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Abstract. This paper proposes a multiobjective optimization model for asset portfolio selection, incor-
porating investor preferences through inequality and equality constraints. A solution method based on
the augmented Lagrangian approach is developed, thus avoiding the reduction of the multiobjective
problem into a parametric single-objective framework. The proposed algorithm can handle portfolio
optimization problems involving both linear and nonlinear constraints. To validate its effectiveness, a
numerical simulation was conducted, comparing its performance to that of the NSGA-II algorithm. The
results demonstrate that our approach outperforms NSGA-II in terms of performance, confirming the
robustness of the proposed algorithm.
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1. Introduction

Mathematical models for multiobjective optimization problems are models that consider multiple
objectives of the decision-maker, as opposed to single-objective models. Solving these multiobjective
models provides multiple solutions to the decision-maker, known as Pareto optimal solutions or
good compromise solutions. This is justified by the fact that objectives are often conflicting, meaning
improving one objectivemay lead to the deterioration of others. Numerousmethods have been proposed
in the literature for solving multiobjective optimization problems, originating from various domains
such as the environment, electricity, and finance, with a particular focus on portfolio selection [23, 24].
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The aim of portfolio optimization is to find an optimal set of assets to invest in, as well as the optimal
investment allocation for each asset. The selection and optimal weighting of assets to maximize the
total investment return, minimize total investment risk, and achieve other goals are common objectives
in the literature [19, 23]. Some researchers have worked on single-objective portfolio models; examples
include studies such as [20, 26]. Given that most problems involve conflicting objectives or criteria,
other researchers have developed multiobjective models to account for the diverse preferences of
decision-makers [13, 19, 23], aiming to provide multiple solutions from which decision-makers can
choose based on their preferences. Among portfolio optimization models, whether single-objective or
multiobjective, some involve linear constraints while others involve nonlinear constraints, which make
solving these problems more challenging. Constraints are conditions associated with objectives to
make solutions more acceptable. For the same objectives in a given problem, constraints can always be
modified, i.e., removed or added, to improve the problem’s solutions. The desire to improve portfolio
models to achieve better results remains a current research topic.

There are several approaches for solving constrained optimization problems [17,28]. Among these
approaches, the augmented Lagrangian method has proven effective for solving constrained optimiza-
tion problems. Researchers have applied it to portfolio problems, including [3], who developed an
algorithm for portfolio optimization problems with value-at-risk (VaR) constraints and transaction
costs. They demonstrated that the augmented Lagrangian approach is a suitable tool for handling
problems involving a high number of variables and constraints. [22] proposed an augmented La-
grangian algorithm for solving a portfolio problem with lower-level and cardinality constraints. Their
experimental results showed that their algorithm achieves more feasible solutions with fewer iterations
than [18] under the same parameters. [7] based on a class of optimization problems with constraints
where the objective function is a sum of a smooth function and a nonconvex, non-Lipschitz function.
Their work employed a nonmonotone proximal gradient method for solving the augmented Lagrangian
subproblems and applied this method to portfolio selection models. [14] worked on stochastic opti-
mization problems with risk aversion, incorporating a risk-shaping constraint in the form of a stochastic
order relation for solving portfolio problems using the augmented Lagrangian method.

A specific augmented Lagrangian algorithm, called Algencan (a Fortran code for minimizing a
smooth function), was described by [3,5]. It is based on the augmented Lagrangian approach by [11,25]
for portfolio optimization to address market fluctuations. Most of his previously mentioned works
addressed single-objective portfolio problems. Other studies have investigated the multiobjective case,
including [2,8,21], some of which transform the original problem into a parametric single-objective
problem [2,6] or use stochastic algorithms [1,8, 15] for solving these problems.
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In this work, we propose a multiobjective portfolio model that takes into account constraints related
to investments in assets with a given minimal threshold. The main contributions and highlights of this
paper are summarized as follows:

• Proposal of a new multiobjective portfolio optimization model;
• Proposal of an algorithm for solving multiobjective portfolio optimization problems;
• Application to a test case accompanied by a comparison with other resolution methods existing
in the literature.

In the remainder of this paper, we present some preliminaries on multiobjective optimization in
Section 2. In Section 3, we describe the proposed multiobjective portfolio optimization model. In
section 4, we will apply the proposed model to a test case using data from Yahoo Finance, along with a
comparison with other methods in the literature. We conclude with a summary and future research
directions in Section 5.

2. Preliminaries

In this work, we consider the formulation of a multiobjective optimization problem as follows:

minF (x) =
(
f1(x), f2(x), . . . , fp(x)

)T
s.t


gi(x) ≤ 0, i = 1, . . . ,m,

hj = 0, j = 1, . . . , q,

x ∈ Rn,

(1)

where F : Rn −→ Rp, g : Rn −→ Rm, h : Rn −→ Rq.
Let D = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0 j = 1, . . . , q} denote the feasible solution set

of problem (1). To characterize a compromise solution of problem (1), we provide the following
definitions.

Definition 1 ( [16]). A point x∗ ∈ D is called Pareto optimal if there is no other point x ∈ D such that

fi(x) ≤ fi(x∗) for all i = 1; . . . , p with at least one fi(x) < fi(x
∗) for some i = 1; . . . , p.

Definition 2 ( [16, 27]). A vector x∗ ∈ D is said to be locally Pareto optimal if there exists r > 0 such that x∗

is Pareto optimal onD ∩B(x∗, r), where B(x∗, r) is the ball centered at x∗ with radius r.

Definition 3 ( [16, 27]). A vector x∗ ∈ D is said to be weakly Pareto optimal if there is no other vector x ∈ D

such that fi(x) ≤ fi(x∗) for all i = 1, . . . , p.

Using Definitions 2 and 3, we characterize an optimal and a weakly optimal Pareto solution through
the following lemma.

Lemma 1 ( [27]).
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(1) A point x∗ ∈ D is a Pareto optimal solution of problem (1) if and only if, for all x ∈ D, at least one of

the following conditions holds: (i) max
i=1,...,m

{fi(x)− fi(x∗)} > 0; (ii) min
i=1,...,m

{fi(x)− fi(x∗)} ≥ 0;

(2) A point x∗ ∈ D is a weakly Pareto optimal solution of problem (1) if and only if, for all x ∈ D, we have

max
i=1,...,m

{fi(x)− fi(x∗)} ≥ 0.

Definition 4 ( [16,27]). The Pareto front, or trade-off surface, is defined as the image of the efficient or Pareto

optimal solutions under the objective functions.

3. A multi-objective portfolio problem

3.1. Multiobjective Augmented Lagrangian algorithm. Considering problem (1), the Augmented
Lagrangian function transforms it into a parametric unconstrainedmultiobjective problem, as described
in [16]:

L
(
x, λk, µk, ηk

)
= F (x) +

ηk
2

 q∑
j=1

[
hj(x) +

λkj
ηk

]2
+

m∑
i=1

[
max

(
0, gi(x) +

µki
ηk

)]2 · e, (2)

where ηk > 0 is a penalty parameter, λ ∈ Rq+ and µ ∈ Rm+ are the approximate Lagrange multiplier
vectors associated with equality and inequality constraints, respectively, and e = (1, 1, . . . , 1) is the unit
vector in Rp.

The update processes at each iteration for the penalty parameters and Lagrange multipliers are
defined as follows.

For the Lagrange multipliers:

λk+1 = λk + ηkh
(
xk
)

; and µk+1 = µk + ηkg
(
xk
)
.

To update the penalty parameter, we first compute, as presented in [4, 9]:

V k
i = min

{
−gi

(
xk
)
,
µki
ηk

}
, for i = 1, . . . ,m

and: 
If max

{∥∥h (xk)∥∥ , ∥∥V k
∥∥} ≤ σmax

{∥∥h (xk−1)∥∥ ,∥∥V k−1∥∥} , ηk+1 = ηk,

Else ηk+1 = αηk.

(3)

The resolution algorithm is presented as follows:
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Algorithm 1:Multiobjective Augmented Lagrangian Algorithm
Input: µ0 ∈ Rp, λ0 ≥ 0, ρ > 1, σ ∈ (0, 1), η0 > 0, λinf ∈ R+, λsup ∈ R+, µ ∈ R+, X 0 ∈ Rn (a list

of feasible, non-dominated points for the original problem), {εk} ∈ R (a decreasing
sequence).

1 for k = 1, . . . do

2 Define L, the current Augmented Lagrangian function, as:

L
(
x, λk, µk, ηk

)
= F (x) +

ηk
2

 q∑
j=1

[
hj(x) +

λkj
ηk

]2
+

m∑
i=1

[
max

(
0, gi(x) +

µki
ηk

)]2 · e
3 X k = {x ∈ X | ∃y ∈ X such that L (y, λk, µk, ηk) ≤ L (x, λk, µk, ηk)};
4 Set X k+1 as a set of non-dominated solutions for the problem:

min
x∈D
L
(
x, λk, µk, ηk

)
(4)

5 X k+1 = Xtmp;
6 for j = 1, . . . ,m do

7 Set λk+1
j = max

{
λinf ,min

{
λkj + ηk max

x∈Xk+1
{| h(x) |} , λsup

}}
;

8 for i = 1, . . . , q do

9 Set V k+1
i = min

{
min

x∈Xk+1
{−g(x)} , µ

k
i
ηk

}
;

10 Set µk+1
i = max

{
0,min

{
µki + ηk max

x∈Xk+1
{−g(x)} , µ̄

}}
;

11 if max
{∥∥h (xk+1

)∥∥ , ∥∥V k+1
∥∥} ≤ σmax

{∥∥h (xk)∥∥ ,∥∥V k
∥∥} or(

∃xk+1 ∈ X k+1 s.t. gi(xk+1) < 0, hj(x
k+1) = 0

)
for some i ∈ {1, . . . ,m}, j ∈ {1, . . . , q} then

12 Set ηk+1 = ηk;

13 else

14 Set ηk+1 = αηk;

The algorithm begins by initializing a set of non-dominated points X0 and the initial parameters at
step 0. From step 2 to step 5 of the algorithm, the goal is to determine a set of non-dominated points
Xk. This set is derived by considering the points in Xk−1 for all k > 1. Specifically, for each point in
Xk−1, a new εk-Pareto point xk is sought by solving the function L (x, λk, µk, ηk) . After determining
the set of non-dominated points Xk, the update of the parameters λ and µ, which are the Lagrange
multipliers associated with the equality constraints hj and the inequality constraints gi, respectively,
begins from step 6 to step 10.

Thus, the multipliers (λk+1, µk+1) are chosen as the projection of the multipliers (λk, µk) onto the
intervals defined in steps 7 and 10 of Algorithm 1.
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For example, the projection rule for λk can be described as follows:
• If λk+1 > λsup, then λ̄k+1 = λsup.
• If λk+1 < λinf, then λ̄k+1 = λinf.
• If λk+1 ∈

[
λinf, λsup

], then λ̄k+1 = λk+1.
The penalty parameter update starts from step 8, according to system (3). Furthermore, the proper

definition of Algorithm 1 relies on step 5, which we will discuss in detail in the following sections. We
begin the convergence analysis by stating the following assumptions:

Assumption 1. The set

D = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , q}

is non-empty and compact.

Regarding the feasibility and optimality results of the generated solutions, we obtain the following
results. These results are similar to those proposed in the works of [9, 10]. In particular, Proposition 3
establishes that all sequences generated by Algorithm 1 are feasible, and Proposition 4 demonstrates
that all sequences generated by this algorithm converge to a Pareto optimal point.

Proposition 2. Let {Xk+1} be a sequence of point sets generated by Algorithm 1. Then, for each k and for each

xk+1 ∈ Xk+1, we have xk+1 that is not dominated by any other point in Xk+1 with respect to L
(
x, λk, µk, ηk

)
,

that is, there does not exist y ∈ Xk+1 such that L
(
y, λk, µk, ηk

)
≺ L

(
xk+1, λk, µk, ηk

)
;

Proof. We haveX0 which is a set of non-dominated points and from step 4 of algorithm 1, for all k > 0,
k ∈ K, Xk is formed of non-dominated points. �

Proposition 3. Let Xk be a set of point sequences generated by algorithm 1 and x∗ be a limit point of a point

sequence
{
xk
}
∈ Xk. Then, x∗ is a feasible point of problem (1).

Proof. Let K ⊆ N, {xk} be a sequence of points generated by Algorithm 1 with x∗ as its limit point.
SinceD is a compact set and xk ∈ D, it follows that x∗ ∈ D. According to step 10 of algorithm 1, we
have µki ≥ 0 for all k. Thus, two cases can be considered: {ηk} bounded and {ηk} unbounded (ηk →∞).

• Case 1: {ηk} is bounded.
In this case, there exists k0 such that for all k ≥ k0, the condition

max
{∥∥h (xk+1

)∥∥ ,∥∥V k+1
∥∥} ≤ σmax

{∥∥h (xk)∥∥ , ∥∥V k
∥∥} is satisfied. This means

lim
k−→∞
k∈K

∥∥∥V k
∥∥∥ = 0 and lim

k−→∞
k∈K

∥∥∥hj (xk)∥∥∥ = 0,

therefore lim
k−→∞

V k+1
i = lim

k−→∞
min

{
min

x∈Xk+1

{
−gi(xk+1)

}
,
µki
ηk

}
= 0 and lim

k−→∞
h
(
xk+1

)
= 0.

Since µki ≥ 0 for all k, implies that gi(x∗) = lim
k−→∞
k∈k

gi(x
k+1) ≤ 0, moreover, if gi(x∗) < 0, then
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µki = 0 and hj(x∗) = lim
k−→∞
k∈K

hj

(
xk+1

)
= 0, consequently, we have hj(x∗) = 0 and gi(x∗) ≤ 0,

therefore x∗ is a feasible point of problem (2.1).

• Case 2: ηk unbounded (ηk →∞).
According to the assumptions, a feasible point y of problem (1) exists, which means h(y) = 0

and g(y) ≤ 0. Following the indications of Algorithm 1 and using Lemma 1, for all k ∈ K, we
have:

min
l=1,...,p
∀y∈D

fl(y) +
ηk
2

 q∑
j=1

[
hj(y) +

λkj
ηk

]2
+

m∑
i=1

[
max

(
0, gi(y) +

µki
ηk

)]2

−fl(xk+1)− ηk
2

 q∑
j=1

[
hj(x

k+1) +
λkj
ηk

]2
+

m∑
i=1

[
max

(
0, gi(x

k+1) +
µki
ηk

)]2]}
≥ 0;

=⇒ min
l=1,...,p
∀y∈D

fl(xk+1) +
ηk
2

 q∑
j=1

(
hj(x

k+1) +
λkj
ηk

)2

+
m∑
i=1

(
max

(
0, gi(x

k+1) +
µki
ηk

))2
]

−fl(y)− ηk
2

 q∑
j=1

(
hj(y) +

λkj
ηk

)2

+
m∑
i=1

(
max

(
0, gi(y) +

µki
ηk

))2
]}
≤ 0.

Since the sequences{µki } and{λkj} are bounded bydefinition, which implies that lim
k−→∞
k∈K

µki
ηk

=

0 and gi(x∗) < 0 then lim
k−→∞
k∈K

λkj
ηk

= 0 and hj(x∗) = 0, F continuous and ηk →∞ then taking the

limit for k large enough (k → ∞), k ∈ K and dividing each side of the inequality by ηk, we
obtain:

lim
k−→∞
k∈K

min
l=1,...,p
∀y∈D

fl(xk+1)− fl(y)

ηk
+

1

2

 q∑
j=1

(
hj(x

k+1) +
λkj
ηk

)2

+

m∑
i=1

(
max

(
0, gi(x

k+1) +
µki
ηk

))2
]

−1

2

 q∑
j=1

(
hj(y) +

λkj
ηk

)2

+

m∑
i=1

(
max

(
0, gi(y) +

µki
ηk

))2
]}
≤ 0

=⇒ min
l=1,...,p
∀y∈D

1

2
[(‖h(x∗)‖+ ‖g+(x∗)‖)− (‖h(y)‖+ ‖g+(y)‖)] ≤ 0, because

lim
k−→∞
k∈K

fl(x
k+1)− fl(y)

ηk
= 0 since ηk →∞

min
l=1,...,p
∀y∈D

1

2
[(‖h(x∗)‖+ ‖g+(x∗)‖)− (‖h(y)‖+ ‖g+(y)‖)] ≤ 0

=⇒ 1

2
[(‖h(x∗)‖+ ‖g+(x∗)‖)− (‖h(y)‖+ ‖g+(y)‖)] ≤ 0
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=⇒ ‖h(x∗)‖+ ‖g+(x∗)‖ ≤ ‖h(y)‖+ ‖g+(y)‖, where g+(x) = max {0, g(x)}

Since y is a feasible point by definition, therefore h(y) = 0 and g+(y) = 0 which implies that
‖h(x∗)‖+ ‖g+(x∗)‖ ≤ 0 =⇒ ‖g+(x∗)‖ ≤ −‖h(x∗)‖ but ‖g+(x∗)‖ ≥ 0,
thus 0 ≤ ‖g+(x∗)‖ ≤ −‖h(x∗)‖ = 0, because this inequality exists if and only if ‖h(x∗)‖ = 0.
Therefore, we have h(x∗) = 0 and g(x∗) ≤ 0, consequently x∗ is a feasible point.

�

Proposition 4. Let Xk be a set of point sequences generated by algorithm 1 and x∗ be a limit point of a point

sequence
{
xk
}
∈ Xk. Then, x∗ is a weakly Pareto optimal point of problem (1).

Proof. Let K ⊆ N, and let {xk} be a sequence of points generated by the Algorithm 1 with x∗ as its
limit point.

Referring to Proposition 3, we have: h(x∗) = 0 and g(x∗) ≤ 0. The continuation of the proof will
proceed by contradiction, assuming that x∗ is not a weakly Pareto optimal point for the problem (1).
In this case, there exists y ∈ D such that

fl(y) < fl(x
∗) ∀l = 1, . . . , p. (5)

Considering Lemma 1 and in accordance with the guidelines of Algorithm 1, we have:

min
l=1,...,p
∀y∈D

fl(xk+1) +
ηk
2

 q∑
j=1

(
hj(x

k+1) +
λkj
ηk

)2

+
m∑
i=1

(
max

(
0, gi(x

k+1) +
µki
ηk

))2
− fl(y)

−ηk
2

 q∑
j=1

(
hj(y) +

λkj
ηk

)2

+

m∑
i=1

(
max

(
0, gi(y) +

µki
ηk

))2
 ≤ 0.

Each fl is subject to the constraints gi for i = 1, . . . ,m and hj for j = 1, . . . , q, thus we can
rewrite this inequality as follows:

min
l=1,...,p
∀y∈D

{
fl(x

k+1)− fl(y)
}
≤ −ηk

2

 q∑
j=1

[
hj(x

k+1) +
λkj
ηk

]2
+

m∑
i=1

[
max

(
0, gi(x

k+1) +
µki
ηk

)]2
+
ηk
2

 q∑
j=1

[
hj(y) +

λkj
ηk

]2
+

m∑
i=1

[
max

(
0, gi(y) +

µki
ηk

)]2 .
After simplification, we have

min
l=1,...,p
∀y∈D

{
fl(x

k+1)− fl(y)
}
≤ − 1

2ηk

 q∑
j=1

[
ηkhj(x

k+1) + λkj

]2
+

m∑
i=1

[
max

(
0, ηkgi(x

k+1) + µki

)]2
+

1

2ηk

 q∑
j=1

[
ηkhj(y) + λkj

]2
+

m∑
i=1

[
max

(
0, ηkgi(y) + µki

)]2 .
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We now have two cases to consider: ηk →∞ and ηk → η. First, let us consider the case ηk →∞, we
have:

min
l=1,...,p
∀y∈D

{
fl(x

k+1)− fl(y)
}
≤ − 1

2ηk

 q∑
j=1

[
ηkhj(x

k+1) + λkj

]2
+

m∑
i=1

[
max

(
0, ηkgi(x

k+1) + µki

)]2
+

1

2ηk

 q∑
j=1

[
ηkhj(y) + λkj

]2
+

m∑
i=1

[
max

(
0, ηkgi(y) + µki

)]2

⇒ min
l=1,...,p
∀y∈D

{
fl(x

k+1)− fl(y)
}
≤ 1

2ηk

 q∑
j=1

[
ηkhj(y) + λkj

]2
+

m∑
i=1

[
max

(
0, ηkgi(y) + µki

)]2 .
Indeed, ηkhj(y) + λkj and max

(
0, ηkgi(y) + µki

) can respectively be equal to 0 when k is sufficiently
large (in the case where hj(y) = 0, gi(y) < 0, given that {µki } and {λkj } are bounded), or they can
respectively be equal to µki and λkj for any value of k (if hj(y) = 0 and gi(y) = 0, since µki and λkj are
non-negative, ensuring that these expressions can never be less than zero). Therefore, taking the limit
as k tends to infinity, with k ∈ K, and keeping in mind that {µki } and {λkj } are bounded, we obtain:

min
l=1,...,p
∀y∈D

{fl(x∗)− fl(y)} ≤ 0,

which contradicts inequality (5).
Now consider the case where ηk converges to η∗. According to the instructions of Algorithm 1, V k+1

tends to 0 and hj(xk+1) = 0, meaning that µ
k
i

ηk
tends to 0 as k → +∞ with k ∈ K. This implies that

for all indices i and j such that gi(x∗) < 0 and hj(x∗) = 0, the values of V k become negligible as k
increases and h(xk) = 0. In particular, for these indices i, we have µki → 0, as k → +∞, with k ∈ K.
Furthermore, since by definition we have hj(y) = 0 and gi(y) ≤ 0. Consequently, we obtain,

− 1

2ηk

 ∑
hj(x∗)=0

[
ηkhj(x

k+1) + λkj

]2
+

∑
gi(x∗)<0

[
max

(
0, ηkgi(x

k+1) + µki

)]2
+

1

2ηk

 ∑
hj(x∗)=0

[
ηkhj(y) + λkj

]2
+

∑
gi(x∗)<0

[
max

(
0, ηkgi(y) + µki

)]2

≤ − 1

2ηk

 ∑
hj(x∗)=0

[
λkj

]2+
1

2ηk

 ∑
hj(x∗)=0

[
ηkhj(y) + λkj

]2
+

∑
gi(x∗)<0

[
max

(
0, ηkgi(y) + µki

)]2
≤ lim

k−→∞
k∈K

− 1

2η∗

 ∑
hj(x∗)=0

[
λkj

]2+
1

2η∗

 ∑
hj(x∗)=0

[
λkj

]2+
1

2η∗

 ∑
gi(x∗)<0

[max (0, η∗gi(y))]2


≤ lim

k−→∞
k∈K

1

2η∗

 ∑
gi(x∗)<0

[max (0, ηkgi(y))]2

 = 0.
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Now consider {i/gi(x∗) = 0}. We have

− 1

2ηk

 ∑
hj(x∗)=0

[
ηkhj(x

k+1) + λkj

]2
+

∑
gi(x∗)=0

[
max

(
0, ηkgi(x

k+1) + µki

)]2
+

1

2ηk

 ∑
hj(x∗)=0

[
ηkhj(y) + λkj

]2
+

∑
gi(x∗)=0

[
max

(
0, ηkgi(y) + µki

)]2
Using gi(y) ≤ 0, we obtain

lim
k−→∞
k∈K

− 1

2η∗

 ∑
gi(x∗)=0

[
max

(
0, µki

)]2+
1

2η∗

 ∑
gi(x∗)=0

[
max

(
0, η∗gi(y) + µki

)]2

≤ lim
k−→∞
k∈K

− 1

2η∗

 ∑
gi(x∗)=0

[
max

(
0, µki

)]2+
1

2η∗

 ∑
gi(x∗)=0

[
max

(
0, µki

)]2 = 0.

Putting all of this together, we again obtain

min
l=1,...,p
∀y∈D

{fl(x∗)− fl(y)} ≤ 0

which contradicts inequality (5). Therefore, x∗ is a weakly Pareto optimal point of the problem (1). �

3.2. Solving the subproblem of Algorithm 1. In this section, we present a stochastic algorithm that
we use to solve the subproblem of the Algorithm 1. This is a multi-objective algorithm of the Black
Widow Optimization (BWO) algorithm calledMOBWO. It is an extension to the multi-objective case
of the BWO algorithm. This optimization algorithm is inspired by social behaviors (such as group
swimming, the dynamics of beluga whale life, communication, and information sharing) and the
hunting strategies of beluga whales. The optimization process of BWO consists of three main phases:
the exploration phase, which simulates swimming behavior; the exploitation phase, which imitates
predation behavior; and the whale’s fall phase inspired by beluga whale’s fall. The principle of BWO is
as follows:
Exploration: The whales explore the search space to discover new solutions, mimicking their group
swimming behavior, which can be mathematically modeled as follows.

X
t+1
i,j = Xt

i,pj
+
(
Xt
r,p1 −X

t
i,pj

)
(1 + r1) sin(2πr2), j odd

Xt+1
i,j = Xt

i,pj
+
(
Xt
r,p1 −X

t
i,pj

)
(1 + r1) sin(2πr2), j even

(6)

where t represents the current iteration number or candidate in the optimization process, Xt+1
i,j

indicates the new or updated position of the ith beluga whale in the search space, specifically in the
jth dimension. pj(j = 1, 2, . . . , d) is a random number selected from d dimensions and represents a
specific dimension in the search space. Xt

i,pj
represents the current position of the ith beluga whale in

the dimension defined by pj at iteration t. The algorithm uses both the current position of the ith whale
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and that of another whale (the rth) to update the position of the ith whale. The rth whale is randomly
selected from within the population. Here, r1, r2 are random numbers between (0,1), and sin(2πr2)

and cos(2πr2) indicate that the fins of beluga whales are oriented towards the water’s surface.
Exploitation: Once a food source (optimal solution) is identified, the whales focus on that area to

refine their search, mathematically modeled by the following equation.

Xt+1
i = r3X

t
best − r4Xt

i + C1 · LF ·
(
Xt
r −Xt

i

) (7)

where Xt
i and Xt

r are the current positions of the ith beluga and a randomly chosen beluga, allowing
for diversity in the search process. Xt+1

i is the new position of the ith whale, Xt
best is the best position

among the whales, r3, r4 are random numbers between (0, 1), C1 is the strength of the random jump
that measures the intensity of the Lévy flight performed by the whale, andLF is the Lévy flight function
given by

LF = 0.05× u× σ
|ν|1/β

.

Whale fall: This mechanism allows for escaping local optima by simulating the death of certain whales,
thereby introducing diversity into the population. The algorithm also uses balance factors and adaptive
fall probabilities, allowing for dynamic control between exploration and exploitation, mathematically
represented as follows.

Xt+1
i = r5X

t
i − r6Xt

r + r7Xstep. (8)

where r5, r6, and r7 are random numbers between (0, 1), and Xstep is the step size of the whale that
determines how far this new position will be from the current position of the whale. For more details,
see [29].

The BWO algorithm can transition from exploration to exploitation based on the balance factor
Bf = B0(1− t/2tmax), where t is the current iteration, tmax is the maximum number of iterations, and
B0 ∈ (0, 1) varies randomly at each iteration.

The probability of whale diving (Wf ) is determined by:

Wf = 0.1− 0.05
t

tmax
.

The pseudo-code of the BWO algorithm (see [29]) is as follows:
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Algorithm 2: BWO Algorithm
1 Step 1: Initialization: Input: ;
2 • Determine the algorithm parameters: population size (n), maximum number of iterations

(tmax), balance factor (Bf ), drop probability (Wf ), position update parameters (C1, C2);
3 • Randomly generate the initial positions X0 of all whales in the search space;
4 • Evaluate the fitness values for these positions;
5 Step 2: Update during the Exploration and Exploitation Phases:;
6 • For each whale, determine whether it enters the exploration or exploitation phase based

on a balance factor Bf ;
7 • If Bf > 0.5, the whale enters the exploration phase, and its position is updated using

equation (6);
8 otherwise, if Bf < 0.5, it enters the exploitation phase, and its position is updated using

equation (7);
9 • The fitness values of the new positions are calculated and sorted to find the optimal result

for the current iteration;
10 Step 3: Update during the Beluga Drop Phase:;
11 • Calculate the drop probabilityWf at each iteration;
12 • Update the positions of the whales based on this probability using equation (8);
13 Step 4: Check the Stopping Condition: ;
14 • If the current iteration exceeds the maximum number of iterations, the BWO algorithm

stops;
15 • Otherwise, repeat from step 2.

TheMOBWO algorithm integrates elitism mechanisms based on Non-Dominated Solutions (NDR)
and Crowding Distance (CD) to maintain diversity among solutions on the Pareto front. The NDR
process consists of three steps: identification of non-dominated solutions, application of the NDR
approach, and calculation of the non-dominated rank for each non-dominated solution. The NDR
divides the Pareto front into two sets: the first includes non-dominated solutions that are not dominated
by any other solution, while the second contains solutions that are dominated by at least one other.
Crowding Distance (CD) is used to preserve diversity among non-dominated solutions on the Pareto
front, following a principle similar to the NSGA-II algorithm, and can be calculated as follows:

CDi
j =

obji+1
j − obji−1j

objmaxj − objminj
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where objj is the jth objective function, and objmaxj and objminj represent the maximum and minimum
values of the objective function objj .

The first step of MOBWO is to determine the parameters of BWO, the maximum number of iterations,
the stopping criteria, and the population size. An initial parent population X0 is randomly created in
the feasible solution space, and each objective function in the vector F is evaluated for the members of
X0. The Non-Dominance and CD strategies are then applied to the population X0. These techniques
generate a new population Xj using the MOBWO Algorithm, which is combined with X0 to create an
intermediate population Xi. The population Xi is sorted based on an elitism criterion that considers
the Non-Dominance of solutions, taking into account information related to NDR and CD.

The best solutions among the best are then adjusted to form a new parent population. The algorithm
repeats this procedure until the stopping condition is met. The pseudo-code of theMOBWO algorithm
is as follows:

Algorithm 3:Multi-Objective BWO (MOBWO)
Input :BWO Parameters: α, β, etc.
Input : Initialization of solution positions X0 : i = 1, ..., N

1 Evaluate the population in the objective space;
2 Sort the population based on the elitist non-dominated sort method and find the

Non-Dominated Rank (NDR) and fronts;
3 For each front, calculate the Crowding Distance (CD);
// Update the population Xj

4 Update the solutions Xj using Algorithm 2;
5 Combine X0 and Xj to generate Xi, such that Xi = X0 ∪Xj ;
6 Perform Step 1 on Xi;
7 Sort Xi based on NDR and CD;
8 Replace the initial population X0 with the top members of the new population Xi;

Since the solution of each subproblem (4) is obtained using a stochastic method that generates a
population of points at each iteration, the position of each point in the population is considered a
stochastic vector. The convergence analysis of the algorithm’s properties can be based on probability
theory.

The convergence analysis presented here is similar to that of [12], applied to a specific class of
evolutionary strategies for unconstrained problems. Probability theory from the perspective of measure
theory is used.
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Let
Lk (x) = L

(
x, λk, µk, ηk

)
(9)

We make the following assumptions:
(i) The functions fl, l = 1, . . . , p, hj , j = 1, . . . , q, and gi, i = 1, . . . ,m, are continuous.
(ii) The search spaceD is a Lebesgue measurable space.
(iii) Lk: D→ Rp is a measurable function.
(iv) There exists at least one Pareto-optimal solution with respect to Lk in the search spaceD.
(v) Ifm(S) denotes the Lebesgue measure of a set S, then for any positive number a > 0,m(S) > 0,

where S = {x : maxj=1,...,p(Lkl (y)− Lkl (x)) + a ≥ 0, ∀y ∈ D}.

Definition 5. Let x and y be two points in D. The point y is said to improve with respect to x if, for ε > 0, the

following condition is satisfied:

max
l=1,...,p

{
Lkl (x)− Lkl (y)

}
≤ max

l=1,...,p

{
Lkl (x)− Lkl (z)

}
− ε, ∀z ∈ D.

Remark 1. Two random numbers r1 and r2 in (0, 1) are used to enhance the random operators during the

exploration phase, and r is a randomly selected beluga whale.

During the exploitation phase of the BWO, the Levy flight function LF is introduced to improve convergence,

where ν and v are normally distributed random numbers.

To model the behavior of whales falling at each iteration during the falling phase, a falling probability Wf is

applied among the individuals of the population to simulate small changes in the groups. r5, r6, and r7 are

random numbers in (0, 1). In the falling phase of the whales, the falling probabilityWf starts at 0.1 and decreases

linearly to 0.05 by the last iteration, remaining positive as long as t ≤ tmax. A positiveWf indicates a non-zero

probability of whales falling at each iteration, enabling changes in their positions and contributing to the dynamics

of the MOBWO algorithm. A falling probability implies that individuals are updated during the falling phase,

creating an unconstrained distribution of positions that allows whales to change their positions randomly. The

algorithm is less likely to get stuck in local minima, thus balancing exploration (searching for new solutions)

and exploitation (refining existing solutions). This allows the algorithm to adapt and evolve over iterations,

increasing the chances of finding Pareto-optimal solutions. All of the above indicates a non-zero density in the

search space.

The position update equations for the whales, which take into account the best solution found and
the positions of other whales, promote convergence by allowing the whales to move closer to the Pareto-
optimal solutions over iterations. Therefore, Pareto-optimal solutions represent the best possible trade-
offs, and the Lagrangian of these solutions is generally better (lower) compared to non-Pareto-optimal
solutions in the trade-off space. Hence, for any x∗ ∈ D, it is an ε-Pareto-optimal solution of MOBWO,
and for any feasible solution x ∈ D, the Lagrangian satisfies: L (x∗, λk, µk, ηk) ≤ L (x, λk, µk, ηk).



Asia Pac. J. Math. 2025 12:103 15 of 24

Suppose that z is an ε-Pareto-optimal solution of problem (1) generated by MOBWO. Then the point
z is a solution to the subproblem (4) of minimization from Algorithm 3 if z is also an ε-Pareto-optimal
solution generated by MOBWO.

Theorem 5. Let Lk(x) = (Lk1(x),Lk2(x), . . . ,Lkp(x)) be a vector of objective functions defined over the feasible

space D. If the pair (Lk,D) satisfies assumptions (i)-(iv), then for ε > 0, the MOBWO algorithm converges to

an ε-Pareto-optimal solution for the subproblem (4) with a probability of one.

Proof. Let z be a solution to the subproblem (4). If z is at least one of the ε-Pareto optimal solutions of
MOBWO and using Lemma 1, we have y ∈ D such that

max
l=1,...,p
y∈D

{fl(y)− fl(z)} > 0 =⇒ max
j=1,...,p
y∈D

{fl(y)− fl(z)}+ ε > 0

with ε > 0.
Thus,

max
l=1,...,p
y∈D

{
Lkl (y)− Lkl (z)

}
> 0 =⇒ max

l=1,...,p
y∈D

{
Lkl (y)− Lkl (z)

}
+ ε > 0.

We begin by assuming that the population consists of a single point (n = 1) and that ε represents a
precision limit error. In this case, z is a solution ofMOBWO if

max
l=1,...,p
y∈D

{
Lkl (y)− Lkl (z)

}
+ ε > 0.

It is crucial to note that when the algorithm proceeds to the next iteration and the point z, as a
candidate solution, improves upon the current solution x, this implies that

max
l=1,...,p
∀y∈D

{
Lkl (y)− Lkl (z)

}
≤ max

l=1,...,p
∀y∈D

{
Lkl (y)− Lkl (x)

}
+ ε.

Each update contributes to the improvement of the solution. Thus, an ε-Pareto solution can be
achieved from any initial point x ∈ D, after a finite number of iterations (updates) where z, the
candidate solution for the next iteration, improves upon x from the current iteration. At each iteration
of MOBWO, a parent z ∈ Xk generates an offspring y ∈ Xk+1, where y represents the candidate
solution that improves upon z, justifying the decrease of the following by ε:

max
l=1,...,p
∀x∈D

{
Lkl (x)− Lkl (y)

}
≤ max

l=1,...,p
∀x∈D

{
Lkl (x)− Lkl (z)

}
− ε.

We replace or update the parent with its offspring. Thus, y becomes an ε-Pareto optimal solution.

For the rest of the proof, we will show that z is not an ε-Pareto optimal solution, which implies that,
∀y ∈ D,

max
l=1,...,p
∀y∈D

{
Lkl (y)− Lkl (z)

}
> max

l=1,...,p
∀y∈D

{
Lkl (y)− Lkl (x)

}
+ ε,
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with a probability of one. The candidate solution z does not improve upon the current solution y∗ after
a finite number of iterations.
max
l=1,...,p
∀x∈D

{
Lkl (x)− Lkl (y∗)

}
> max

l=1,...,p
∀x∈D

{
Lkl (x)− Lkl (z)

}
+ ε.

let’s consider

a =
1

2

 max
l=1,...,p
∀x∈D

{
Lkl (x)− Lkl (y∗)

}
− max
l=1,...,p
∀x∈D

{
Lkl (x)− Lkl (z)

}
− ε

 > 0

=⇒ max
l=1,...,p
∀x∈D

{
Lkl (x)− Lkl (y∗)

}
− ε = max

l=1,...,p
∀x∈D

{
Lkl (x)− Lkl (z)

}
+ 2a

> max
l=1,...,p
∀x∈D

{
Lkj (x)− Lkl (z)

}
+ a,

We can thus define the set S as follows:

S =

ν ∈ D

∣∣∣∣∣∣ max
l=1,...,p
∀z∈D

(
Lkl (z)− Lkl (ν)

)
+ ε

 ⊂ D.

Condition (v) of the above hypothesis implies thatm(S) > 0.
To conclude the proof, let us proceed by contradiction. Suppose there exists an iteration where x is

retained (i.e., it is not updated) such that the next iteration occurs infinitely many times.
The probabilityWf > 0 allows whales to change position with non-zero density, as noted, to improve

solutions. This is used to generate y, andm(S) > 0 implies that P = prob [y ∈ S] > 0. This is also true
for any other distribution whose density function is non-zero on the setD. At the k-th iteration, the
probability that y∗ is not updated (i.e., retained) in the next iteration (y does not improve upon y∗) is
given by

qk = prob
 max
l=1,...,p
∀x∈D

{
Lkl (x)− Lkl (y)

}
≥ max

l=1,...,p
∀x∈D

{
Lkl (x)− Lkl (y∗)

}
− ε

 ,
and

max
l=1,...,p
∀x∈D

{
Lkl (x)− Lkl (z)

}
+ 2a > max

l=1,...,p
∀x∈D

{
Lkl (x)− Lkl (z)

}
+ a,

=⇒ qk < prob
 max
l=1,...,p
∀x∈D

{
Lkl (x)− Lkl (y)

}
> max

j=1,...,p
∀x∈D

{
Lkl (x)− Lkl (z)

}
+ a

 ,
= prob [y ∈ D \ S] = 1− prob [y ∈ D] = 1− P < 1.

When x is not updated as assumed, P remains unchanged throughout the iterative process. The prob-
ability that no update occurs during k1 consecutive iterations, with each iteration being independent,
is given by:

q1q2 . . . qk1 =

k1∏
k=1

qk ≤ (1− P )k1 ,
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thus

lim
k1→+∞

k1∏
k=1

qk = 0, since 1− P < 1.

Consequently, x is not an ε-Pareto optimal solution, ensuring that an update will occur within a
finite number of iterations. Moreover, it is guaranteed that a solution y improving upon the current
solution y∗ will be generated. Thus, an ε-Pareto optimal solution is reached at some point.

Let us now address the case where n > 1. When a population-based method of size n is used, with
solutions X in the search space, we have X ∈ Dn. In this context, let us redefine S as the set of all
populations Y ∈ Dn whose best point reflects the optimal position of the whales, with a bounded error
relative to the ε-Pareto optimal solution. Each function Lkl , for l = 1, . . . , p, has a fitness value with a
bounded error ε relative to the solution, which allows us to define the function Lk with an ε-Pareto
optimal solution.

S =

Y ∈ Dn

∣∣∣∣∣∣ max
l=1,...,p
∀W∈D

(Lk,kl (W )− Lk,kl (Y )) + ε

 ⊂ Dn,

Let P ′ = prob [Xk+1 ∈ S
]
> 0, where Xk+1 is the population of points at the next iteration k + 1.

We will now show that if Xk represents the best position of the whale population at step k, then
Xk is not an ε-Pareto optimal solution with probability one. Xk+1 is the candidate solution of the
next population, and Xk+1 improves upon Xk in a finite number of iterations. Let us proceed by
contradiction. Suppose that

max
l=1,...,p
∀X′∈D

(Lkl (X ′)− Lkl (Xk+1)) > max
l=1,...,p
∀X′∈D

(Lkl (X ′)− Lkl (Xk))− ε

is true for infinitely many iterations.
Let

qk = prob
 max
l=1,...,p
∀X′∈D

(Lkl (X ′)− Lkl (Xk+1)) ≥ max
j=1,...,p
∀X′∈D

(Lkl (X ′)− Lkj (Xk))− ε

 .
Thus,

qk < prob
 max
l=1,...,p
∀X′∈D

(Lkl (X ′)− Lkl (Xk+1)) > max
l=1,...,p
∀X′∈D

(Lkl (X ′)− Lkl (Xk)) + a


= prob

[
X k+1 ∈ Dn \ S

]
= 1− prob

[
Xk+1 ∈ S

]
= 1− P ′ < 1.
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Using a reasoning similar to the case n = 1, we have:

q1q2 . . . qn =

n∏
k=1

qk ≤
(
1− P ′

)n and lim
n→+∞

n∏
k=1

qk = 0.

We can conclude that ifXk is not a solution, then a better pointXk+1, which improves upon the best
position of the whales Xk, is guaranteed to be generated in a finite number of iterations. Therefore,
after a finite number of iterations, a population X as an ε-Pareto optimal solution is reached. �

3.3. Multiobjective model of a portfolio problem. We consider the multiobjective model of a portfolio
problem as proposed in [23], which is given by:

min
n∑
i=1

n∑
j=1

xixjσij ,

max

n∑
j=1

µjxj ,

subject to
n∑
j=1

xj = 1,

0 ≤ xj ≤ 1, j = 1, . . . , n.

(10)

In practice, to ensure that investments below a given threshold ξj , deemed too low and insignificant,
we add nonlinear constraints as defined by [5]:

ξjxj − x2j ≤ 0, ∀j = 1, . . . , n. (11)

This constraint ensures that the investment xj in asset j does not fall within the interval (0, ξj), implicitly
acting as a cardinality constraint.

The multiobjective model proposed in this work can be summarized as follows:

min

n∑
i=1

n∑
j=1

xixjσij ,

max

n∑
j=1

µjxj ,

subject to
n∑
j=1

xj = 1,

ξjxj − x2j ≤ 0, j = 1, . . . , n,

0 ≤ xj ≤ 1, j = 1, . . . , n.

(12)

Here: - n is the total number of risky assets available to the investor; - xj represents the fraction of
capital invested in asset j; - µj is the expected average return of asset j; - σij is the covariance of the
returns of assets i and j.
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The constraint
n∑
j=1

xj = 1 is crucial, as it ensures that the investor allocates the entire budget across

the selected assets, i.e., 100% of the capital is invested.
The purpose of the constraint ξjxj − x2j ≤ 0 is to ensure that for each asset j, the investment xj

is not too low by imposing a minimum investment threshold. This implies that if one invests in an
asset, at least a certain amount ξj must be allocated to avoid insignificant investments in assets. This
helps concentrate resources on assets with higher return potential, enhancing the overall portfolio
performance and reducing the risks associated with overly fragmented investments. The choice of ξj
can be:

• uniformly random values within a specified range;
• values derived from historical statistics (e.g., using the mean or standard deviation to define
ξj);
• values based on a normal distribution (useful if most values should be near a certain mean
with a few extremes);
• specific criteria for each asset (based on past performance or risk levels).

In this model, we address a bi-objective problem where the first objective is to minimize the portfolio
variance, and the second is to maximize the portfolio return. Note that the expected portfolio return,
denoted µP , is defined as:

µP =
n∑
j=1

xjµj .

The returnmeasures the relative appreciation or depreciation of an asset or portfolio over a given period,
while the risk, representing the uncertainty about the future value of the asset, must be minimized. The
first objective of model (12) represents the portfolio’s overall risk. It is essential to note that portfolio
optimization considers portfolio-wide risk rather than individual asset risks.

The covariance σij and the mean returns are derived from historical data. The daily return R of each
asset is calculated using the formula:

Rt1 =
Pt1 − Pt0
Pt0

,

where Pt0 is the asset price at time t0 (e.g., yesterday) and Pt1 is the asset price at time t1 (e.g., today).
The average return of asset i, Ri, is given by:

Ri =
1

T

T∑
t=1

Ri,t,

where T is the number of periods, and Ri,t is the return of asset i at time t. The covariance between the
returns Ri and Rj of assets is calculated as:

σij = cov(Ri, Rj) =
1

T

T∑
t=1

(
Ri,t −Ri

) (
Rj,t −Rj

)
.
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The expression for µj is given by:

µj =
1

T

T∑
t=1

Rj,t.

4. Application and Numerical Simulation

In this section, we apply the portfolio model (12) presented above to a set of 10 assets, 50 assets,
and 100 assets. We took the daily price of the adjusted closing value over 2940 business days. The
data we used corresponds to the date range from January 14, 2013, to September 19, 2024. We first
selected 100 companies that have data during this period from the New York Stock Exchange list
available at: http://www.nasdaq.com/screening/company-list.aspx; then, we extracted the daily
prices of the adjusted closing value from Yahoo! Finance historical data for these companies at:
http://finance.jasonstrimpel.com.
Once the data was collected, we calculated σij and µi and then proceeded to the numerical simulation.
The list of the 100 companies (abbreviated names) used is as follows: AAPL, ABBV, ABT, ACN, ADBE,

AMAT, AMD, AMGN, AMZN, ASML, AVGO, AXP, AZN, BAC, BHP, BKNG, BLK, BRK-A, BRK-B,

BSX, CAT, CMCSA, COST, CRM, CSCO, CVX, DHR, DIS, ELV, ETN, FMX, GE, GOOG, GOOGL,

GS, HD, HDB, HON, IBM, INTU, ISRG, JNJ, JPM, KO, LIN, LLY, LMT, LOW, LYG, MA, MCD,

META, MRK, MS, MSFT, MUFG, NEE, NFLX, NKE, NOW, NVDA, NVO, NVS, PEP, PFE, PG, PGR,

PLD, PM, QCOM, REGN, RTX, RY, RYAAY, SAP, SCHW, SHEL, SNY, SONY, SPGI, SYK, T, TJX,

TM, TMO, TMUS, TSLA, TSM, TTE, TXN, UL, UNH, UNP, V, VRTX, VZ, WFC, WTM, XOM.

We used Matlab software to implement the proposed algorithms considering the following parame-
ters: λ0 = 0.8147, µ0 = 1.rand(1, 100), η0 = 1, maxIer= 10000.

For each category of problems (10 assets, 50 assets and 100 assets), we have n variables and n

inequality constraints along with a single equality constraint (excluding non-negativity constraints).
For the inequality constraints that prevent investing small percentages of capital in a given asset we
take ξj ∈ {. . . ; 0.01; 0.02; . . . ; 0.1}.

We compare the results obtained with the NSGA-II method. The parameters used for the NSGA-II
method are as follows: number of generations is 10000 with a population size of 100. Both methods
were compiled on an HP laptop: Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz 2.90 GHz RAM: 16 G0.

Figure 1 shows the Pareto fronts obtained with the proposed method and the NSGA-II algorithm for
10 assets while Figure 2 presents the Pareto fronts for 50 assets and Figure 3 for 100 assets. Figure 1
shows that the solutions obtained by Algorithm 1 are better distributed along the Pareto front compared
to the solutions from NSGA-II. Thus the Pareto front of Algorithm 1 allows for exploring multiple
trade-offs between objectives compared to NSGA-II. The solutions from Algorithm 1 are significantly
better than those from NSGA-II regarding portfolio return represented by objective 1 and portfolio risk
represented by objective 2.
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For Figure 2 and Figure 3, we observe that the risks of the solutions proposed by Algorithm 1 are much
lower than those proposed by NSGA-II. Additionally for each solution from Algorithm 1, the return is
significantly higher than the risk unlike that of NSGA-II where the risk is greater than or almost equal
to the return of each solution.
We generally observe that in each case (10 assets or 50 assets or 100 assets), Algorithm 1 produces
results where return exceeds risk unlike NSGA-II method where risk often exceeds return or is almost
equal. This shows that Algorithm 1 outperforms NSGA-II method.

(a) (b)

Figure 1. Pareto front on the 10 assets of the Algorithme 1 and the NSGA-II method

(a) (b)

Figure 2. Pareto front on the 50 assets of the Algorithme 1 and the NSGA-II method



Asia Pac. J. Math. 2025 12:103 22 of 24

(a) (b)

Figure 3. Pareto front on the 100 assets of the Algorithme 1 and the NSGA-II method

5. Conclusion

In this work, we proposed a multi-objective optimization model for portfolio selection, as well as
a solution method based on the augmented Lagrangian. The model takes into account the decision-
maker’s preferences through inequality and equality constraints, which restrict the choice of certain
assets in the portfolio. Unlike classical approaches, our method does not transform the multi-objective
problem into a parametric single-objective problem.

We also developed an algorithm to solve portfolio optimization problems, including linear and
nonlinear constraints. A numerical simulation was then conducted, showing that our algorithm
produces more effective results than those obtained by the NSGA-II algorithm, as evidenced by the
comparison of results in Figures 1, 2, and 3.

For future research, we plan to address portfolio problems with cardinality constraints, which
introduce discontinuities, and to further improve our solution method to meet the requirements of this
type of constraint.
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