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AsstrACT. This paper is devoted to the study of the finite-dimensional evolution algebras that are 3-Jordan
algebras. We show that a non nil-algebra of this class admits a nonzero idempotent. According to this
idempotent, we prove that its Peirce decomposition is a direct sum of algebras. In passing, we show that, if
the nil-radical of the algebra is of nil-index < 5, then the algebra is an almost generalized Jordan algebra.
A characterization of the derivations is given. We conclude with a classification, up to isomorphism in
dimension < 6, of the nil-indecomposable 3-Jordan algebras that are evolution algebras.
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1. INTRODUCTION

Let F' be a commutative field of characteristic different from 2, 3. An algebra over the field F' is said

to be a pseudo-composition algebra if there exists a nonzero symmetric bilinear form ¢ : A x A — F
such that

23 = p(z, )z, forall z € A. (1)

In [13] Myeberg and Osborn characterize the pseudo-composition algebras with an unit element.

For more on the pseudo-composition algebras, see [4-6,8,13]. Giuliani and Peresi, in [6], determine

identities of small degree satisfied by the pseudo-compositions algebras. The identity

(:L,S’ y,IL’) = (:I:Sy)‘r - $3(yx) =0, (2)

so-called 3-Jordan is one of these identities. They also prove that the class of the polynomials identities
of degree < 5 of the pseudo-composition algebras is a consequence of the commutativity and the
3-Jordan identity. A commutative algebra verifying the 3-Jordan identity is called 3-Jordan algebra. The
variety of the 3-Jordan algebras contains that of the Jordan algebras and that of the pseudo-composition

algebras. In [8], Hentzel and Peresi show that a simple 3-Jordan algebra with an idempotent is either a
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Jordan algebra or a pseudo-composition algebra. They also give the Peirce decomposition and using
this decomposition, they give a necessary and sufficient condition for a 3-Jordan algebra to be a Jordan
algebra on the one hand, and for it to be a pseudo-composition algebra on the other hand. In [7],
Hentzel and Labra show that for characteristic different from 2, 3, commutative algebras satisfying
the identity (2?y)z + tz3y = 0 with ¢ # 1, —1 are 3-Jordan algebras. Using the Albert program, they
find a 17-dimensional and a 13-dimensional algebra that verifies the identities (z2y)z + 23y = 0 and
(z%y)z — 23y = 0 respectively and that are not 3-Jordan algebras. Unlike 3-Jordan algebras, so-called
evolution algebras, introduced for the purpose of modeling non-Mendelian genetics, are not defined

by a polynomial identity (see [2,14,15]). A finite-dimensional evolution algebras are characterized by

abasis B = (e1, ..., ey) so-called a natural basis which multiplication table is given by
n
eie; = 0 and e? = Zaikek with1 <i#j <n. (3)
k=1

The matrix M = (ai;)1<i,j<n is the matrix of structural constants of A relative to the natural basis B.
In [11], the authors characterize finite-dimensional associative and power-associative evolution algebras.
They show that power-associative evolution algebras are Jordan algebras. In [12], a characterization of
finite-dimensional evolution algebras that are Lie triple algebra is given. Our aim in the present paper
is the study of finite-dimensional evolution algebras that are 3-Jordan algebras.

In Section 2, we recall some results on the nil evolution algebras. Section 3 is devoted to the presenta-
tion of our main result. We show that a non nil 3-Jordan evolution algebra has a nonzero idempotent
and relative to this idempotent, we prove that its Peirce decomposition is a direct sum of algebras. A
characterization of the Lie algebra of derivations is also given. In the fourth and last section, we give a
classification up to isomorphism, in dimension at most 6 of nil-indecomposable 3-Jordan evolution
algebras. In passing, we show that, in dimension at most 4, the 3-Jordan evolution algebras are almost

generalized Jordan algebras.

2. PRELIMINARIES

Let A be a commutative algebra over a commutative field F. The principal power of x € A and that of

the algebra A are defined respectively by
' =z, " = 2Frand A = A, AMH = AFA with k> 1.

Definition 2.1. We say that the algebra A is

(1) nilpotent if there exists an integer n such that A™ = 0 and the smallest such integer is called the nilpotency-
index of A,

(2) nil, if there is an integer n(x) such that 2™ = 0 for all x € A. The smallest such integer is called the
nil-index of the algebra A.
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Theorem 2.1. [, Theorem 2.2] Let A be a nil evolution algebra with a natural basis B = (eq,...,ep). If

M = (ayj) is the matrix of structural constants of the algebra A relative to the natural basis B, then
@iy Qigig ** Wigiy = 0 (4)
foralliy,...,ip € {1,--- ,n}tand k € {1,--- ,n} with i, # iy for p # q.

In [1, Theorem 2.7], The authors show that in finite dimension, nilpotent evolution algebras are
equivalent to nil evolution algebras. They also show that any finite-dimensional nil evolution algebra
admits a natural basis which matrix of structural constants is strictly upper triangular. Furthermore,
in [10, Lemma 2.3], the authors show that the nil-index of finite-dimensional nil evolution algebra is

equal to its nilpotency-index.

Notation 2.1. Let A be an algebra over the field F' and (1, ..., xzp) be a family of p elements of A. The set
Alg(x1, ..., xp) denoted the subalgebra of A generated by the family (x1, ..., xy) and the set vect(z1, ..., xp)
denoted the linear subspace of A generated by the family (x1,. .., x}).

Definition 2.2. [3, Definition 3.3] Let A be an algebra over the commutative field F. We define the ideals
ann'(A) by

(i) ann®(4) = {0},

(ii) ann'(A) = ann(A) ={z € A | 2A = Ax =0},
(iii) ann'(A) = ann(A/ann'"1A) for all i > 2.

Let B = (ey,...,en) be a natural basis of a finite-dimensional evolution algebra A. In [3, Page 16],
the authors show that ann’(A) = Alg(e € B | €? € ann*~1(A) with i > 1). Moreover, they prove that
U; Uy = {x € ann’(A) | xann'~(A) = 0} is an invariant of the algebra A for all i > 1. The type of A
is the sequence [n1,...,n,] where n; = dim(ann’(A)) — dim(ann’~1(A)) and r is the smallest integer

such that ann”(A) = A. Furthermore, ny + - - - + n, = dim(A).

Definition 2.3. An algebra A is said to be:
(i) power-associative if x'z) = x**7 for any x in A and for all integer i,j > 1;
(ii) Jordan if it is commutative and (22, y, x) = (2?y)x — 2%(yx) = 0, forall x,y € A;
(iii) almost generalized Jordan if it is commutative and B(z%y)x + yz3y — (B +7)((yz)z)z = 0, for z,y € A
and (8,~) # (0,0).

3. STRUCTURE OF 3-]ORDAN EVOLUTION ALGEBRAS

In the following, F' denotes an infinite commutative field of characteristic different from 2, 3.
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3.1. Characterisation theorem. A partial linearization of the identity (2) gives us
(22 + 20(22))y)z + ()2 — (22” + 20(22)) (yz) — 2°(2y) = 0 (3)

and

2((z(xh) + h(zz) + 2(h2))y)x + ((22° + 2z(2x))y)h + (ha® + 2z(zh))y)z ©
—2(2(xh) + h(zx) + 2(2h))(yx) — (22° + 22(x2))(yh) — (ha* + 2x(zh))(yz) = 0

with z,y, 2z, h € A.

Proposition 3.1. [, Proposition 1] Let A be a 3-Jordan algebra with a nonzero idempotent e. Then, the algebra

admits the following Peirce decomposition:
A=40A 1 ©AL D A
with A; = {zx € A | ex =iz} wherei € {1,—1,0, 3}. Furthermore, we have
A2 C Ay, AJA_  C Ay, A1y C Ay, A1Ag =0,
Al CA 04 oA, Aid C AL AlAL =A@ A @Ay,
A%, C AL @Ay, A1 Ay =0
A3 C Ap.
Theorem 3.1 (Characterization theorem). Let A be a finite-dimensional evolution F-algebra with natural
basis B = (ey, ..., ey). Then, A is a 3-Jordan algebra if, and only if, for all 1 < i, j, k,t < n pairwise distinct,

the following statements hold:

(a) ele? —ed =0;

(
(c) (efej)ef — ((€fej)ei)ei — ejej = 0;

((
((Czej)ek)ej + ((e?ei)ek)ei =0 withi < j;
(e2ej)e2 — ((e2e;)ex)er, — ((e2er)er)ej = O;
(

(eZej)er)er + ((eZex)er)e; = O with j < k.

Proof. Assumed that A is a 3-Jordan algebra.
e The assertions (a) and (b) follow from the identity (2) taking = y = e;; * = e;, y = e; respectively.
e The assertions (c), (d) and (f) result from identity (5) by taking respectively z = y = e;, 2 = ej;

r=¢e,y=z2z=cjandx =¢€;,y = e,z = ¢j.
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e The assertions (e), (g) to (j) follow from the identity (6), takingz =e;,y =2 =h=¢j;x =y =
e,z =¢ej,h=ey;x=¢€,y=ep,z2=h=ej;r=c,y=h=ep,z2=cjandz =e;,y =€,z =¢j,h =
ey, respectively

Reciprocally, suppose that the statements (a) to (j) are satisfied. Let z = > | wie;,y = > i yiei € A.

We have

E . _E § E E 2 2 .
Ty = TiYy;€ 7, , L .ZL'Z 7, 5 JJ 1'J€Z€] .’E —|— T;T5€; €5,

i,j=1 1<i#j<n
n
= E :B?:L‘jyje i+ E E x? SxirRyR( e? iej) ek = E ! yleZ ez+
2,7=1 k=11<i#j<n

3 3.2 3 2 2
Z [z7z5y €7 e; + x7xjyi(ejes)e; + zlz y] e? iejle —1—2 Z x? sxixryk(e; e])ek,

1<iF#j<n k=11<izj<n
i#k,j7k
ziy = Zx y]elej—i-z Z x? STy ( e? i€5 ek—Zx yie; i+
i,7=1 k=11<i#j<n

Z [23yede; + xixjyi(ee;)e; + xixjyi(efe;)e;] + Z Z zlzjyr(ele;)ex;

1<ij<n k=11<i#£j<n
i#£k,j#k
n n
3 3 4 3 3 2 2
@)z = alujyete;+ Y Y [aluys(eleg)er + aivsapyi((ees)er)ent
ij=1 k=11<i£j<n

zizjrry;((efej)e;)er] Z Z vl ((efe))er)er = Zx yied+
kit=11<i#j<n
i#k,j#k
> Bayieie; + ((€fepee) + ziy(eles)es + ziajy; ((efe;)es)es + (efe;)es)+
1<i£j<n

n
Pdyi(((elej)ee; + ((le)e)e)] + Y Y [afmy;((efe;)er + ((ePer)es)er)+
k=11<i#j<n
2Kk

vizjaryi((efes)ei)er + vizjany;((efej)es)er + ((efer)e;)e;) + wiatyn((efe;)er)e;]+

n
Z Z i :c]mtyk( e? iejleg)er = Z:c yiele? + Z T x]yz(e ej)e + a3 ajjy]e €j 24
1<k#t<n 1<i#j<n 1<i#j<n
B3¢ {k,t}
n
wixdyi(eleel] + > Y alzjmeyi(((efes)eder + ((efer)ei)es)+
i=11<j< k<n
J#LkAL
Z Z xizjryi(eler) ej —i—Z Z xla:jyk (((eZej)er)e; + ((e?ei)ek)ei)—i-
k=11<i#j<n =11<i<j<n
i#k,j#k i#£k,j#k

oY afzmun(((efe)er)er + ((efer)er)e;)
1<j<t<n 1<i#k<n

i,k¢{j;t}



Asia Pac. J. Math. 2025 12:104 6 of 18

It follows that z3(yz) = (23y)x and A is a 3-Jordan algebra. O

In the example above, we show that a finite-dimensional 3-Jordan evolution algebra is not necessarily

a Jordan algebra or an almost generalized Jordan algebra.

Example 3.1. Let A be a 7-dimensional evolution algebra and B = (e, ..., e7) a natural basis of A. The
multiplication table of A is given by:

2 2 2 2 2 2 2
el262,62261763264,64:€5+€6,€5:—66267767:0.

The algebra A is a 3-Jordan algebra. It is neither a Jordan algebra, nor an almost generalized Jordan algebra.
Indeed, let v = x1e1 + - - - + z7e7, y = y1e1 + - - - + yrer € A. We show by direct calculation that (23y)x =
3 (yr) = x%x%(ylel + y2e2). It follows that the algebra A is a 3-Jordan algebra. Set x = e; + ez + es and
Yy = es + e5 — eg, we obtain B(z*y)x + v2dy — (B + 7)((xy)z)x = Bea + 2ver # 0, i.e. the algebra A
is not an almost generalized Jordan algebra. Since 0 = e # ele? = ey, it follows that the algebra A is not
power-associative, so it is not a Jordan algebra. Moreover, the vector e = ey + e is a nonzero idempotent of the

algebra A.

3.2. Nil 3-Jordan evolution algebras. In the following, we describe finite-dimensional nil 3-Jordan

evolution algebras.

Theorem 3.2. Let A be a finite-dimensional nil evolution algebra over the field F. Then, A is a 3-Jordan algebra
if, and only if, the following statements hold:

(1) (e2e;)e2 =0 foralli,j k€ {1,--- ,n}.

(2) The nil-index of the algebra A is at most 5.

Proof. Since the algebra A being a nil-algebra, it admits a natural basis B = (ey, ..., e,) which mul-
tiplication table is given by: e = >}, ., agey, foralli € {1,...,n}. Assumed that A is a 3-Jordan
algebra. The assertion (1) follows from the Theorem 2.1 and from the assertions (c), (e) and (i) of
the Theorem 3.1. The assertion (2) can be deduced from the Theorem 2.1 and from the assertion (j)
of the Theorem 3.1. Reciprocally, we suppose that the algebra A verifies the assertions (1) and (2).
Letx =) ), xker, Y = 2 p_, Ykek- Since A is a nil-algebra of nil-index at most 5, it is nilpotent with
nilpotency-index at most 5. It follows that (z%y)x = 0. We also have #® = 7' | 7%\ | a7xjele; and

23 (yz) = Dkl D1 T zizjziy(ele;)e? = 0 = (z3y)z. We deduce that A is a 3-Jordan algebra. [

Proposition 3.2. Let A be a finite-dimensional nil evolution algebra of nil-index at most 4. Then, A is a 3-Jordan

algebra.

Proof. The algebra A is nilpotent with nilpotency-index at most 4. For all 2,y € A, we have 23y = 0 and
23(yx) = 0 since zy € A. It follows that (z%y)x = z3(xy) = 0 and A is 3-Jordan algebra. O
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As the following example shows, a nil 3-Jordan evolution algebra with a nil-index at most 4 is not

necessarily a Jordan algebra:

Example 3.2. Let A be a 3-dimensional nil evolution algebra in the natural basis B = (e1, ea, e3) which
multiplication is given by:

e% = e, e% = e3, e% =0.
The nil-index of the algebra A is 4, so, the Proposition 3.2 tells us that it is a 3-Jordan algebra. But, It is not a
Jordan algebra [ 10, Theorem 4.4].

However, as the example above shows, a nil-algebra with a nil-index at least 5 is not necessarily a

3-Jordan algebra:

Example 3.3. Let A be a 5-dimensional nil evolution algebra in the natural basis B = (ey, ..., es5) which

multiplication table is given by:

6%263263, e§:e4, 63265, eg:0.
The nil-index of A is 5 [3, Theorem 6.4 (iv)]. Since (e3es)e3 = efel = e = e5 # 0, it is not a 3-Jordan algebra.
3.3. Particular form of Peirce decomposition.

Lemma 3.1. Let A be a n-dimensional non nil 3-Jordan evolution algebra with n > 2. Assume that the
algebra A admits a natural basis B = (e1, . .., ey) such that for any e; € B, we have €3 = 0. Then, there are

io,i1 € {1,...,n} distinct such that (e e;, )ei, # 0.

Proof. Consider a natural basis B = (e, ..., e,) of A such that for any ¢; € B, we have e} = 0. Suppose
that for all 4,5 € {1,...,n} distinct, we have (e?e;)e; = 0. The assertions (f) and (j) of Theorem 3.1
lead respectively to ((e?e;j)ex)e; = 0 for 4, j, k pairwise distinct and to ((e?ej)er)er = ((eex)er)e; = 0
for i, j, k, t pairwise distinct with j < k. It follows that the algebra A is nil of nil-index at most 5 and we

get the lemma. O

Proposition 3.3. Let A be a n-dimensional non nil 3-Jordan evolution algebra with n > 2. Assume that the
algebra A admits a natural basis B = (e, . . ., e,,) such that for any e; € B, we have 3 = 0. Then, the algebra

A admits a nonzero idempotent.

Proof. Since the algebra A being non nil, the Lemma 3.1 tells us that there are iy, 4; € {1,...n} distinct
such that (e e;, )e;, # 0, i.€. aiyi, @i i, # 0. In the following, we will consider such integers.
e Suppose that dim(A) = 2, then e = ajyi, i, and € = ajip€i, With a;yi,, ai i, € F*. The algebra

A is a 3-Jordan algebra. Set uy = (a?ﬂilailio)féeio and u; = (@i, a? )7%(31-1; the family (ug,u) is

ivio
a natural basis of the algebra 4 and its multiplication table is defined by u3 = u; and u? = uo. It

follows that the vector e = uy + u; is a nonzero idempotent of A.
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e Assume that dim(A) > 3and let k € {1,...,n} distinct from i¢ and ;.

(a) The assertion (f) of Theorem 3.1 leads to relations

2 2 .
0 = ((ej€ir)er)eip = Qigiy Qi kOkig €5, 1€ 4y kaRi, = 0
0 = 2 Ne. — . . e2 i ) e
= ((ej er)eir)eis = igkQri, iyig€;,, €. aigragi; = 0.

(b) The assertion (h) of Theorem 3.1 gives the following equalities

0 = ((ef en)ei)er + ((exeip)ein)eio = Qhigigi QirigCays i-€. apig =0,
0 = ((ef en)ein)er + ((erei, )eiy)ei, = ki, GiyigQigi €5, i€. ag;, = 0.

(c) The assertion (g) of Theorem 3.1 involves the following identities

0 = ((e?oeil)eio)ek + ((e?oek)eio)eil = aioilailioaiokez, ie. aj,, = 0 for ei #0,
0 = ((6?1 €iy)€i, )€k + ((e?1 ekr)ei, )€, = ailioaioilailkei, ie. a; =0 for ei = 0.

We deduce that €2 = a;yi, ei, + 20, €2, = aiyipei, + 21 with 20, 21 € ann(A). Set ug = a(e;, + a;; 21),

-1

up = b(e;, + Qi

z0) and determine the nonzero scalars a and b such that u3 = u; and u3 = uy.
-1

The equality u; = u3 = a%a;y;, (e;, + a5;,%0) = a?b~La;,;, uy leads to b = a’a;y;, and the equality

1

a;io- Thus, a = (a_2 a; ! )3 and

—1
i 10%1 1110

11170

21) = b%a"tay,,uo involves 1 = a®a?

2 12
Up = Uy = b Qiyig (eio +a 1011

9 1.2 1 9.1 , . .
b= ajyi, (aiof1 ailio) 3 = (aioi1 ailfo) 5. Consequently, the family (uo, u1, ex)rg{iy,i,} is @ natural basis of

the algebra A and the multiplication table of A in this natural basis is of form
u% = Ui, ’LL% = Uo, 6% = Z aE5€j.
1<j<n
j¢{k77/0 7i1}
It follows that the vector e = ug + w1 is a nonzero idempotent of the algebra A.

g

Theorem 3.3. Let A be a n-dimensional non nil 3-Jordan evolution algebra with n > 2. Suppose that the algebra
A admits a natural basis B = (ey, . .., ey,) such that for all e; € B, we have eg’ = 0. Then, the algebra A admits

the following decomposition into a direct sum of algebras given by:
A=A, ®N (7)

where N is a finite-dimensional nil 3-Jordan evolution algebra and
Ass = @ Alg(uog, uggy1). For 0 < k < s, the algebra Alg(usy, usk1) is a 2-dimensional evolution algebra

in the natural basis (uag, usk+1) which multiplication table is given by: u%k = Uk and u%kH = Uy,

Proof. If the algebra A is of dimension 2, we then obtain the theorem with s = 0 and N = 0. In the
following, assume that dim(A) > 2. The proof of the Proposition 3.3, tells us that the algebra A admits
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anatural basis B’ = (ug, u1, ex)1<k<n—2 Which multiplication table is of form

ud = uy, uf = up,ef = ”232 agjej with1 <k <n —2.
k#j=1

Moreover, the vector e = uy + u; is a nonzero idempotent of A. Let us determine Peirce subspaces

relative to the idempotent e. Let x = aug + buy + ZZ;% rrer € A, we have ex = aug + bu% = auj + buyg.

e Forz € Ag,wehave0 = ex = auq+bug,i.e. a=b=0andz = ZZ;% xper.So Ay C Alg(er, ..., en—2).
Reciprocally, we have ee;, = 0 forall 1 < k < n — 2. We deduce that Ay = Alg(ei,...,en—2)isa
3-Jordan evolution algebra in the natural basis (ey, .. ., en—2).

e Forz € A%,wehave %:c:ex:aul—kbuo,i.e. a=b=ux,=0foralll <k<n-2.Soxz=0and
A% =0.

e Forz € A_1,wehave —x = ex = auy +bug,a = —band zp, = Oforalll < k < n —2.50
x = a(ug —u1) € F(up—uy) and reciprocally, we have e(ug —u1) = u3 —u3 = —(up — u1). We deduce
that A_; = F(up — u1).

e Forx € Aj,wehave z = ex = au; +bug,a =band zy =0forall1 <k <n—2.Sox =a(ug+u1) €
F(uo+u1) and reciprocally, we have e(ug +u1) = ud +u? = ug+u;. We deduce that Ay = F(ug+uy).

Consequently, the Peirce decomposition of A is of form
A=F(up+u)® Flug—uy) @ Alg(er,...,en—2).

The subspaces F'(ug + u1) & F(ug — u1) is an evolution algebra with a natural basis (ug,u;) and
Ag = Alg(e1, ..., en—2) is a 3-Jordan evolution algebra. Furthermore, Alg(ug,u1) ® Ao is a direct sum
of algebras. If Ay is a nil algebra, it is finished and we get the theorem with s = 0. Otherwise, we repeat
the process on the algebra Ay. Since A is a finite-dimensional algebra, we obtain the result after a finite

number of operations. O

3.4. General form of Peirce decomposition. Assumed that A is a finite-dimensional 3-Jordan non nil
evolution algebra admitting a natural basis B = (ey, ..., e,) such that there is iy € {1,...,n} verifying
2

el # 0. By putting u;, = a;_; e;,, we can take a;,;, = 1 and we will get ¢} = ¢

i+ S0, in the following,

we take a;yi, = 1. The assertion (a) of Theorem 3.1 tells us that the vector e is a nonzero idempotent
of A. Letj € {1,...,n} distinct from iy such that 7 # 0.
ie.

e The assertion (b) of Theorem 3.1 gives us 0 = (€ e;)ei, = @iyjajio€;,,

@igj@jig = 0 (8)
e The assertion (d) of Theorem 3.1 leads to

2.2 _ o .02
€5y = Qigjajj€;. (9)
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- : (020 V02 (020 Yo Vo —php o 2.2 2 2
e The assertion (c) of Theorem 3.1 involves 0 = (efe;,)ef —((efeiy)ej)e; —ejei, = ajige €5 —ajajipe; =

s a2 — a2 g 02 = —a2.q. 02 i
Ujig Qigj A €] — G55 Qjig€5) = — a7, Ajig€; , 1€
ajiA4iq = 0. (10)
e The assertion (d) of Theorem 3.1 gives us 0 = e3e? — (ele;, )ei, — ((e2ei,)eiy)ej = ajjee? = a?.a;, e
18 N 0] 7 -0/ 77w/ =/ =) T I g g T gy I Ty
ie.
@jjaioj =0 (11)
It follows that e? 2 = a;,;a;;¢? = 0
107~ WJTIIFg T
; — (62 ¢.)e2 260 Ve: —e2 0. — .62 g o
e The assertion (c) of Theorem 3.1 leads to 0 = (ej e;)e; — (€7, ej)eiq)ei, — €; ej = —ajgj€5, i-e. aiyj=o-

Moreover, the relation 0 = e?oe? =3 aiokajke% = aioioaﬁoe?o, ie. aj, =0.
We deduce that e = e;, 4 zo with zy € ann(A). The vector vy = €}, = €4, + 2o is a nonzero idempotent

of A and the Peirce decomposition of the algebra A relative to v; is given by:
A=Fkvi ® Ay (12)

where A is a (n—1)-dimensional 3-Jordan evolution algebra generated by the family {e;, | 1 <k # ip <
n}. This Peirce decomposition is a direct sum of the algebras. We deduce that Ay is a finite-dimensional

3-Jordan evolution algebra.

Theorem 3.4 (Decomposition theorem). Let A be a finite-dimensional 3-Jordan evolution algebra. Then, the

algebra A admits a decomposition into a direct sum of algebras given by:
A:Fvl@"'@FUp@Ass@N (13)

where the family (v, . .. ,vp) is empty or a pairwise orthogonal idempotents family; As is a (2s)-dimensional
evolution algebra defined in the Theorem 3.3 and its nil-radical N is zero or a finite-dimensional nil 3-Jordan

evolution algebra.

Proof. 1f the algebra A admits a natural basis B such that for all e € B, we have ¢3 = 0, then, A admits a
decomposition into a direct sum of algebras given by the identity (7). Thus, we obtain the Theorem with
the family(v1, . . ., v,) which is empty. Otherwise, it admits a decomposition given by the identity (12).
If the algebra A admits a natural basis By such that for all e € By, we have e3 = 0, then, we get the
theorem with p = 1. Otherwise, the process is repeated on Ay and since A is a finite-dimensional, the

process will end for a certain integer p. We then obtain the theorem. 0

Proposition 3.4. Let A be a finite-dimensional 3-Jordan evolution algebra. If the nil-radical of A is of nil-index
at most 4, then, A is almost generalized Jordan algebra. In particular, it verifies the identity x3y — ((xy)z)z =0

with x,y € A.
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Proof. Suppose that the algebra A has a nil-index at most 4, and consider the decomposition of A into a
direct sum of algebras given by the identity (13). Let x = >} _ | wvy + D5 _o(2h;, ju2jt1 + hjun;) +
Zry Y = Doy YkUE T D 5—0(Yj11U2j+1 + Ypu2;) + 2y € Awith 2, 2z, € N. We have

p s
2 2 /2 2 2
= = Z TV + Z($2j+1u2j + wyuzj1) + 25
k=1 j=0
p s
3 _ 3 / / ! / 3
X = Z xkvk + Z$2j+1$2j($2ju2j + $2j+lu2j+1) + Zm
k=1 j=0
p s
3 _ 3 / ! / / !
Ty = Z TpYkVk + Z T 4195 (T9;Y2jU2j+1 + T4 1Y 41U2))
k=1 j=0
p s
/ / / /
ry = Z TEYkVk + Z($2j+1y2j+1u2j + oY U2j+1) + 222y
k=1 §=0
p s
2 / / / /
(zy)z = Z TpYkVk + Z L9109, (Yo 41U2j+1 + Yaju2;) + (222y) 22
k=1 j=0
p s
_ 3 ! ! / / 1o
(zy)z)z = Z TpYkVk + Z 932j+1$2j($2j+1y2j+1u2j + $2jy2ju2j+1)
k=1 j=0
(zy)z)e = 2°y.
It follows that A is almost generalized Jordan algebra. O]

Remark 3.1. The nil 3-Jordan evolution algebras of dimension 2 and 3 are almost generalized Jordan algebras.

3.5. Derivations. A derivation on the F-algebra A is a linear operator d : A — A such that d(zy) =
d(z)y + zd(y) for all z,y € A. The set Dery(A) of all derivations of A is a Lie algebra where the
multiplication of two derivations d and d’ of A is defined by [d, d'] = dod’ — d'od.

Let A be a finite-dimensional evolution algebra with the natural basis B = (ey,...,e,) and dbe a
derivation on 4; set d(e;) = Y p_; direr. In [9, page 27] the authors show that for 1 < i # j < n, if the
family (e?, e?) is linear independent, then d;; = d;; = 0 and if e = aie? then d;; = —a;d;;. It follows

that for e; € ann(A), we have d(e;) € ann(A).

Theorem 3.5. Let A be a finite-dimensional 3-Jordan evolution algebra. Consider the decomposition of A into a

direct sum of algebras given by the identity (13). Then Derg(A) = Derg(N).

Proof. Let d be a derivation of A and v = >_¥_, axvy + ijo(b2j+1u2j+1 + bgjugj). [9, Proof of Proposi-
tion 2.4] tells us that d(v,) = Oforall1 <k < p.Forall1 < j < s,wehave d(ugj11) = azjt1uzj+1+22j4+1
and d(uz;) = agjugj+ 295 With agji1, az; € Fand 29511, 225 € ann(A). The equality d(uq;) = d(u%jﬂ) =
2ugj1d(ugjr1) = 2a2j+1u%j+l = 2a9;41u2j, leads to az; = 2a9;41 and z9; = 0. Also, the equality
d(ugjt1) = d(ugj) = 2ug;d(ug;) = 2a2ju§j = 2ag;uzj41, involves asjy1 = 2a;; 22541 = 0. We deduce

that ag; = agj+1 = 0and d(ugj) = d(ugj+1) =0, i.e. Derg(A) = Derg(N). O
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Example 3.4. Consider the algebra defined in the Example 3.1. Let N = Alg(es, ...,e7) and d € Derk(N).

e The family (e3, e?) is linear independent for 4 < j < 6, then d(e3) = dszes + dsrer.

e The relation % = ey gives us d(e4) = d(e3) = 2e3d(e3) = 2dsze3 = 2dszeq.

o The relation e = —eg and the linear independence of the families (€3, e3) and (e, €3) for j € {3, 4} lead to
d(es) = dsses + dsees + dsrer and d(eg) = —dsees + deses + derer.

e The relation e5 + eg = e3 gives us d(es) + d(eg) = d(e3) = 2e4d(eq) = 4dszed = 4dss(es + eg), ie.
dss = 4d33+dse, dgg = 4dss — dse and dg7 = —ds7. We deduce that d(es) = (4dss +dse)es + dsees + dsrer
and d(eg) = —dsees + (4dss — dse)es — dyrer.

e The relation e; = €2 involves d(e7) = d(e2) = 2esd(e5) = 2(4ds3 + dsg)er.

Set
di = diag(1,2,4,4,8) ; do = E51 ; d3 = Es3 — Esq 3 dy = E33 — Egq + Eug — E3q + 2E55

where E;; denotes the elementary matrix of order 5 and diag(1,2,4, 4, 8) denotes a diagonal matrix. We have

Derg(A) = Alg(dy, ds, ds, ds) and the multiplication table is defined by :
[d1,do] = Tdy ; [dy,ds] = 4d3 ; [d2, da] = —2d3 ; [ds, da] = —d3.
The multiplication not mentioned are vanish. As consequence, the Lie algebra Der (A) is not abelian.

4. CLASSIFICATION OF THE NIL 3-]ORDAN EVOLUTION ALGEBRAS

In finite dimension, the knowledge of the nil 3-Jordan evolution algebras is sufficient to construct
3-Jordan evolution algebras according to the Theorem 3.4. In this section, we give the classification,
up to isomorphism and in dimension at most 6, of nil 3-Jordan indecomposable evolution algebra
that are not an almost generalized Jordan algebra. The Theorem 3.2 and the Proposition 3.4, tell us
that such algebras are of nil-index 5. Let N be an indecomposable nil 3-Jordan evolution algebra of
nil-index 5; its type is of form [ni, n2, n3, n4] where ni,ng, n3, ng are the nonzero integers such that
ni + - -+ ng = dim(A). Necessarily, dim(N) > 4 and let B = (ey, ..., e,) be a natural base of A, we
have ((e?e;)eg)e; = 0 and (eZe;)es = 0 forall 1 < i, j, k,t < n by the Theorem 3.2.

Lemma 4.1. There is no nil 3-Jordan evolution algebra of type [n1, 1, n3, ny4] where ny, ns, ny are the nonzero

integers.

Proof. Assume that N is a nil 3-Jordan evolution algebra of type [n1, 1, n3, n4| where ny, ns, ny are the
nonzero integers. Consider a natural basis B of N. According to [3, Page 16], it admits a disjoint union

decomposition given by:

B=BiUByUB3UB,;withB;={e€ B | e cann’'(N)and e ¢ ann'~'(N)}.
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Since card(B2) = 1, let e;, be the unique element of B; ; we have 6220 # 0. Set B = (e, - - - s €k ), we
have eis = ap,i €io + 2x Where 2z, € ann(N), ay, # 0and s € {1,...,n3}. Consider e; € By ; for all
ek, € B, the equality 0 = (eFex,)ei. = aju, €} €. = ajk,ap ; €5, leads to ajp,, = 0forall s € {1,...,n3}.
It follows that e € ann®(N) and e; € ann®(N): impossible. We deduce that N cannot be of the type

[n1717n37n4}' 0

Proposition 4.1. [3, Corollary 2.6] Let A be a finite-dimensional evolution algebra such that dim(ann(A)) >
% dim(A) > 1. Then, the algebra A is decomposable.

4.1. Classification in dimension 4 and 5.

Proposition 4.2. Any 4-dimensional indecomposable nil 3-Jordan evolution algebra is almost generalized Jordan

algebra.

Proof. Let N be an indecomposable nil 3-Jordan algebra. Its nil-index is at most 5. If the nil-index is
2,3 or 4, then, the algebra is almost generalized Jordan algebra. If the nil-index is 5, then its type is

[1,1,1,1]: impossible by the Lemma 4.1. O

Proposition 4.3. Let N be a 5-dimensional indecomposable nil evolution algebra that is not almost generalized
Jordan algebra. Then, A is isomorphic to one and only one, of the following algebras:
(1) N51 : €2 = e, €3 =e3 + ey, e% =e5, €2 = —es, eg = 0.

(2) Ns2() : €2 =ex+ales+eq), €3 = e3 + ey, eg =e5, €2 = —es, eg = 0 with o € F*.

Proof. We have dim(ann(N)) < i dim(N), ie. dim(ann(N)) = 1 or 2. By Lemma 4.1 the only pos-
sible type of N is [1,2,1,1]. Let B = (ej,...,e5) be a natural basis of N such that ann(N) =
Alg(es), ann®(N) = Alg(es,eq,e5), ann®(N) = Alg(es, es, e4, e5). The multiplication table of N in
this basis is of form e? = ajses + aizes + ajses + ajses, €3 = asses + asaeq + asses, € = agses, e =
a4ses, eg = 0 with (a23,a21) # 0 and ai2, ags, ass € F*. The equality 0 = (e2eg)e3 = alg(aggeg + a,e?)

involves as3, agq € F* otherwise as3 = ag4 = 0 : impossible. It follows that
2_ 2 _229
€4 = —Qp309y €3.

: 2 2 2 2 —1\ 2
The equahty 0= (€1€2>61 = alg(a13a2363 + a14a24e4) = a12a23(a13 — 1442309, )63 leads to

-1
Q13 = (1402309, -
-1 2 2 4 2
Set up = aize2 + (a15 — a14aq, azs)es, uz = ajy(agzes + azses), us = ajxa21€4, Us = G15053035€5. The
family (eq, u2, us, u4, us) is a natural basis of N and the multiplication table of N in this basis is given

by:
2 2 2 2 2
el = ug + aus + uq), us = us + ug, uz = us, uj = —us, uz = 0.

We have Us @ Uy = vect(us, us); Us & Uy = vect(er,us) and (Uy © Up)? = vect(ug + a(uz + ug)).
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e For (U @ U1)?> CUyL DUy, then a = 0and N is isomorphic to Ns ;.
e For (Us ®Uy)? € Uy ® Uy, then o # 0 and N is isomorphic to Np 2(v).

4.2. Classification in dimension 6. We have dim(ann(N)) < 1 dim(N), i.e.
dim(ann(N)) = 1lor2. By the Lemma 4.1, we deduce that the possible types of N are
1,2,1,2], [1,2,2,1], [2,2,1,1].

Proposition 4.4. Let N be an indecomposable nil evolution algebra of type [1,2,1, 2] that is not be an almost
generalized Jordan algebra. Then, A is isomorphic to one and only one, of the following algebras:

(1) Ngi() : €2 =es3, €3 = aes, e§ =e4+e5, €2 =e;, eg = —eﬁ,e% =0witha #0;

(2) (o, B) : €2 =e3+afes+es5), €3 =Pel, ek =eys+es5, €3 =e5, €2 = —eg, €3 = 0 with aff # 0;
(3) Ngs(a,B) : €2 =es3, €3 = aeg + Beg, €2 = eq +e5, €2 = es5, €2 = —eg, €2 = 0 with af # 0;

(4) Nga(a, B,7,6) : e% = e3+ ales + e5), e% = fBes + v(eq + e5) + deg, e?,) = e4 + €5, 6421 = e, e‘g =

—eg, €2 = 0 with (a,y) #0; {6 #0orvy # af}and 3 € F*.

Proof. N is of type [1,2,1,2]. It admits a natural basis B = (ei,...,eg) such that ann(N) =
Alg(eg), ann*(N) = Alg(eg,es,e4) and ann3(N) = Alg(eg, e5, €4, e3). The multiplication table of
N in this natural basis is of form: e? = aizes + -+ + aiges, €3 = asgzes + - + ageeq, €3 =
azses + agses + azees, €1 = asges, €2 = azgeq, €3 = 0 with ai3, ass, ass, ase € F* and (as4, ass) # 0. The
equality 0 = (ee3)e3 = aizede’ = aiz(ad e + a3;e?) gives us asy, azs € F* and

€5 = —aj,az; el
We also have

0= (6%83)6% = a13(a34a146421 + a35a15€§) = a13a34(a14 — a34@§516115)€i, Le. ajy = a34a§51a15
and

2 .2 2 P —1 2 . —1
0 = (efes)e; = aiz(agaazse] + agsasses) = a13a34(a24 — azaazy a25)e], i.€. azq = aszaas; ags.

-1 2 2 4 2
Set U3 = a13es + (a16 — 150436035 )66, Ug = a13(a34e4 + a36€6), U5 = a73a35€5, Ug = A13034046€6- The

family (ey, e, us, u4, us, ug) is a natural basis of A and the multiplication table is of form:
2 _ 2 _ 2 _ 4 _ 2 _ 2 _
el = us + aq(us + us), €5 = agug + ag(us + us) + auaug, Ui = uq + us, Uy = Ug, UF = —Ug, Uf =

with s € F* and oy, a3,a4 € F. We have Us & Uy = Alg(ug,us), Us ® Uy = Alg(ug,e2,e1) and

Uy & UY)? = Alg(agus + as(ug + us) + ague, uz + aq(ug + us)).

o U ®U)? CU; ®U; and dim(Uy © Uy)? = 1 then oy = a3 = a4 = 0 and N is isomorphic to the
algebra Ng 1 (a2).
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o (U DU)* ¢ Us ®Uy and dim(Uy © Uy )? = 1, then a3 = ajas, oy = 0 and o # 0. N is isomorphic
to Nga(a1, a2)

o (Uy®U)? CUs DUy and dim(Uy DU )? = 2 then a; = ag = 0 and ay # 0. N is isomorphic to the
algebra Ng3(ag, a4) ;

o (U U)? € Us ® Uy and dim(Uy B Uy)? = 2, then (a1, a3) # 0 and {ag # 0or ag # ajaz}. The
algebra N is isomorphic to Ng 4 (a1, a2, a3, )

0

Proposition 4.5. Let N be an indecomposable nil evolution algebra of type [1,2, 2, 1] that is not be an almost

generalized Jordan algebra. Then, A is isomorphic to one and only one, of the following algebras:

(1) Nes(a) : e =ea+aes, €3 =ey4+e5, €3 = —%(64 +e5), €3 = eg, €2 = —eg, ez = 0witha € F*;

(2) Neg(a,3) : €2 =ea+ aes+ Bles+e5), €3 =eq +es5, €3 = —%(64 +e5),e2 = eg,e2 = —eg, e =0
with o, B € F*;

(3) Ng7(a,B) : e} =ea+aes, €3 =es+es, €3 = Blestes), el = eg, e = —eg,e2 = Qwith 1 +a?B # 0,
BeF*anda e F;

(4) Nos(a, B,7) : €2 =ea+aeg+ Blesa+e5), €3 = es+es5, €2 = y(es + e5),e5 = es, €2 = —eg,e2 = 0
with 1 + a2y # 0and B,y € F*;

(5) Neo(a, B,7y) : €2 =ea + aes, €3 = eq + €5, €3 = Bles + e5) + yes, €5 = e, €2 = —eg, €2 = 0 with
a€ Fand~,3 € F*;

(6) Neio(a, 8,7,0) : €3 = ea+ aes+ Bles +e5), €3 = es + €5, €3 = §(eq + e5) + Yes, €5 = €6, €2 =
—eg,e3 =0 witha € Fand B,7,5 € F*.

Proof. N is of type [1,2,2,1]. It admits a natural basis B = (ei,...,eg) such that ann(N) =
Alg(eg), ann?(N) = Alg(eg, 5, e4) and ann(N) = Alg(eg, es, €4, €3, €2). The multiplication table of N
in this natural basis is given by €2 = aj2ea+aj3e3+ai1se4+a15e5+a16e6, €3 = agses+asses+asges, €3 =
azies + agses + asges, €3 = aspeq, €2 = azeeq, €2 = 0 with asgs, ase € F*. The pairs (as4, ass), (a4, azs)
and (aj2, a13) are nonzero. By permitting the vectors e3 and e4 of the natural basis, we can take a2 # 0.
The equality 0 = (efe2)e3 = aiz(a3 e + a3se?) gives agqass # 0. Otherwise azy = ags = 0 this is
impossible. Thus,

2_ 2 _229
e5 = —540y; €.
: 2 2 2 2 -1 2
The equality 0 = (ejez)ef = a12(aisa24€f + aisasse;) = aipaz(ais — azays ays)e; leads to
_ -1
a14 = 424095 A15-

Also, the equality 0 = (e2ea)e3 = ara(agqazse? + a25a35e§) = ajgaz4(asq — ag4a§51a35)e§ involves

—1
a34 = 424095 A35-
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1 2 2
It follows that as4, ags € F*. Setus = a1262+(a16—a15a26a25 )eg, ug = €3, Uy = a12(a24e4+a2666), Uy =
a3yasses, ug = ajya3,asees. Then, the family (eq, us, us, u4, us, ug) is a natural basis of N and its multi-

plication table is of form:
2 _ 2 _ 2 _ 2 _ 5 _ 2 _
el = ug + aquz + ag(us + us), up = ug + us, uz = az(us + us) + Qaue, Uy = Ug, Uz = —Up, Ug =

with ag € F* and a1, ag, ay € F. We have Us & Uy = vect(ug, uz, uz) ; (Us ©Uy)? = vect(ug + us, aqugp)

; Uy @ Uy = vect(ug, e1) ; (Us @ Uy)? = vect(uz + aqus + az(ug + us)) and ((Us @ Up)?)? = vect{(1 +

ataz)(ug + us) + afagug}.

e For dim(Us @ U1)? = 1; (Us @ Uy)?)? = 0and (Us & Uy)? C Uz Uy, we have oy = o = 0 and
ag = —é with ag € F*. Then N is isomorphic to Ng 5(aq).

e For dim(;/{g U’ =1; (U ®U)*)? =0and (Us D UL)? € Us & Uy, we have ay = 0, ag € F* and
o3 = —é with ag € F*. Then N is isomorphic to Ngg(aq, ).

e For dim(}/lg SU)? =1; (U@ U)?)? # 0and (U @ UL)? C Us B Uy, we have as = ay = 0 and
1+ a?a3 # 0. Then, N is isomorphic to N 7(aq, a3)

e For dim(Us ®Uy)? = 1; (Us ®U1)?)? # 0and (Uy ®UL)? € Us © Uy, we have ay = 0, ag € F* and
1+ a?a3 # 0. Then N is isomorphic to Ngg(av, a2, 3)

e For dim(Us ®U)? = 2and (Us ®UL)? C Us DUy, we have ag = 0 and ay € F*. Then, N is isomorphic
to Neo(a1, a3, a4)

e For dim(Us ® Uy)? = 2 and (Uy © Uy)? ¢ Us @ Uy, we have ag, ay € F*. Then, N is isomorphic to
Nejo(ar, ag, ag, aq).

O

Proposition 4.6. Let N be an indecomposable nil evolution algebra of type [2,2, 1, 1] that is not be an almost
generalized Jordan algebra. Then, A is isomorphic to one and only one, of the following algebras:
(1) Ne1p : e% = eg, e% = e3 + ey4, e% = —ei = es, e% = e% =0;

(2) Ne2() : €3 =ea+ ales+eq), €3 =e3+ ey, €3 = —€] =e5, ez = €3 = 0 witha € F*.

Proof. N is of type [2,2,1,1]. Then, it admits a natural basis B = (ey,...,eg) such that ann(N) =
Alg(eg, e5), ann?(N) = Alg(eg, es, e4, e3) and ann®(N) = Alg(eg, es, €4, €3, e2). The multiplication table
of N in this natural basis is given by: e% = a12e3tai3e3+aises+aises+aiges, e% = ag3e3+agses+asses+
asees, e% = asses + azees, €1 = a45es + a6es, e% = e% = 0 with ajp € F™*. The pairs (ag3, a24), (ass, ase)
and (a5, as6) are nonzero. The equality 0 = (eZes)e3 = a1a(a3se3 + a3 e?) tells us that ags, azy € F*.

We deduce that
2 _ 2 =22
€4 = —3094 €3-
: — (2 2 _ 2 2\ _ -1\, 2 s
The equahty 0= (6182)61 = 012(a13a2363 + a14a24e4) = algagg(alg — 014G230G9, )63 gives

—1
a13 = 11402309, -
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1 1 P 2
Set us = azez + (a15 — 1402505, )es + (a6 — a14a26a4, )e6, U3 = afyaze3 + afy(azses + azeeq), ug =
a3yasiey, us = atyads(agses + agees) and ug = eg for ags # 0 otherwise we take ug = e5. The family

(e1,u2,us, us, us, ug) is a natural basis of N and its multiplication table is given by:
e = up + auz +ug), U3 = uz + ug, U5 = us, us = —us, u = uz = 0 with a € F.

We have Us @ Uy = vect(ug, us, us) ; Us Uy = vect(ug, us, e1) and Uy & Up)? = vect(ug + a(ug + ug)).
e For (Uy ®Uy)? C Us Uy, we have o = 0 and N is isomorphic to Ng 1.
e For (U @ Uy)? ¢ Us & Uy, we have a # 0 and N is isomorphic to Ng 12(c).

O
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