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Abstract. This paper is devoted to the study of the finite-dimensional evolution algebras that are 3-Jordan
algebras. We show that a non nil-algebra of this class admits a nonzero idempotent. According to this
idempotent, we prove that its Peirce decomposition is a direct sum of algebras. In passing, we show that, if
the nil-radical of the algebra is of nil-index < 5, then the algebra is an almost generalized Jordan algebra.
A characterization of the derivations is given. We conclude with a classification, up to isomorphism in
dimension ≤ 6, of the nil-indecomposable 3-Jordan algebras that are evolution algebras.
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1. Introduction

Let F be a commutative field of characteristic different from 2, 3. An algebra over the field F is said
to be a pseudo-composition algebra if there exists a nonzero symmetric bilinear form φ : A×A −→ F

such that
x3 = φ(x, x)x, for all x ∈ A. (1)

In [13] Myeberg and Osborn characterize the pseudo-composition algebras with an unit element.
For more on the pseudo-composition algebras, see [4–6,8, 13]. Giuliani and Peresi, in [6], determine
identities of small degree satisfied by the pseudo-compositions algebras. The identity

(x3, y, x) = (x3y)x− x3(yx) = 0, (2)

so-called 3-Jordan is one of these identities. They also prove that the class of the polynomials identities
of degree ≤ 5 of the pseudo-composition algebras is a consequence of the commutativity and the
3-Jordan identity. A commutative algebra verifying the 3-Jordan identity is called 3-Jordan algebra. The
variety of the 3-Jordan algebras contains that of the Jordan algebras and that of the pseudo-composition
algebras. In [8], Hentzel and Peresi show that a simple 3-Jordan algebra with an idempotent is either a
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Jordan algebra or a pseudo-composition algebra. They also give the Peirce decomposition and using
this decomposition, they give a necessary and sufficient condition for a 3-Jordan algebra to be a Jordan
algebra on the one hand, and for it to be a pseudo-composition algebra on the other hand. In [7],
Hentzel and Labra show that for characteristic different from 2, 3, commutative algebras satisfying
the identity (x2y)x+ tx3y = 0 with t 6= 1,−1 are 3-Jordan algebras. Using the Albert program, they
find a 17-dimensional and a 13-dimensional algebra that verifies the identities (x2y)x+ x3y = 0 and
(x2y)x− x3y = 0 respectively and that are not 3-Jordan algebras. Unlike 3-Jordan algebras, so-called
evolution algebras, introduced for the purpose of modeling non-Mendelian genetics, are not defined
by a polynomial identity (see [2, 14, 15]). A finite-dimensional evolution algebras are characterized by
a basis B = (e1, . . . , en) so-called a natural basiswhich multiplication table is given by

eiej = 0 and e2i =
n∑
k=1

aikek with 1 ≤ i 6= j ≤ n. (3)

The matrixM = (aik)1≤i,j≤n is the matrix of structural constants of A relative to the natural basis B.
In [11], the authors characterize finite-dimensional associative and power-associative evolution algebras.
They show that power-associative evolution algebras are Jordan algebras. In [12], a characterization of
finite-dimensional evolution algebras that are Lie triple algebra is given. Our aim in the present paper
is the study of finite-dimensional evolution algebras that are 3-Jordan algebras.

In Section 2, we recall some results on the nil evolution algebras. Section 3 is devoted to the presenta-
tion of our main result. We show that a non nil 3-Jordan evolution algebra has a nonzero idempotent
and relative to this idempotent, we prove that its Peirce decomposition is a direct sum of algebras. A
characterization of the Lie algebra of derivations is also given. In the fourth and last section, we give a
classification up to isomorphism, in dimension at most 6 of nil-indecomposable 3-Jordan evolution
algebras. In passing, we show that, in dimension at most 4, the 3-Jordan evolution algebras are almost
generalized Jordan algebras.

2. Preliminaries

Let A be a commutative algebra over a commutative field F. The principal power of x ∈ A and that of
the algebra A are defined respectively by

x1 = x, xk+1 = xkx and A1 = A, Ak+1 = AkAwith k ≥ 1.

Definition 2.1. We say that the algebra A is

(1) nilpotent if there exists an integer n such that An = 0 and the smallest such integer is called the nilpotency-

index of A,

(2) nil, if there is an integer n(x) such that xn(x) = 0 for all x ∈ A. The smallest such integer is called the

nil-index of the algebra A.
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Theorem 2.1. [1, Theorem 2.2] Let A be a nil evolution algebra with a natural basis B = (e1, . . . , en). If

M = (aij) is the matrix of structural constants of the algebra A relative to the natural basis B, then

ai1i2ai2i3 · · · aiki1 = 0 (4)

for all i1, . . . , ik ∈ {1, · · · , n} and k ∈ {1, · · · , n} with ip 6= iq for p 6= q.

In [1, Theorem 2.7], The authors show that in finite dimension, nilpotent evolution algebras are
equivalent to nil evolution algebras. They also show that any finite-dimensional nil evolution algebra
admits a natural basis which matrix of structural constants is strictly upper triangular. Furthermore,
in [10, Lemma 2.3], the authors show that the nil-index of finite-dimensional nil evolution algebra is
equal to its nilpotency-index.

Notation 2.1. Let A be an algebra over the field F and (x1, . . . , xp) be a family of p elements of A. The set

Alg(x1, . . . , xp) denoted the subalgebra of A generated by the family (x1, . . . , xp) and the set vect(x1, . . . , xp)

denoted the linear subspace of A generated by the family (x1, . . . , xp).

Definition 2.2. [3, Definition 3.3] Let A be an algebra over the commutative field F. We define the ideals

anni(A) by

(i) ann0(A) = {0},

(ii) ann1(A) = ann(A) = {x ∈ A | xA = Ax = 0},

(iii) anni(A) = ann(A/anni−1A) for all i ≥ 2.

Let B = (e1, . . . , en) be a natural basis of a finite-dimensional evolution algebra A. In [3, Page 16],
the authors show that anni(A) = Alg(e ∈ B | e2 ∈ anni−1(A)with i ≥ 1).Moreover, they prove that
Ui ⊕ U1 = {x ∈ anni(A) | xanni−1(A) = 0} is an invariant of the algebra A for all i ≥ 1. The type of A

is the sequence [n1, . . . , nr] where ni = dim(anni(A))− dim(anni−1(A)) and r is the smallest integer
such that annr(A) = A. Furthermore, n1 + · · ·+ nr = dim(A).

Definition 2.3. An algebra A is said to be:

(i) power-associative if xixj = xi+j for any x in A and for all integer i, j ≥ 1;

(ii) Jordan if it is commutative and (x2, y, x) = (x2y)x− x2(yx) = 0, for all x, y ∈ A;

(iii) almost generalized Jordan if it is commutative and β(x2y)x+ γx3y − (β + γ)((yx)x)x = 0, for x, y ∈ A

and (β, γ) 6= (0, 0).

3. Structure of 3-Jordan evolution algebras

In the following, F denotes an infinite commutative field of characteristic different from 2, 3.
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3.1. Characterisation theorem. A partial linearization of the identity (2) gives us

((zx2 + 2x(zx))y)x+ (x3y)z − (zx2 + 2x(zx))(yx)− x3(zy) = 0 (5)

and
2((z(xh) + h(xz) + x(hz))y)x+ ((zx2 + 2x(zx))y)h+ ((hx2 + 2x(xh))y)z

−2(z(xh) + h(zx) + x(zh))(yx)− (zx2 + 2x(xz))(yh)− (hx2 + 2x(xh))(yz) = 0
(6)

with x, y, z, h ∈ A.

Proposition 3.1. [8, Proposition 1] Let A be a 3-Jordan algebra with a nonzero idempotent e. Then, the algebra

admits the following Peirce decomposition:

A = A1 ⊕A−1 ⊕A 1
2
⊕A0

with Ai = {x ∈ A | ex = ix} where i ∈ {1,−1, 0, 12}. Furthermore, we have

A2
1 ⊂ A1, A1A−1 ⊂ A−1, A1A 1

2
⊂ A 1

2
, A1A0 = 0,

A2
1
2

⊂ A−1 ⊕A0 ⊕A1, A 1
2
A0 ⊂ A 1

2
, A 1

2
A−1 = A0 ⊕A1 ⊕A 1

2
,

A2
−1 ⊂ A1 ⊕A0, A−1A0 = 0

A2
0 ⊂ A0.

Theorem 3.1 (Characterization theorem). Let A be a finite-dimensional evolution F -algebra with natural

basis B = (e1, . . . , en). Then, A is a 3-Jordan algebra if, and only if, for all 1 ≤ i, j, k, t ≤ n pairwise distinct,

the following statements hold:

(a) e3i e
2
i − e5i = 0;

(b) (e3i ej)ei = 0;

(c) (e2i ej)e
2
i − ((e2i ej)ei)ei − e4i ej = 0;

(d) e3i e
2
j − (e3i ej)ej − ((e2i ej)ej)ei = 0;

(e) (e2i ej)e
2
j − ((e2i ej)ej)ej − ((e2jei)ej)ei = 0;

(f) (e3i ek)ej + ((e2i ej)ek)ei = 0 ;

(g) ((e2i ej)ei)ek + ((e2i ek)ei)ej = 0 with j < k;

(h) ((e2i ej)ek)ej + ((e2jei)ek)ei = 0 with i < j;

(i) (e2i ej)e
2
k − ((e2i ej)ek)ek − ((e2i ek)ek)ej = 0;

(j) ((e2i ej)et)ek + ((e2i ek)et)ej = 0 with j < k.

Proof. Assumed that A is a 3-Jordan algebra.
• The assertions (a) and (b) follow from the identity (2) taking x = y = ei; x = ei, y = ej respectively.
• The assertions (c), (d) and (f) result from identity (5) by taking respectively x = y = ei, z = ej ;
x = ei, y = z = ej and x = ei, y = ek, z = ej .
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• The assertions (e), (g) to (j) follow from the identity (6), taking x = ei, y = z = h = ej ; x = y =

ei, z = ej , h = ek ; x = ei, y = ek, z = h = ej ; x = ei, y = h = ek, z = ej and x = ei, y = et, z = ej , h =

ek respectively
Reciprocally, suppose that the statements (a) to (j) are satisfied. Let x =

∑n
i=1 xiei, y =

∑n
i=1 yiei ∈ A.

We have
xy =

n∑
i=1

xiyie
2
i ; x

2 =
n∑
i=1

x2i e
2
i ; x

3 =
n∑

i,j=1

x2ixje
2
i ej =

n∑
i=1

x3i e
3
i +

∑
1≤i 6=j≤n

x2ixje
2
i ej ;

x3(xy) =

n∑
i,j=1

x3ixjyje
3
i e

2
j +

n∑
k=1

∑
1≤i 6=j≤n

x2ixjxkyk(e
2
i ej)e

2
k =

n∑
i=1

x4i yie
3
i e

2
i+

∑
1≤i 6=j≤n

[x3ixjyje
3
i e

2
j + x3ixjyi(e

2
i ej)e

2
i + x2ix

2
jyj(e

2
i ej)e

2
j ] +

n∑
k=1

∑
1≤i 6=j≤n
i 6=k,j 6=k

x2ixjxkyk(e
2
i ej)e

2
k;

x3y =
n∑

i,j=1

x3i yje
3
i ej +

n∑
k=1

∑
1≤i 6=j≤n

x2ixjyk(e
2
i ej)ek =

n∑
i=1

x3i yie
4
i+

∑
1≤i 6=j≤n

[x3i yje
3
i ej + x2ixjyi(e

2
i ej)ei + x2ixjyj(e

2
i ej)ej ] +

n∑
k=1

∑
1≤i 6=j≤n
i 6=k,j 6=k

x2ixjyk(e
2
i ej)ek;

(x3y)x =
n∑

i,j=1

x3ixjyie
4
i ej +

n∑
k=1

∑
1≤i 6=j≤n

[x3ixkyj(e
3
i ej)ek + x2ixjxkyi((e

2
i ej)ei)ek+

x2ixjxkyj((e
2
i ej)ej)ek] +

n∑
k,t=1

∑
1≤i 6=j≤n
i 6=k,j 6=k

x2ixjxtyk((e
2
i ej)ek)et =

n∑
i=1

x4i yie
5
i+

∑
1≤i 6=j≤n

[x3ixjyi(e
4
i ej + ((e2i ej)ei)ei) + x4i yj(e

3
i ej)ei + x3ixjyj(((e

2
i ej)ej)ei + (e3i ej)ej)+

x2ix
2
jyi(((e

2
i ej)ei)ej + ((e2jei)ei)ei)] +

n∑
k=1

∑
1≤i 6=j≤n
i 6=k,j 6=k

[x3ixkyj((e
3
i ej)ek + ((e2i ek)ej)ei)+

x2ixjxkyi((e
2
i ej)ei)ek + x2ixjxkyj(((e

2
i ej)ej)ek + ((e2i ek)ej)ej) + x2ix

2
jyk((e

2
i ej)ek)ej ]+∑

1≤k 6=t≤n

∑
1≤i 6=j≤n
i,j /∈{k,t}

x2ixjxtyk((e
2
i ej)ek)et =

n∑
i=1

x4i yie
3
i e

2
i +

∑
1≤i 6=j≤n

[x3ixjyi(e
2
i ej)e

2
i + x3ixjyje

3
i e

2
j+

x2ix
2
jyi(e

2
jei)e

2
i ] +

n∑
i=1

∑
1≤j< k≤n
j 6=i,k 6=i

x2ixjxkyi(((e
2
i ej)ei)ek + ((e2i ek)ei)ej)+

n∑
k=1

∑
1≤i 6=j≤n
i 6=k,j 6=k

x2ixjxkyj(e
2
i ek)e

2
j +

n∑
k=1

∑
1≤i<j≤n
i 6=k,j 6=k

x2ix
2
jyk(((e

2
i ej)ek)ej + ((e2jei)ek)ei)+

∑
1≤j<t≤n

∑
1≤i 6=k≤n
i,k/∈{j,t}

x2ixjxtyk(((e
2
i ej)ek)et + ((e2i et)ek)ej)
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It follows that x3(yx) = (x3y)x and A is a 3-Jordan algebra. �

In the example above, we show that a finite-dimensional 3-Jordan evolution algebra is not necessarily
a Jordan algebra or an almost generalized Jordan algebra.

Example 3.1. Let A be a 7-dimensional evolution algebra and B = (e1, . . . , e7) a natural basis of A. The

multiplication table of A is given by:

e21 = e2, e
2
2 = e1, e

2
3 = e4, e

2
4 = e5 + e6, e

2
5 = −e26 = e7, e

2
7 = 0.

The algebra A is a 3-Jordan algebra. It is neither a Jordan algebra, nor an almost generalized Jordan algebra.

Indeed, let x = x1e1 + · · ·+ x7e7, y = y1e1 + · · ·+ y7e7 ∈ A.We show by direct calculation that (x3y)x =

x3(yx) = x21x
2
2(y1e1 + y2e2). It follows that the algebra A is a 3-Jordan algebra. Set x = e1 + e3 + e4 and

y = e2 + e5 − e6, we obtain β(x2y)x + γx3y − (β + γ)((xy)x)x = βe2 + 2γe7 6= 0, i.e. the algebra A

is not an almost generalized Jordan algebra. Since 0 = e41 6= e21e
2
1 = e1, it follows that the algebra A is not

power-associative, so it is not a Jordan algebra. Moreover, the vector e = e1 + e2 is a nonzero idempotent of the

algebra A.

3.2. Nil 3-Jordan evolution algebras. In the following, we describe finite-dimensional nil 3-Jordan
evolution algebras.

Theorem 3.2. Let A be a finite-dimensional nil evolution algebra over the field F. Then, A is a 3-Jordan algebra

if, and only if, the following statements hold:

(1) (e2i ej)e
2
k = 0 for all i, j, k ∈ {1, · · · , n}.

(2) The nil-index of the algebra A is at most 5.

Proof. Since the algebra A being a nil-algebra, it admits a natural basis B = (e1, . . . , en) which mul-
tiplication table is given by: e2i =

∑n
k=i+1 aikek for all i ∈ {1, . . . , n}. Assumed that A is a 3-Jordan

algebra. The assertion (1) follows from the Theorem 2.1 and from the assertions (c), (e) and (i) of
the Theorem 3.1. The assertion (2) can be deduced from the Theorem 2.1 and from the assertion (j)
of the Theorem 3.1. Reciprocally, we suppose that the algebra A verifies the assertions (1) and (2).
Let x =

∑n
k=1 xkek, y =

∑n
k=1 ykek. Since A is a nil-algebra of nil-index at most 5, it is nilpotent with

nilpotency-index at most 5. It follows that (x3y)x = 0.We also have x3 =
∑n

i=1

∑n
j=i+1 x

2
ixje

2
i ej and

x3(yx) =
∑n

i,k=1

∑n
j=i+1 x

2
ixjxkyk(e

2
i ej)e

2
k = 0 = (x3y)x.We deduce that A is a 3-Jordan algebra. �

Proposition 3.2. Let A be a finite-dimensional nil evolution algebra of nil-index at most 4. Then, A is a 3-Jordan

algebra.

Proof. The algebra A is nilpotent with nilpotency-index at most 4. For all x, y ∈ A,we have x3y = 0 and
x3(yx) = 0 since xy ∈ A. It follows that (x3y)x = x3(xy) = 0 and A is 3-Jordan algebra. �
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As the following example shows, a nil 3-Jordan evolution algebra with a nil-index at most 4 is not
necessarily a Jordan algebra:

Example 3.2. Let A be a 3-dimensional nil evolution algebra in the natural basis B = (e1, e2, e3) which

multiplication is given by:

e21 = e2, e
2
2 = e3, e

2
3 = 0.

The nil-index of the algebra A is 4, so, the Proposition 3.2 tells us that it is a 3-Jordan algebra. But, It is not a

Jordan algebra [10, Theorem 4.4].

However, as the example above shows, a nil-algebra with a nil-index at least 5 is not necessarily a
3-Jordan algebra:

Example 3.3. Let A be a 5-dimensional nil evolution algebra in the natural basis B = (e1, . . . , e5) which

multiplication table is given by:

e21 = e22 = e3, e
2
3 = e4, e

2
4 = e5, e

2
5 = 0.

The nil-index of A is 5 [3, Theorem 6.4 (iv)]. Since (e21e3)e33 = e23e
2
3 = e24 = e5 6= 0, it is not a 3-Jordan algebra.

3.3. Particular form of Peirce decomposition.

Lemma 3.1. Let A be a n-dimensional non nil 3-Jordan evolution algebra with n ≥ 2. Assume that the

algebra A admits a natural basis B = (e1, . . . , en) such that for any ei ∈ B, we have e3i = 0. Then, there are

i0, i1 ∈ {1, . . . , n} distinct such that (e2i0ei1)ei0 6= 0.

Proof. Consider a natural basis B = (e1, . . . , en) of A such that for any ei ∈ B,we have e3i = 0. Suppose
that for all i, j ∈ {1, . . . , n} distinct, we have (e2i ej)ei = 0. The assertions (f) and (j) of Theorem 3.1
lead respectively to ((e2i ej)ek)ei = 0 for i, j, k pairwise distinct and to ((e2i ej)et)ek = ((e2i ek)et)ej = 0

for i, j, k, t pairwise distinct with j < k. It follows that the algebra A is nil of nil-index at most 5 and we
get the lemma. �

Proposition 3.3. Let A be a n-dimensional non nil 3-Jordan evolution algebra with n ≥ 2. Assume that the

algebra A admits a natural basis B = (e1, . . . , en) such that for any ei ∈ B, we have e3i = 0. Then, the algebra

A admits a nonzero idempotent.

Proof. Since the algebra A being non nil, the Lemma 3.1 tells us that there are i0, i1 ∈ {1, . . . n} distinct
such that (e2i0ei1)ei0 6= 0, i.e. ai0i1ai1i0 6= 0. In the following, we will consider such integers.
• Suppose that dim(A) = 2, then e2i0 = ai0i1ei1 and e2i1 = ai1i0ei0 with ai0i1 , ai1i0 ∈ F ∗. The algebra
A is a 3-Jordan algebra. Set u0 = (a2i0i1ai1i0)

− 1
3 ei0 and u1 = (ai0i1a

2
i1i0

)−
1
3 ei1 ; the family (u0, u1) is

a natural basis of the algebra A and its multiplication table is defined by u20 = u1 and u21 = u0. It
follows that the vector e = u0 + u1 is a nonzero idempotent of A.



Asia Pac. J. Math. 2025 12:104 8 of 18

• Assume that dim(A) ≥ 3 and let k ∈ {1, . . . , n} distinct from i0 and i1.
(a) The assertion (f) of Theorem 3.1 leads to relations

0 = ((e2i0ei1)ek)ei0 = ai0i1ai1kaki0e
2
i0 , i.e. ai1kaki0 = 0

0 = ((e2i0ek)ei1)ei0 = ai0kaki1ai1i0e
2
i0 , i.e. ai0kaki1 = 0.

(b) The assertion (h) of Theorem 3.1 gives the following equalities

0 = ((e2i0ek)ei1)ek + ((e2kei0)ei1)ei0 = aki0ai0i1ai1i0e
2
i0 , i.e. aki0 = 0,

0 = ((e2i1ek)ei0)ek + ((e2kei1)ei0)ei1 = aki1ai1i0ai0i1e
2
i1 , i.e. aki1 = 0.

(c) The assertion (g) of Theorem 3.1 involves the following identities

0 = ((e2i0ei1)ei0)ek + ((e2i0ek)ei0)ei1 = ai0i1ai1i0ai0ke
2
k, i.e. ai0k = 0 for e2k 6= 0,

0 = ((e2i1ei0)ei1)ek + ((e2i1ek)ei1)ei0 = ai1i0ai0i1ai1ke
2
k, i.e. ai1k = 0 for e2k 6= 0.

We deduce that e2i0 = ai0i1ei1 + z0, e
2
i1
= ai1i0ei0 + z1 with z0, z1 ∈ ann(A). Set u0 = a(ei0 + a−1i1i0z1),

u1 = b(ei1 + a−1i0i1z0) and determine the nonzero scalars a and b such that u20 = u1 and u21 = u0.

The equality u1 = u20 = a2ai0i1(ei1 + a−1i0i1z0) = a2b−1ai0i1u1 leads to b = a2ai0i1 and the equality
u0 = u21 = b2ai1i0(ei0 + a−1i1i0z1) = b2a−1ai1i0u0 involves 1 = a3a2i0i1ai1i0 . Thus, a = (a−2i0i1a

−1
i1i0

)
1
3 and

b = ai0i1(a
−2
i0i1

a−1i1i0)
2
3 = (a−1i0i1a

−2
i1i0

)
1
3 . Consequently, the family (u0, u1, ek)k/∈{i0,i1} is a natural basis of

the algebra A and the multiplication table of A in this natural basis is of form

u20 = u1, u
2
1 = u0, e

2
k =

∑
1≤j≤n

j /∈{k,i0,i1}

akjej .

It follows that the vector e = u0 + u1 is a nonzero idempotent of the algebra A.
�

Theorem 3.3. Let A be a n-dimensional non nil 3-Jordan evolution algebra with n ≥ 2. Suppose that the algebra

A admits a natural basis B = (e1, . . . , en) such that for all ei ∈ B, we have e3i = 0. Then, the algebra A admits

the following decomposition into a direct sum of algebras given by:

A = Ass ⊕N (7)

where N is a finite-dimensional nil 3-Jordan evolution algebra and

Ass =
⊕s

k=0Alg(u2k, u2k+1). For 0 ≤ k ≤ s, the algebra Alg(u2k, u2k+1) is a 2-dimensional evolution algebra

in the natural basis (u2k, u2k+1) which multiplication table is given by: u22k = u2k+1 and u22k+1 = u2k.

Proof. If the algebra A is of dimension 2, we then obtain the theorem with s = 0 and N = 0. In the
following, assume that dim(A) > 2. The proof of the Proposition 3.3, tells us that the algebra A admits
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a natural basis B′ = (u0, u1, ek)1≤k≤n−2 which multiplication table is of form

u20 = u1, u
2
1 = u0, e

2
k =

n−2∑
k 6=j=1

akjej with 1 ≤ k ≤ n− 2.

Moreover, the vector e = u0 + u1 is a nonzero idempotent of A. Let us determine Peirce subspaces
relative to the idempotent e. Let x = au0 + bu1 +

∑n−2
k=1 xkek ∈ A,we have ex = au20 + bu21 = au1 + bu0.

• For x ∈ A0,we have 0 = ex = au1+bu0, i.e. a = b = 0 and x =
∑n−2

k=1 xkek. SoA0 ⊂ Alg(e1, . . . , en−2).

Reciprocally, we have eek = 0 for all 1 ≤ k ≤ n − 2. We deduce that A0 = Alg(e1, . . . , en−2) is a
3-Jordan evolution algebra in the natural basis (e1, . . . , en−2).
• For x ∈ A 1

2
, we have 1

2x = ex = au1 + bu0, i.e. a = b = xk = 0 for all 1 ≤ k ≤ n − 2. So x = 0 and
A 1

2
= 0.

• For x ∈ A−1, we have −x = ex = au1 + bu0, a = −b and xk = 0 for all 1 ≤ k ≤ n − 2. So
x = a(u0−u1) ∈ F (u0−u1) and reciprocally, we have e(u0−u1) = u20−u21 = −(u0−u1).We deduce
that A−1 = F (u0 − u1).

• For x ∈ A1, we have x = ex = au1 + bu0, a = b and xk = 0 for all 1 ≤ k ≤ n− 2. So x = a(u0 + u1) ∈

F (u0+u1) and reciprocally, we have e(u0+u1) = u20+u
2
1 = u0+u1.We deduce thatA1 = F (u0+u1).

Consequently, the Peirce decomposition of A is of form

A = F (u0 + u1)⊕ F (u0 − u1)⊕Alg(e1, . . . , en−2).

The subspaces F (u0 + u1) ⊕ F (u0 − u1) is an evolution algebra with a natural basis (u0, u1) and
A0 = Alg(e1, . . . , en−2) is a 3-Jordan evolution algebra. Furthermore, Alg(u0, u1)⊕A0 is a direct sum
of algebras. If A0 is a nil algebra, it is finished and we get the theorem with s = 0. Otherwise, we repeat
the process on the algebra A0. Since A is a finite-dimensional algebra, we obtain the result after a finite
number of operations. �

3.4. General form of Peirce decomposition. Assumed that A is a finite-dimensional 3-Jordan non nil
evolution algebra admitting a natural basis B = (e1, . . . , en) such that there is i0 ∈ {1, . . . , n} verifying
e3i0 6= 0. By putting ui0 = a−1i0i0ei0 ,we can take ai0i0 = 1 and we will get e3i0 = e2i0 . So, in the following,
we take ai0i0 = 1. The assertion (a) of Theorem 3.1 tells us that the vector e2i0 is a nonzero idempotent
of A. Let j ∈ {1, . . . , n} distinct from i0 such that e2j 6= 0.

• The assertion (b) of Theorem 3.1 gives us 0 = (e2i0ej)ei0 = ai0jaji0e
2
i0
, i.e.

ai0jaji0 = 0. (8)

• The assertion (d) of Theorem 3.1 leads to

e2i0e
2
j = ai0jajje

2
j . (9)
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• The assertion (c) of Theorem 3.1 involves 0 = (e2jei0)e
2
j−((e2jei0)ej)ej−e4jei0 = aji0e

2
i0
e2j−a2jjaji0e2i0 =

aji0ai0jajje
2
j − a2jjaji0e2i0 = −a2jjaji0e2i0 , i.e.

ajjaji0 = 0. (10)

• The assertion (d) of Theorem 3.1 gives us 0 = e3je
2
i0
−(e3jei0)ei0−((e2jei0)ei0)ej = ajje

2
je

2
i0
= a2jjai0je

2
j ,

i.e.

ajjai0j = 0 (11)

It follows that e2i0e2j = ai0jajje
2
j = 0.

• The assertion (c) of Theorem 3.1 leads to 0 = (e2i0ej)e
2
i0
− ((e2i0ej)ei0)ei0 − e

2
i0
ej = −ai0je2j , i.e. ai0j=0.

Moreover, the relation 0 = e2i0e
2
j =

∑n
k=1 ai0kajke

2
k = ai0i0aji0e

2
i0
, i.e. aji0 = 0.

We deduce that e2i0 = ei0 + z0 with z0 ∈ ann(A). The vector v1 = e2i0 = ei0 + z0 is a nonzero idempotent
of A and the Peirce decomposition of the algebra A relative to v1 is given by:

A = kv1 ⊕A0 (12)

whereA0 is a (n−1)-dimensional 3-Jordan evolution algebra generated by the family {ek | 1 ≤ k 6= i0 ≤

n}. This Peirce decomposition is a direct sum of the algebras. We deduce that A0 is a finite-dimensional
3-Jordan evolution algebra.

Theorem 3.4 (Decomposition theorem). Let A be a finite-dimensional 3-Jordan evolution algebra. Then, the

algebra A admits a decomposition into a direct sum of algebras given by:

A = Fv1 ⊕ · · · ⊕ Fvp ⊕Ass ⊕N (13)

where the family (v1, . . . , vp) is empty or a pairwise orthogonal idempotents family; Ass is a (2s)-dimensional

evolution algebra defined in the Theorem 3.3 and its nil-radical N is zero or a finite-dimensional nil 3-Jordan

evolution algebra.

Proof. If the algebra A admits a natural basis B such that for all e ∈ B,we have e3 = 0, then, A admits a
decomposition into a direct sum of algebras given by the identity (7). Thus, we obtain the Theoremwith
the family(v1, . . . , vp) which is empty. Otherwise, it admits a decomposition given by the identity (12).
If the algebra A0 admits a natural basis B0 such that for all e ∈ B0, we have e3 = 0, then, we get the
theorem with p = 1. Otherwise, the process is repeated on A0 and since A is a finite-dimensional, the
process will end for a certain integer p.We then obtain the theorem. �

Proposition 3.4. Let A be a finite-dimensional 3-Jordan evolution algebra. If the nil-radical of A is of nil-index

at most 4, then, A is almost generalized Jordan algebra. In particular, it verifies the identity x3y − ((xy)x)x = 0

with x, y ∈ A.
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Proof. Suppose that the algebra A has a nil-index at most 4, and consider the decomposition of A into a
direct sum of algebras given by the identity (13). Let x =

∑p
k=1 xkvk +

∑s
j=0(x

′
2j+1u2j+1 + x′2ju2j) +

zx, y =
∑p

k=1 ykvk +
∑s

j=0(y
′
2j+1u2j+1 + y′2ju2j) + zy ∈ Awith zx, zy ∈ N.We have

x2 =

p∑
k=1

x2kvk +

s∑
j=0

(x′22j+1u2j + x′22ju2j+1) + z2x

x3 =

p∑
k=1

x3kvk +

s∑
j=0

x′2j+1x
′
2j(x

′
2ju2j + x′2j+1u2j+1) + z3x

x3y =

p∑
k=1

x3kykvk +

s∑
j=0

x′2j+1x
′
2j(x

′
2jy2ju2j+1 + x′2j+1y

′
2j+1u2j)

xy =

p∑
k=1

xkykvk +
s∑
j=0

(x′2j+1y
′
2j+1u2j + x′2jy

′
2ju2j+1) + zxzy

(xy)x =

p∑
k=1

x2kykvk +
s∑
j=0

x′2j+1x
′
2j(y

′
2j+1u2j+1 + y′2ju2j) + (zxzy)zx

((xy)x)x =

p∑
k=1

x3kykvk +
s∑
j=0

x′2j+1x
′
2j(x

′
2j+1y

′
2j+1u2j + x′2jy

′
2ju2j+1)

((xy)x)x = x3y.

It follows that A is almost generalized Jordan algebra. �

Remark 3.1. The nil 3-Jordan evolution algebras of dimension 2 and 3 are almost generalized Jordan algebras.

3.5. Derivations. A derivation on the F -algebra A is a linear operator d : A −→ A such that d(xy) =
d(x)y + xd(y) for all x, y ∈ A. The set DerK(A) of all derivations of A is a Lie algebra where the
multiplication of two derivations d and d′ of A is defined by [d, d′] = dod′ − d′od.

Let A be a finite-dimensional evolution algebra with the natural basis B = (e1, . . . , en) and d be a
derivation on A; set d(ei) =

∑n
k=1 dikek. In [9, page 27] the authors show that for 1 ≤ i 6= j ≤ n, if the

family (e2i , e
2
j ) is linear independent, then dij = dji = 0 and if e2i = αie

2
j then dij = −αidji. It follows

that for ei ∈ ann(A),we have d(ei) ∈ ann(A).

Theorem 3.5. Let A be a finite-dimensional 3-Jordan evolution algebra. Consider the decomposition of A into a

direct sum of algebras given by the identity (13). Then DerK(A) = DerK(N).

Proof. Let d be a derivation of A and v =
∑p

k=1 akvk +
∑s

j=0(b2j+1u2j+1 + b2ju2j). [9, Proof of Proposi-
tion 2.4] tells us that d(vk) = 0 for all 1 ≤ k ≤ p. For all 1 ≤ j ≤ s,we have d(u2j+1) = a2j+1u2j+1+z2j+1

and d(u2j) = a2ju2j+z2j with a2j+1, a2j ∈ F and z2j+1, z2j ∈ ann(A). The equality d(u2j) = d(u22j+1) =

2u2j+1d(u2j+1) = 2a2j+1u
2
2j+1 = 2a2j+1u2j , leads to a2j = 2a2j+1 and z2j = 0. Also, the equality

d(u2j+1) = d(u22j) = 2u2jd(u2j) = 2a2ju
2
2j = 2a2ju2j+1, involves a2j+1 = 2a2j ; z2j+1 = 0.We deduce

that a2j = a2j+1 = 0 and d(u2j) = d(u2j+1) = 0, i.e. DerK(A) = DerK(N). �
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Example 3.4. Consider the algebra defined in the Example 3.1. Let N = Alg(e3, . . . , e7) and d ∈ DerK(N).

• The family (e23, e2j ) is linear independent for 4 ≤ j ≤ 6, then d(e3) = d33e3 + d37e7.

• The relation e23 = e4 gives us d(e4) = d(e23) = 2e3d(e3) = 2d33e
2
3 = 2d33e4.

• The relation e25 = −e26 and the linear independence of the families (e25, e2j ) and (e26, e
2
j ) for j ∈ {3, 4} lead to

d(e5) = d55e5 + d56e6 + d57e7 and d(e6) = −d56e5 + d66e6 + d67e7.

• The relation e5 + e6 = e24 gives us d(e5) + d(e6) = d(e24) = 2e4d(e4) = 4d33e
2
4 = 4d33(e5 + e6), i.e.

d55 = 4d33+d56, d66 = 4d33−d56 and d67 = −d57.We deduce that d(e5) = (4d33+d56)e5+d56e6+d57e7

and d(e6) = −d56e5 + (4d33 − d56)e6 − d57e7.

• The relation e7 = e25 involves d(e7) = d(e25) = 2e5d(e5) = 2(4d33 + d56)e7.

Set

d1 = diag(1, 2, 4, 4, 8) ; d2 = E51 ; d3 = E53 − E54 ; d4 = E33 − E44 + E43 − E34 + 2E55

where Eij denotes the elementary matrix of order 5 and diag(1, 2, 4, 4, 8) denotes a diagonal matrix. We have

DerK(A) = Alg(d1, d2, d3, d4) and the multiplication table is defined by :

[d1, d2] = 7d2 ; [d1, d3] = 4d3 ; [d2, d4] = −2d2 ; [d3, d4] = −d3.

The multiplication not mentioned are vanish. As consequence, the Lie algebra DerK(A) is not abelian.

4. Classification of the nil 3-Jordan evolution algebras

In finite dimension, the knowledge of the nil 3-Jordan evolution algebras is sufficient to construct
3-Jordan evolution algebras according to the Theorem 3.4. In this section, we give the classification,
up to isomorphism and in dimension at most 6, of nil 3-Jordan indecomposable evolution algebra
that are not an almost generalized Jordan algebra. The Theorem 3.2 and the Proposition 3.4, tell us
that such algebras are of nil-index 5. Let N be an indecomposable nil 3-Jordan evolution algebra of
nil-index 5; its type is of form [n1, n2, n3, n4] where n1, n2, n3, n4 are the nonzero integers such that
n1 + · · · + n4 = dim(A). Necessarily, dim(N) ≥ 4 and let B = (e1, . . . , en) be a natural base of A, we
have ((e2i ej)ek)et = 0 and (e2i ej)e

2
k = 0 for all 1 ≤ i, j, k, t ≤ n by the Theorem 3.2.

Lemma 4.1. There is no nil 3-Jordan evolution algebra of type [n1, 1, n3, n4] where n1, n3, n4 are the nonzero

integers.

Proof. Assume that N is a nil 3-Jordan evolution algebra of type [n1, 1, n3, n4]where n1, n3, n4 are the
nonzero integers. Consider a natural basis B of N. According to [3, Page 16], it admits a disjoint union
decomposition given by:

B = B1 ∪B2 ∪B3 ∪B4 with Bi = {e ∈ B | e2 ∈ anni−1(N) and e /∈ anni−1(N)}.
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Since card(B2) = 1, let ei0 be the unique element of B2 ; we have e2i0 6= 0. Set B3 = (ek1 , . . . , ekn3
),we

have e2ks = aksi0ei0 + zk where zk ∈ ann(N), aksi0 6= 0 and s ∈ {1, . . . , n3}. Consider ej ∈ B4 ; for all
eks ∈ B3, the equality 0 = (e2jeks)e

2
ks

= ajkse
2
ks
e2ks = ajksa

2
ksi0

e2i0 leads to ajks = 0 for all s ∈ {1, . . . , n3}.
It follows that e2j ∈ ann2(N) and ej ∈ ann3(N): impossible. We deduce that N cannot be of the type
[n1, 1, n3, n4]. �

Proposition 4.1. [3, Corollary 2.6] Let A be a finite-dimensional evolution algebra such that dim(ann(A)) ≥
1
2 dim(A) ≥ 1. Then, the algebra A is decomposable.

4.1. Classification in dimension 4 and 5.

Proposition 4.2. Any 4-dimensional indecomposable nil 3-Jordan evolution algebra is almost generalized Jordan

algebra.

Proof. Let N be an indecomposable nil 3-Jordan algebra. Its nil-index is at most 5. If the nil-index is
2, 3 or 4, then, the algebra is almost generalized Jordan algebra. If the nil-index is 5, then its type is
[1, 1, 1, 1]: impossible by the Lemma 4.1. �

Proposition 4.3. Let N be a 5-dimensional indecomposable nil evolution algebra that is not almost generalized

Jordan algebra. Then, A is isomorphic to one and only one, of the following algebras:

(1) N5,1 : e21 = e2, e
2
2 = e3 + e4, e

2
3 = e5, e

2
4 = −e5, e25 = 0.

(2) N5,2(α) : e21 = e2 + α(e3 + e4), e
2
2 = e3 + e4, e

2
3 = e5, e

2
4 = −e5, e25 = 0 with α ∈ F ∗.

Proof. We have dim(ann(N)) < 1
2 dim(N), i.e. dim(ann(N)) = 1 or 2. By Lemma 4.1 the only pos-

sible type of N is [1, 2, 1, 1]. Let B = (e1, . . . , e5) be a natural basis of N such that ann(N) =

Alg(e5), ann
2(N) = Alg(e3, e4, e5), ann

3(N) = Alg(e2, e3, e4, e5). The multiplication table of N in
this basis is of form e21 = a12e2 + a13e3 + a14e4 + a15e5, e

2
2 = a23e3 + a24e4 + a25e5, e

2
3 = a35e5, e

2
4 =

a45e5, e
2
5 = 0 with (a23, a24) 6= 0 and a12, a35, a45 ∈ F ∗. The equality 0 = (e21e2)e

2
2 = a12(a

2
23e

2
3 + a224e

2
4)

involves a23, a24 ∈ F ∗ otherwise a23 = a24 = 0 : impossible. It follows that

e24 = −a223a−224 e
2
3.

The equality 0 = (e21e2)e
2
1 = a12(a13a23e

2
3 + a14a24e

2
4) = a12a23(a13 − a14a23a−124 )e

2
3 leads to

a13 = a14a23a
−1
24 .

Set u2 = a12e2 + (a15 − a14a−124 a25)e5, u3 = a212(a23e3 + a25e5), u4 = a212a24e4, u5 = a412a
2
23a35e5. The

family (e1, u2, u3, u4, u5) is a natural basis of N and the multiplication table of N in this basis is given
by:

e21 = u2 + α(u3 + u4), u
2
2 = u3 + u4, u

2
3 = u5, u

2
4 = −u5, u25 = 0.

We have U3 ⊕ U1 = vect(u2, u5); U4 ⊕ U1 = vect(e1, u5) and (U4 ⊕ U1)2 = vect(u2 + α(u3 + u4)).
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• For (U4 ⊕ U1)2 ⊆ U4 ⊕ U1, then α = 0 and N is isomorphic to N5,1.

• For (U4 ⊕ U1)2 * U4 ⊕ U1, then α 6= 0 and N is isomorphic to N5,2(α).

�

4.2. Classification in dimension 6. We have dim(ann(N)) < 1
2 dim(N), i.e.

dim(ann(N)) = 1 or 2. By the Lemma 4.1, we deduce that the possible types of N are
[1, 2, 1, 2], [1, 2, 2, 1], [2, 2, 1, 1].

Proposition 4.4. Let N be an indecomposable nil evolution algebra of type [1, 2, 1, 2] that is not be an almost

generalized Jordan algebra. Then, A is isomorphic to one and only one, of the following algebras:

(1) N6,1(α) : e21 = e3, e
2
2 = αe3, e

2
3 = e4 + e5, e

2
4 = e5, e

5
5 = −e6, e26 = 0 with α 6= 0;

(2) N6,2(α, β) : e21 = e3 + α(e4 + e5), e
2
2 = βe21, e

2
3 = e4 + e5, e

2
4 = e5, e

5
5 = −e6, e26 = 0 with αβ 6= 0;

(3) N6,3(α, β) : e21 = e3, e
2
2 = αe3 + βe6, e

2
3 = e4 + e5, e

2
4 = e5, e

5
5 = −e6, e26 = 0 with αβ 6= 0;

(4) N6,4(α, β, γ, δ) : e21 = e3 + α(e4 + e5), e
2
2 = βe3 + γ(e4 + e5) + δe6, e

2
3 = e4 + e5, e

2
4 = e5, e

5
5 =

−e6, e26 = 0 with (α, γ) 6= 0 ; {δ 6= 0 or γ 6= αβ} and β ∈ F ∗.

Proof. N is of type [1, 2, 1, 2]. It admits a natural basis B = (e1, . . . , e6) such that ann(N) =

Alg(e6), ann
2(N) = Alg(e6, e5, e4) and ann3(N) = Alg(e6, e5, e4, e3). The multiplication table of

N in this natural basis is of form: e21 = a13e3 + · · · + a16e6, e
2
2 = a23e3 + · · · + a26e6, e

2
3 =

a34e4 + a35e5 + a36e6, e
2
4 = a46e6, e

2
5 = a56e6, e

2
6 = 0 with a13, a23, a46, a56 ∈ F ∗ and (a34, a35) 6= 0. The

equality 0 = (e21e3)e
2
3 = a13e

2
3e

2
3 = a13(a

2
34e

2
4 + a235e

2
5) gives us a34, a35 ∈ F ∗ and

e25 = −a234a−235 e
2
4.

We also have

0 = (e21e3)e
2
1 = a13(a34a14e

2
4 + a35a15e

2
5) = a13a34(a14 − a34a−135 a15)e

2
4, i.e. a14 = a34a

−1
35 a15

and

0 = (e21e3)e
2
2 = a13(a34a24e

2
4 + a35a25e

2
5) = a13a34(a24 − a34a−135 a25)e

2
4, i.e. a24 = a34a

−1
35 a25.

Set u3 = a13e3 + (a16 − a15a36a−135 )e6, u4 = a213(a34e4 + a36e6), u5 = a213a35e5, u6 = a413a
2
34a46e6. The

family (e1, e2, u3, u4, u5, u6) is a natural basis of A and the multiplication table is of form:

e21 = u3 + α1(u4 + u5), e
2
2 = α2u3 + α3(u4 + u5) + α4u6, u

2
3 = u4 + u5, u

4
4 = u6, u

2
5 = −u6, u26 = 0

with α2 ∈ F ∗ and α1, α3, α4 ∈ F. We have U3 ⊕ U1 = Alg(u6, u3), U4 ⊕ U1 = Alg(u6, e2, e1) and
(U4 ⊕ U1)2 = Alg(α2u3 + α3(u4 + u5) + α4u6, u3 + α1(u4 + u5)).

• (U4 ⊕ U1)2 ⊆ U3 ⊕ U1 and dim(U4 ⊕ U1)2 = 1 then α1 = α3 = α4 = 0 and N is isomorphic to the
algebra N6,1(α2).
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• (U4 ⊕ U1)2 * U3 ⊕ U1 and dim(U4 ⊕ U1)2 = 1, then α3 = α1α2, α4 = 0 and α1 6= 0. N is isomorphic
to N6,2(α1, α2)

• (U4 ⊕ U1)2 ⊆ U3 ⊕ U1 and dim(U4 ⊕ U1)2 = 2 then α1 = α3 = 0 and α4 6= 0. N is isomorphic to the
algebra N6,3(α2, α4) ;
• (U4 ⊕ U1)2 * U3 ⊕ U1 and dim(U4 ⊕ U1)2 = 2, then (α1, α3) 6= 0 and {α4 6= 0 or α3 6= α1α2}. The
algebra N is isomorphic to N6,4(α1, α2, α3, α4)

�

Proposition 4.5. Let N be an indecomposable nil evolution algebra of type [1, 2, 2, 1] that is not be an almost

generalized Jordan algebra. Then, A is isomorphic to one and only one, of the following algebras:

(1) N6,5(α) : e21 = e2 + αe3, e
2
2 = e4 + e5, e

2
3 = − 1

α2 (e4 + e5), e
2
4 = e6, e

2
5 = −e6, e26 = 0 with α ∈ F ∗ ;

(2) N6,6(α, β) : e21 = e2 + αe3 + β(e4 + e5), e
2
2 = e4 + e5, e

2
3 = − 1

α2 (e4 + e5), e
2
4 = e6, e

2
5 = −e6, e26 = 0

with α, β ∈ F ∗;

(3) N6,7(α, β) : e21 = e2+αe3, e
2
2 = e4+e5, e

2
3 = β(e4+e5), e

2
4 = e6, e

2
5 = −e6, e26 = 0with 1+α2β 6= 0,

β ∈ F ∗ and α ∈ F ;

(4) N6,8(α, β, γ) : e21 = e2 + αe3 + β(e4 + e5), e
2
2 = e4 + e5, e

2
3 = γ(e4 + e5), e

2
4 = e6, e

2
5 = −e6, e26 = 0

with 1 + α2γ 6= 0 and β, γ ∈ F ∗;

(5) N6,9(α, β, γ) : e21 = e2 + αe3, e
2
2 = e4 + e5, e

2
3 = β(e4 + e5) + γe6, e

2
4 = e6, e

2
5 = −e6, e26 = 0 with

α ∈ F and γ, β ∈ F ∗;

(6) N6,10(α, β, γ, δ) : e21 = e2 + αe3 + β(e4 + e5), e
2
2 = e4 + e5, e

2
3 = δ(e4 + e5) + γe6, e

2
4 = e6, e

2
5 =

−e6, e26 = 0 with α ∈ F and β, γ, δ ∈ F ∗.

Proof. N is of type [1, 2, 2, 1]. It admits a natural basis B = (e1, . . . , e6) such that ann(N) =

Alg(e6), ann
2(N) = Alg(e6, e5, e4) and ann3(N) = Alg(e6, e5, e4, e3, e2). The multiplication table of N

in this natural basis is given by e21 = a12e2+a13e3+a14e4+a15e5+a16e6, e
2
2 = a24e4+a25e5+a26e6, e

2
3 =

a34e4 + a35e5 + a36e6, e
2
4 = a46e6, e

2
5 = a56e6, e

2
6 = 0 with a46, a56 ∈ F ∗. The pairs (a34, a35), (a24, a25)

and (a12, a13) are nonzero. By permitting the vectors e3 and e4 of the natural basis, we can take a12 6= 0.

The equality 0 = (e21e2)e
2
2 = a12(a

2
24e

2
4 + a225e

2
5) gives a24a25 6= 0. Otherwise a24 = a25 = 0 this is

impossible. Thus,

e25 = −a224a−225 e
2
4.

The equality 0 = (e21e2)e
2
1 = a12(a14a24e

2
4 + a15a25e

2
5) = a12a24(a14 − a24a−125 a15)e

2
5 leads to

a14 = a24a
−1
25 a15.

Also, the equality 0 = (e21e2)e
3
1 = a12(a24a34e

2
4 + a25a35e

2
5) = a12a24(a34 − a24a−125 a35)e

2
5 involves

a34 = a24a
−1
25 a35.
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It follows that a34, a35 ∈ F ∗. Set u2 = a12e2+(a16−a15a26a−125 )e6, u3 = e3, u4 = a212(a24e4+a26e6), u
2
5 =

a212a25e5, u6 = a412a
2
24a46e6. Then, the family (e1, u2, u3, u4, u5, u6) is a natural basis of N and its multi-

plication table is of form:

e21 = u2 + α1u3 + α2(u4 + u5), u
2
2 = u4 + u5, u

2
3 = α3(u4 + u5) + α4u6, u

2
4 = u6, u

5
5 = −u6, u26 = 0

with α3 ∈ F ∗ and α1, α2, α4 ∈ F.We have U3 ⊕ U1 = vect(u6, u3, u2) ; (U3 ⊕ U1)2 = vect(u4 + u5, α4u6)

; U4 ⊕ U1 = vect(u6, e1) ; (U4 ⊕ U1)2 = vect(u2 + α1u3 + α2(u4 + u5)) and ((U4 ⊕ U1)2)2 = vect{(1 +

α2
1α3)(u4 + u5) + α2

1α4u6}.

• For dim(U3 ⊕ U1)2 = 1 ; ((U4 ⊕ U1)2)2 = 0 and (U4 ⊕ U1)2 ⊆ U3 ⊕ U1, we have α4 = α2 = 0 and
α3 = − 1

α2
1
with α1 ∈ F ∗. Then N is isomorphic to N6,5(α1).

• For dim(U3 ⊕ U1)2 = 1 ; ((U4 ⊕ U1)2)2 = 0 and (U4 ⊕ U1)2 * U3 ⊕ U1, we have α4 = 0, α2 ∈ F ∗ and
α3 = − 1

α2
1
with α1 ∈ F ∗. Then N is isomorphic to N6,6(α1, α2).

• For dim(U3 ⊕ U1)2 = 1 ; ((U4 ⊕ U1)2)2 6= 0 and (U4 ⊕ U1)2 ⊆ U3 ⊕ U1, we have α2 = α4 = 0 and
1 + α2

1α3 6= 0. Then, N is isomorphic to N6,7(α1, α3)

• For dim(U3 ⊕ U1)2 = 1 ; ((U4 ⊕ U1)2)2 6= 0 and (U4 ⊕ U1)2 * U3 ⊕ U1, we have α4 = 0, α2 ∈ F ∗ and
1 + α2

1α3 6= 0. Then N is isomorphic to N6,8(α1, α2, α3)

• For dim(U3⊕U1)2 = 2 and (U4⊕U1)2 ⊆ U3⊕U1,we have α2 = 0 and α4 ∈ F ∗. Then,N is isomorphic
to N6,9(α1, α3, α4)

• For dim(U3 ⊕ U1)2 = 2 and (U4 ⊕ U1)2 * U3 ⊕ U1, we have α2, α4 ∈ F ∗. Then, N is isomorphic to
N6,10(α1, α2, α3, α4).

�

Proposition 4.6. Let N be an indecomposable nil evolution algebra of type [2, 2, 1, 1] that is not be an almost

generalized Jordan algebra. Then, A is isomorphic to one and only one, of the following algebras:

(1) N611 : e21 = e2, e
2
2 = e3 + e4, e

2
3 = −e24 = e5, e

2
5 = e26 = 0;

(2) N612(α) : e21 = e2 + α(e3 + e4), e
2
2 = e3 + e4, e

2
3 = −e24 = e5, e

2
5 = e26 = 0 with α ∈ F ∗.

Proof. N is of type [2, 2, 1, 1]. Then, it admits a natural basis B = (e1, . . . , e6) such that ann(N) =

Alg(e6, e5), ann
2(N) = Alg(e6, e5, e4, e3) and ann3(N) = Alg(e6, e5, e4, e3, e2). Themultiplication table

ofN in this natural basis is given by: e21 = a12e2+a13e3+a14e4+a15e5+a16e6, e
2
2 = a23e3+a24e4+a25e5+

a26e6, e
2
3 = a35e5 + a36e6, e

2
4 = a45e5 + a46e6, e

2
5 = e26 = 0with a12 ∈ F ∗. The pairs (a23, a24), (a35, a36)

and (a45, a46) are nonzero. The equality 0 = (e21e2)e
2
2 = a12(a

2
23e

2
3 + a224e

2
4) tells us that a23, a24 ∈ F ∗.

We deduce that
e24 = −a223a−224 e

2
3.

The equality 0 = (e21e2)e
2
1 = a12(a13a23e

2
3 + a14a24e

2
4) = a12a23(a13 − a14a23a−124 )e

2
3 gives

a13 = a14a23a
−1
24 .
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Set u2 = a12e2 + (a15 − a14a25a−124 )e5 + (a26 − a14a26a−124 )e6, u3 = a212a23e3 + a212(a25e5 + a26e6), u4 =

a212a24e4, u5 = a412a
2
23(a35e5 + a36e6) and u6 = e6 for a35 6= 0 otherwise we take u6 = e5. The family

(e1, u2, u3, u4, u5, u6) is a natural basis of N and its multiplication table is given by:

e21 = u2 + α(u3 + u4), u
2
2 = u3 + u4, u

2
3 = u5, u

2
4 = −u5, u25 = u26 = 0with α ∈ F.

We have U3 ⊕ U1 = vect(u6, u5, u2) ; U4 ⊕ U1 = vect(u6, u5, e1) and (U4 ⊕ U1)2 = vect(u2 + α(u3 + u4)).

• For (U4 ⊕ U1)2 ⊆ U3 ⊕ U1,we have α = 0 and N is isomorphic to N6,11.

• For (U4 ⊕ U1)2 * U3 ⊕ U1,we have α 6= 0 and N is isomorphic to N6,12(α).

�
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