as the identity permutation, π = (1 n 2n − 1 n − 2 2n − 3 · · · 3 n + 2)(2 n + 1 2n n −

1 2n− 2 n− 3 2n− 4 n− 5 2n− 6 · · · 4 n+3) ∈ C3 and α = (m 2n− 1 n− 2 2n− 3 n− 4 · · · m+2 n+

m+ 1 2n n− 1 2n− 2 n− 3 2n− 4 · · · n+m+ 2m+ 1 n) ∈ S2n where,m = n−1
2 then,

supp(I, α) ={m,m+ 1, · · · , n, n+m+ 1, n+m+ 2, · · · , 2n}

=⇒ 〈supp(I, α)〉 =supp(I, α)

=⇒ dcr(I, α) =n+ 2.

Hence, α ∈ B(I, n+ 2).

(21)

supp(π, α) = {1, 2, · · · ,m+ 1, n, n+ 1, n+ 2, · · · , n+m+ 1}

=⇒ 〈supp(π, α)〉 = supp(π, α)

=⇒ dcr(π, α) = n+ 2

∴ α ∈ B(π, n+ 2)

(22)

By using (21) and (22), we can conclude that α ∈ B(I, n+2)∩B(π, n+2). Hence, By using definition
of packing radius, it can be deduced that the packing radius of C3 is less than n+ 2.

Let, ν, θ ∈ C3 then, supp(ν, θ) = {1, 2, · · · , n, n+ 1, n+ 2, · · · , 2n} and dcr(ν, θ) = 2n. Suppose that
β ∈ B(ν, n+ 1) ∩B(θ, n+ 1) then dcr(ν, β) ≤ n+ 1 and dcr(θ, β) ≤ n+ 1. If there are n

2 + 1 elements
in supp(ν, β) from the set {n + 1, n + 2, · · · , 2n}, then its ideal must contain at least n + 3 elements.
Consequently, dcr(ν, β) > n+ 1, which leads to a contradiction. Therefore, supp(ν, β) contains at most
n−1
2 elements from the set {n+ 1, n+ 2, · · · , 2n}. If supp(ν, β) contains an element less than or equal

to n−1
2 from the set {n+ 1, n+ 2, · · · , 2n}, it follows that supp(θ, β) must include at least n+1

2 elements
from the same set. Consequently, |〈supp(θ, β)〉| ≥ n + 2 > n + 1. This implies that dcr(θ, β) > n + 1,
which is a contradiction. Hence, we can conclude that B(ν, n+1)∩B(θ, n+1) = φ. Therefore, Packing
radius of C3 is n+ 1 when n ≡ 3 (mod 4).

By considering all the cases, we can conclude that packing radius ofC3 is n and n+1when n ∈ N\{1}

is even and odd respectively, under the crown poset metric. �

Theorem 5.12. Covering radius of C3 is 2n.

Proof. Consider, β = (1 2 3 4 · · · 2n) ∈ S2n. For any π ∈ C3, we observe that supp(π, β) =

{1, 2, 3, · · · , 2n}, indicating that its ideal encompasses {1, 2, 3, · · · , 2n}. Consequently, this implies
that dcr(π, β) = 2n. Therefore, the covering radius of C3 is at least 2n. Furthermore, as established in
4.12, the covering radius is less than or equal to 2n. Thus, the covering radius of C3 is conclusively
2n. �
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Theorem 5.13. If C3 = 〈〈σ〉〉 where, σ = (1 3 · · · 2n− 1)(2 4 6 · · · 2n) then C3 is not a perfect code under the

crown poset metric.

Proof. The packing radius and covering radius of C3 are not equal. By using (4.10) it can be concluded
that C3 is not perfect code. �

Theorem 5.14. Minimum distance of the cyclic group generated by (1 n+ 1 2 n+ 2 · · · n 2n) permutation,

denoted as, C4 is 2n under the crown poset metric.

Proof. The support of any two distinct permutations belong to C4 contains {1, 2, 3, 4, · · · , 2n} elements.
By applying the concept of ideal and crown poset it can be dedcued that dcr(σ, π) = 2n for all σ, π ∈ C4

where, σ 6= π. Hence, we can conclude that the minimum distance of the C4 is 2n under the crown
poset metric. �

Theorem 5.15. Packing radius of C4 is n+ 1 when n ∈ N \ {1} under the crown poset metric.

Proof. Case 1: If n is even
According to the Theorem 4.11 packing radius ofC4 lies between b2n−12 c and 2n−1. To examinewhether
the packing radius of C4 for n is even smaller than n+ 2 it is sufficient to provide a counterexample.

Consider, σ = (1 n+ 1 2 n+ 2 · · · n 2n) ∈ C4, I as the identity permutation and α = (1 n+ 1 2 n+

2 · · · n2 n+ n
2
n
2 + 1) ∈ S2n then,

supp(σ, α) =
{n
2
+ 1,

n

2
+ 2, · · ·n, n+

n

2
+ 1, · · · , 2n

}
=⇒ 〈supp(σ, α)〉 =

[n
2
, n
]
∪
[
n+

n

2
+ 1, 2n

]
.

=⇒ dcr(σ, α) =n+ 1.

Hence, α ∈ B(σ, n+ 1).

(23)

supp(I, α) =
{
1, 2, · · · , n

2
+ 1, n+ 1, n+ 2, · · ·n+

n

2

}
=⇒ 〈supp(I, α)〉 =

[
1,
n

2
+ 1
]
∪
[
n, n+

n

2

]
=⇒ dcr(I, α) = n+ 2

∴ α ∈ B(I, n+ 2)

(24)

By using (23) and (24), we can conclude that α ∈ B(σ, n + 2) ∩ B(I, n + 2). Hence, By using
definition of packing radius, we can conclude that packing radius of C4 is less than n + 2. Now,
we will prove that packing radius of C4 is n + 1 when n is even. Let, τ, ν ∈ C4 then, dcr(τ, ν) = 2n.
Suppose that β ∈ B(τ, n+ 1) ∩B(ν, n+ 1) then dcr(τ, β) ≤ n+ 1 and dcr(ν, β) ≤ n+ 1. If supp(τ, β)
contains fewer than n

2 − 1 elements from the set {n + 1, n + 2, · · · , 2n}, then supp(ν, β) must
contain more than n

2 + 1 elements from this set. Assume that supp(ν, β) includes n
2 + 2 elements
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from {n + 1, n + 2, · · · , 2n}. This assumption implies that |〈supp(ν, β)〉| ≥ n + 5; consequently,
dcr(ν, β) > n+ 1, which leads to a contradiction. Therefore, it follows that β /∈ B(ν, n+ 1). Consider
the scenario where, supp(τ, β) contains exactly n

2 − 1 elements from the set {n+ 1, n+ 2, · · · , 2n} of
the crown poset. Assume that the elements {n+ 1, n+ 2, · · · , n+ n

2 − 1} are the only ones from the set
{n+1, n+2, · · · , 2n} present in supp(τ, β). Consequently, it follows that {n+ n

2 , · · · , 2n} ⊆ supp(ν, α).
This implies that supp(ν, β)must contain at least (n2 + 1) elements from the set {n+ 1, n+ 2, · · · , 2n}.
Therefore, the cardinality |〈supp(ν, β)〉| equals n + 3. Consequently, dcr(ν, β) = n + 3, which leads
to a contradiction. Hence, it can be concluded that β /∈ B(ν, n + 1). Therefore, we can deduce that,
B(τ, n+ 1) ∩B(ν, n+ 1) = φ, ∀τ, ν ∈ C4. Hence, Packing radius of C4 is n+ 1 when n is even.

Case 2: If n is odd and n > 1

To examine packing radius ofC4 for n is odd is less than n+2 it is sufficient to prove by counterexample.
Consider I as the Identity permutation, σ = (1 n + 1 2 n + 2 · · · n 2n) ∈ C4 and α = (1 n + 1 2 n +

2 · · · m n+mm+ 1) ∈ S2n where,m = n−1
2

supp(I, α) =
[
1,
n+ 1

2

]
∪
[
n+ 1, n+

n− 1

2

]
=⇒ 〈supp(I, α)〉 =

[
1,
n+ 1

2

]
∪
[
n, n+

n− 1

2

]
=⇒ dcr(I, α) = n+ 1

=⇒ α ∈ B(I, n+ 2)

(25)

supp(σ, α) =
[n+ 1

2
, n
]
∪
[
n+

n+ 1

2
, 2n
]

=⇒ 〈supp(σ, α)〉 =
[n− 1

2
, n
]
∪
[
n+

n+ 1

2
, 2n
]

=⇒ dcr(σ, α) = n+ 2.

∴ α ∈ B(σ, n+ 2).

(26)

By using (25) and (26), we can conclude that α ∈ B(σ, n+2)∩B(I, n+2). Hence, By using definition of
packing radius, we can conclude that packing radius of C4 is less than n+2. Now, we have to prove that
packing radius of C4 is n+1when n is odd. Let, τ, ν ∈ C4 then ν(x) 6= τ(x),∀x ∈ [2n] =⇒ dcr(τ, ν) =

2n. Suppose that β ∈ B(τ, n + 1) ∩ B(ν, n + 1) then dcr(β, τ) ≤ n + 1, dcr(β, ν) ≤ n + 1. If there are
n+1
2 elements in supp(τ, β) from the set {n + 1, n + 2, · · · , 2n}, then it follows that |〈supp(τ, β)〉| =
n+ 2 > n+ 1. Consequently, the number of elements in supp(τ, β) from the set {n+ 1, n+ 2, · · · , 2n}

must be less than or equal to n−1
2 . Assume that supp(τ, β) contains less than or equal to n−1

2 elements
from set {n+ 1, n+ 2, · · · , 2n}within the crown poset. Consequently, supp(ν, β)must contain more
than n−1

2 elements in the same set. Further, suppose that supp(ν, β) comprises n+1
2 elements from

{n+1, n+2, · · · , 2n}. This implies that |〈supp(ν, β)〉| ≥ n+2 > n+1, indicating that dcr(ν, β) > n+1.
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Therefore, β /∈ B(ν, n+ 1). Therefore, we can conclude that, B(τ, n+ 1) ∩B(ν, n+ 1) = φ, ∀τ, ν ∈ C4.
Hence, Packing radius of C4 is n+ 1 when n > 1 is odd.

By considering all cases, we can conclude that packing radius of C4 is n+ 1 when n ∈ N \ {1} under
the crown poset metric. �

Theorem 5.16. Covering radius of C4 is 2n− 1.

Proof. Let, i ∈ {1, 2, · · · , n−1, n, n+1, · · · , 2n−1, 2n}. Consider, α ∈ S2n such that α(i) = j. According
to the definition ofC4 , it is evident the there exist π ∈C4 such that π(i) = j. Let, i = n+1 so, α(n+1) = j

and π(n+ 1) = j it implies that n+ 1 /∈ supp(α, π). Hence, dcr(α, π) ≤ 2n− 1 ∀π ∈ C4 .
Clearly, β = (1, n + 1) ∈ S2n. Let, σ = (1 n + 1 2 n + 2 3 n + 3 · · ·n 2n) then by using the

definition of C4 we can obtain that C4 = {σi|1 ≤ i ≤ 2n} so, σ(1) = n + 1 & σ−1(n + 1) = 1. Hence,
σi(1) 6= n+1 ∀ i ∈ [2n] \ (1) & σi(n+1) 6= 1 ∀ i ∈ [2n] \ (−1). Therefore, supp(σi, β)=[2n] ∀ i ∈ [2n] \A

where, A = {1,−1}.
supp(σ, β) = [2n]\{1} then, dcr(σ, β) = 2n and supp(σ−1, β) = [2n]\{n+1} then, dcr(σ−1, β) = 2n−1.
Therefore, min{dcr(σi, β)}= 2n−1. Hence, maxmin{dcr(σi, β)}=2n−1. By using (4.9), we can conclude
that covering radius of C4 is 2n− 1. �

Theorem 5.17. Cyclic group generated by the (1 n + 1 2 n + 2 · · · , 2n) permutation denoted as, C4 is not

perfect code for any values of n ∈ N \ {1} under the crown poset metric.

Proof. The packing radius and covering radius of C4 are not identical. By implying (4.10) it can be
inferred that C4 is not perfect code. �

Theorem 5.18. Minimum distance of the cyclic group generated by (1 2n 2 2n− 1 · · ·n n+ 1) permutation,

denoted as, C5 is 2n under the crown poset metric.

Proof. The support of any two distinct permutations belong to C5 contains {1, 2, 3, 4, · · · , 2n} elements.
By using the definition of the ideal and crown poset we can conclude that dcr(σ, π) = 2n for all σ, π ∈
C5 where, σ 6= π. Hence, minimum distance of the C5 is 2n under the crown poset metric. �

Theorem 5.19. The packing radii of C5 are n+ 1, n+ 1 and n when n ∈ N \ {1} is odd, n ≡ 0(mod 4) and

n ≡ 2(mod 4) respectively, under the crown poset metric.

Proof. According to the Theorem 4.11 packing radius of C5 bounded between b2n−12 c and 2n− 1.
Case 1: If n is even
Case 1:.1 If n ≡ 0(mod 4)

To demonstrate packing radius of C5 for n is n ≡ 0(mod 4) is less than n+ 2 it is sufficient to prove by
counterexample.
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Consider, σ = (1 2n 2 2n− 1 · · · q 2n− q + 1 q + 1 2n− q · · ·n− q n+ q + 1 · · ·n n+ 1) ∈ C5, I as
the identity permutation and α = (q + 1 2n − q q + 2 2n − q − 1 · · ·n − q n + q + 1 n − q + 1) ∈ S2n
where,m = n

2 and q = n
4 then,

supp(σ, α) ={1, 2, · · · , q, n− q + 1, · · · , n, n+ 1, · · · , n+ q, 2n, 2n− 1, · · · , 2n− q + 1}

=⇒ 〈supp(σ, α)〉 =supp(σ, α) ∪ {n− q}.

=⇒ dcr(σ, α) =n+ 1.

Hence, α ∈ B(σ, n+ 2).

(27)

supp(I, α) = {q + 1, q + 2, · · · ,m,m+ 1, · · · , n− q, n− q + 1, 2n− q, · · · , n+ q + 1}

=⇒ 〈supp(I, α)〉 = supp(I, α) ∪ {q}

=⇒ dcr(I, α) = n+ 2

∴ α ∈ B(I, n+ 2)

(28)

By using (27) and (28), we can conclude that α ∈ B(σ, n+2)∩B(I, n+2). Hence, By using definition
of packing radius, we can conclude that packing radius of C5 is less than n+ 2. Now, we will prove
that packing radius of C5 is n + 1 when n ≡ 0(mod 4) . Let, τ, ν ∈ C5 then, dcr(τ, ν) = 2n. Suppose
that β ∈ B(τ, n+ 1) ∩B(ν, n+ 1) then, dcr(τ, β) ≤ n+ 1 and dcr(ν, β) ≤ n+ 1. If supp(τ, β) contains
fewer than n

2 + 1 elements from set {n + 1, n + 2, · · · , 2n}, then its ideal must include at least n + 3

elements, which leads to a contradiction. Therefore, the number of elements in supp(τ, β) from the
set {n + 1, n + 2, · · · , 2n} is less than or equal to n

2 . If supp(τ, β) contains fewer than n
2 elements

from the set {n + 1, n + 2, · · · , 2n}, then supp(ν, β) must contain more than n
2 + 1 elements from

the same set. This condition implies that |〈supp(ν, β)〉| ≥ n + 3; consequently, dcr(ν, β) > n + 1,
which results in a contradiction. Therefore, it follows that β /∈ B(ν, n + 1). If supp(τ, β) precisely
contains n

2 elements from the set {n+ 1, n+ 2, · · · , 2n}, then supp(ν, β) comprises n
2 elements from

{n+ 1, n+ 2, · · · , 2n}. Assuming that {n+ 1, n+ 2, · · · , n+ n
2 } ⊆ supp(τ, β), it follows that the ideal

encompasses [1, n2 ]∪ [n, n+ n
2 ], then the [n2 , n]∪ [n+ n

2 +1, 2n] is contained within the ideal of supp(ν, β).
Furthermore, in a scenario where n ≡ 0(mod 4), it is possible to identify a γ ∈ {1, 2, · · · , n} such that
either γ ∈ supp(τ, β) or γ ∈ supp(ν, β). If γ ∈ supp(τ, β) and γ /∈ {1, 2, · · · , n2 , n}, this implies that
|〈supp(τ, β)〉| ≥ n + 2. Consequently, dcr(τ, β) > n + 1, which constitutes a contradiction. Thus,
β /∈ B(τ, n + 1). Therefore, we can conclude that, B(τ, n + 1) ∩ B(ν, n + 1) = φ, ∀τ, ν ∈ C5. Hence,
Packing radius of C5 is n+ 1 when n ≡ 0(mod 4).

Case 1:.2 If n ≡ 2(mod 4)

To establish packing radius of C5 for n is n ≡ 2(mod 4) is less than n + 1 it is sufficient to prove by
counterexample.
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Consider, σ = (1 2n 2 2n−1 · · · q 2n−q+1 q+1 2n−q · · ·n−q n+q+1 n−q+1 n+q · · ·n n+1) ∈ C5,
I as the identity permutation and α = (q 2n− q + 1 q + 1 2n− q · · ·n− q n+ q + 1 n− q + 1) ∈ S2n
where,m = n

2 and q = n+2
4 then,

supp(σ, α) ={1, 2, · · · , q − 1, n− q + 1, · · · , n, n+ 1, n+ 2, · · · , n+ q}

∪ {2n, 2n− 1, · · · , 2n− q + 2}

=⇒ 〈supp(σ, α)〉 =supp(σ, α) ∪ {q}.

=⇒ dcr(σ, α) =n+ 1.

Hence, α ∈ B(σ, n+ 1).

(29)

supp(I, α) = {q, q + 1, q + 2, · · · , n− q, n− q + 1, 2n− q, 2n− q + 1, · · · , n+ q + 1}

=⇒ 〈supp(I, α)〉 = supp(I, α)

=⇒ dcr(I, α) = n+ 1

∴ α ∈ B(I, n+ 1)

(30)

By using (29) and (30), we can conclude that α ∈ B(σ, n+1)∩B(I, n+1). Hence, By using definition
of packing radius, we can conclude that packing radius of C5 is less than n+ 1. Now, we will prove
that packing radius of C5 is n when n ≡ 2(mod 4) . Let, τ, ν ∈ C5 then, dcr(τ, ν) = 2n. Suppose that
β ∈ B(τ, n)∩B(ν, n) then dcr(τ, β) ≤ n and dcr(ν, β) ≤ n. If supp(τ, β) contains n2 elements from the set
{n+1, n+2, · · · , 2n}, then its ideal must include at least n+1 elements, which leads to a contradiction.
Therefore, the number of elements in supp(τ, β) from the set {n+ 1, n+ 2, · · · , 2n}must be less than
or equal to n

2 − 1. If supp(τ, β) contains fewer than n
2 − 1 elements from set {n + 1, n + 2, · · · , 2n},

then supp(ν, β) must contain more than n
2 + 1 elements from the same set. This condition implies that

|〈supp(ν, β)〉| ≥ n+ 3. Consequently, dcr(ν, β) > n, which leads to a contradiction. So, it follows that
β /∈ B(ν, n+ 1). Therefore, we can conclude that, B(τ, n) ∩ B(ν, n) = φ, ∀τ, ν ∈ C5. Hence, Packing
radius of C5 is nwhen n ≡ 2(mod 4).

Case 2: If n is odd and n > 1

To examine packing radius ofC5 for n is odd is less than n+2 it is sufficient to prove by counterexample.
Consider, I as the Identity permutation, σ = (1 2n 2 2n− 1 · · · n n+ 1), σ−2 = (1 n n− 1 · · · 3 2)(n+

1 n+ 2 · · · 2n) and α = (mm− 1 · · · 3 2 1 n)(n+ 1 n+ 2 · · · n+m) ∈ S2n where,m = n+1
2

supp(I, α) =
[
1,
n+ 1

2

]
∪
[
n, n+

n+ 1

2

]
=⇒ 〈supp(I, α)〉 =

[
1,
n+ 1

2

]
∪
[
n, n+

n+ 1

2

]
=⇒ dcr(I, α) = n+ 2

=⇒ α ∈ B(I, n+ 2)

(31)
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supp(σ−2, α) =
[n+ 1

2
+ 1, n

]
∪
[
n+

n+ 1

2
, 2n
]

〈supp(σ−2, α)〉 =
[n− 1

2
, n
]
∪
[
n+

n+ 1

2
, 2n
]

∴ dcr(σ
−2, α) = n+ 2.

=⇒ α ∈ B(σ−2, n+ 2).

(32)

By using (31) and (32), we can conclude that α ∈ B(σ−2, n + 2) ∩ B(I, n + 2). Hence, By using
definition of packing radius, we can conclude that packing radius of C5 is less than n + 2. Now,
we have to prove that packing radius of C5 is n + 1 when n is odd. Let, τ, ν ∈ C5 then, ν(x) 6=
τ(x), ∀x ∈ [2n] =⇒ dcr(τ, ν) = 2n. Suppose that β ∈ B(τ, n+ 1) ∩B(ν, n+ 1) then dcr(β, τ) ≤ n+ 1,
dcr(β, ν) ≤ n+1. If there are n+1

2 elements in supp(τ, β) from the set {n+1, n+2, · · · , 2n} of the crown
poset, then it follows that |〈supp(τ, β)〉| = n + 2 > n + 1. Consequently, the number of elements in
supp(τ, β) from the set {n+ 1, n+ 2, · · · , 2n} of the crown poset is less than or equal to n−1

2 . Assume
that supp(τ, β) contains less than or equal to n−1

2 elements from set {n + 1, n + 2, · · · , 2n} within
the crown poset. Consequently, supp(ν, β) must contain more than n−1

2 elements in the same set.
Further, suppose that supp(ν, β) comprises n+1

2 elements from {n+ 1, n+ 2, · · · , 2n}. This implies that
|〈supp(ν, β)〉| ≥ n+ 2 > n+ 1, which indicates that dcr(ν, β) > n+ 1. So, β /∈ B(ν, n+ 1). Therefore,
we can conclude that, B(τ, n+ 1) ∩B(ν, n+ 1) = φ, ∀τ, ν ∈ C5. Hence, Packing radius of C5 is n+ 1

when n > 1 is odd.
By considering the all the cases we can deduce that the packing radii ofC5 are n+1, n+1 and nwhen

n ∈ N \ {1} is odd, n ≡ 0(mod 4) and n ≡ 2(mod 4) respectively, under the crown poset metric. �

Theorem 5.20. Covering radius of C5 is 2n− 1.

Proof. Consider, i ∈ {1, 2, · · · , n, · · · , 2n}. Let α ∈ S2n such that α(i) = j. Based on the definition of
C5, it is clear that there exist π ∈ C5 such that π(i) = j. Let, i = n+ 1 so, α(n+ 1) = j and π(n+ 1) = j

it implies that n+ 1 /∈ supp(α, π). Therefore, dcr(α, π) ≤ 2n− 1 ∀ π ∈C5.
We have, β = (1, 2n) ∈ S2n. Consider, σ = (1 2n 2 2n − 1 · · ·n n + 1) then by applying the

definition of C5 we can get that C5= {σi|1 ≤ i ≤ 2n} so, σ(1) = 2n & σ−1(2n) = 1. Therefore,
σi(1) 6= 2n ∀ i ∈ [2n] \ (1) & σi(2n) 6= 1 ∀ i ∈ [2n] \ (−1). Hence, supp(σi, β)=[2n] ∀ i ∈ [2n] \Qwhere,
Q = {1,−1}.
supp(σ, β) = [2n]\{1} then, dcr(σn+1, β) = 2n and supp(σ−1, β) = [2n]\{2n} then, dcr(σ−1, β) = 2n−1.
Therefore, min{dcr(σi, β)}= 2n − 1. Hence, max min{dcr(σi, β)}=2n − 1. By applying (4.9), we can
deduce that the covering radius of C5 is 2n− 1. �

Theorem 5.21. Cyclic group generated by (1 2n 2 2n− 1 · · · n n+1) permutation denoted as, C5 is not perfect

code for any values of n ∈ N \ {1} under the crown poset metric.
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Proof. The packing radius and covering radius of C5 are distinct. By applying (4.10) it can be deduced
that C5 is not perfect code. �

6. Conclusion

In this study, we have worked on the nonexistence of perfect permutation code under crown poset
metrics for different types of permutation codes such as C1, C2, C3, C4 and C5 where, C1 is the
permutation code generated by the permutation (n + 1 n + 2 · · · 2n), C2 is the permutation code
generated by two permutations such as (1 2 3 · · · n) and (n+1 n+2 n+3 · · · 2n),C3 is the permutation
code generated by the permutation (1 3 5 · · · 2n−1)(2 4 6 · · · 2n),C4 is the permutation code generated
by permutation (1 n+ 1 2 n+ 2 · · · n 2n) and C5 is the permutation code generated by permutation
(1 2n 2 2n− 1 · · ·n n+ 1).
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