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AsstrAcT. This work focuses on studying fuzzy multiobjective quadratic optimization. It proposes a trans-
formation that associates each fuzzy multiobjective quadratic optimization problem with a corresponding
multiobjective quadratic optimization problem. This approach is based on the use of conjugate directions.
These are vectors that are conjugate with respect to all symmetric, pairwise commutative matrices derived
from the quadratic part of a multiobjective quadratic optimization problem. A discussion is presented on
the set of solutions to the multiobjective quadratic optimization problem depending on the membership
degree parameter «. It has also been proven that any Pareto-optimal solution to a multiobjective quadratic
optimization problem is an efficient solution to the original fuzzy multiobjective quadratic optimization
problem. The validity of the proposed method is established through the demonstration of its convergence
to an optimal solution in a finite number of iterations. Then, the method is used to solve several fuzzy
multiobjective quadratic optimization problems numerically.
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1. INTRODUCTION

A multiobjective optimization problem is defined as the simultaneous optimization of multiple
objective functions. Improving one objective generally results in the deterioration of one or more of
the others, making these functions conflicting. These types of problems are commonly encountered
in fields such as engineering, resource management, and economics. Multiobjective optimization
problems play a crucial role in decision-making processes. In contrast to single-objective optimization,
which yields a unique optimal solution, multiobjective optimization produces a set of non-dominated
solutions. This set is commonly referred to as the Pareto optimal solutions.

To determine Pareto optimal solutions, one technique involves the use of conjugate directions.

Conjugate direction methods were initially developed for solving linear systems [1,2], and later
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extended to unconstrained optimization of nonlinear functions with multiple variables [3—7]. In recent
years, researchers have revisited these methods from a new perspective, particularly by extending them
to multiobjective quadratic optimization. Notably, Fukuda et al. [8] proposed a conjugate direction-
type method for solving unconstrained multiobjective quadratic optimization problems and proved
convergence to the optimal solution within at most n iterations. Jian Chen et al. [9] employed the Barzilai-
Borwein subspace to construct conjugate directions applicable to both quadratic and non-quadratic
multiobjective problems. Tian et al. [ 10] incorporated conjugate direction strategies within evolutionary
algorithms for solving multiobjective optimization problems. Chen Wang et al. [11] introduced a novel
approach to conjugate gradient methods for multiobjective optimization by removing the conventional
line search procedure. Ruifen Cao et al. [12] developed a hybrid algorithm combining conjugate
gradient techniques with evolutionary strategies to optimize spot placement in intensity-modulated
proton therapy. Kumar ef al. [13] proposed a nonlinear conjugate gradient method for uncertain
multiobjective optimization problems. Recently, B. B. Upadhyay et al. [14] proposed a conjugate
direction-type method for solving interval-valued multiobjective quadratic optimization problems and
demonstrated its convergence to the optimal solution in at most n(n — 1) iterations.

From these studies, it is clear that conjugate direction-type methods have been extensively inves-
tigated in the context of deterministic multiobjective optimization. However, such methods remain
largely unexplored in the framework of fuzzy optimization despite their numerous advantages. The
primary objective of this paper is, therefore to contribute to the literature by proposing a conjugate
direction-type algorithm specifically designed to solve fuzzy multiobjective quadratic optimization
problems.

The results of this work build upon those of [8] and [14]. In particular, any fuzzy multiobjec-
tive quadratic optimization problem is transformed into an equivalent unconstrained deterministic
multiobjective quadratic optimization problem. It is verified that the matrices associated with the
quadratic parts of the objective functions commute. Accordingly, we propose a conjugate direction-type
algorithm for solving fuzzy multiobjective quadratic problems. This method exploits the relationship
between the Pareto optimal solutions of the deterministic problem and the efficient solutions of the
fuzzy counterpart. The proposed algorithm generates a set of conjugate directions with respect to the
quadratic matrices of the objective functions. We also demonstrate that the algorithm converges to an
optimal solution of the fuzzy multiobjective quadratic optimization problem. To validate the efficiency
of the proposed method, several numerical examples are provided.

For a clear exposition of our results, the remainder of this article is organized as follows. Section 2
introduces essential concepts and definitions. Section 3 presents the main theoretical results. In
Section 4, we provide a convergence analysis of the proposed method. Section 5 illustrates the practical

performance of the algorithm through numerical examples. Finally, Section 6 concludes the paper.
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2. PrReELIMINARIES AND Basic DErFINITIONS

This section introduces the fundamental concepts used throughout this work.
Definition 2.1 ([15,16]). Let R be a reference set. A fuzzy set A in R is defined as:
A={(t,m5(1)) |t € R}, (1)
where 5 : R — [0, 1] is the membership function of the fuzzy number A.

Definition 2.2 ( [16,17]). Let a be a fuzzy number. The a-cut of a is an interval of the form [a* (), af* ()],

where a™ (o) and a® () are upper semi-continuous functions with compact support.

Definition 2.3 ( [18]). A triangular fuzzy number © = (v — z1,v,v + x2), with v — x1, v and v + x5 real

numbers, is called symmetric if x1 = .

Definition 2.4 ( [19]). Let @ and v be two arbitrary fuzzy numbers. A partial ordering between them is defined

as follows:

(i) u < vifand only if D(@) < D(D),

where D : F — R is a ranking function defined, for a fuzzy number t with c-cut
i = [u®(a), uf(a)], by:

D(&)—;/Olﬁ]“(a) da+/01aR<a) da.

Definition 2.5 ( [20]). Let R C R™ and let F denote the set of all fuzzy numbers over R. Any function b : R —
F is called a fuzzy-valued function. For each o € [0, 1], the a-cut of by is denoted by h* = [(h%(v))~, (h%(v))*].

Definition 2.6 ([14]). Let T : R! — R be a function of several variables.

o T is said to be weakly increasing if for all u,v € R!, we have:

u<v=T(u) <T([). (2)
e T is said to be strongly increasing if for all u,v € R!, we have:

u<v="T(u) <T(). (3)

Proposition 2.7 ([14,21]). Let ¥ : R — Rland T : Rl — R, and suppose v* € arg min,egn T (¥ (v)).

(i) If T is weakly increasing, then v* is a weak Pareto optimal solution of min,cgrn ¥ (v).

(ii) If T is strongly increasing, then v* is a Pareto optimal solution of min,cgrn ¥ (v).
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3. MaIN Resutrrs

In this section, we first introduce some definitions and propositions to set the stage. Then, a conjugate-

direction-based solution algorithm is presented.

Definition 3.1. Let N and P be two fuzzy matrices defined as follows:

air - Qip b1
Ni=|: : and P :=

For each o € (0, 1], define the matrices N and P using the centers of the intervals of the o-cuts:

, afi(a) +afi(a) - afl, (@) +af,(a) X bi(a) +bf(a)
NO == . PY= =
apy(@) +afi(a) - af, (@) +afy, (@) by (@) + by (@)

Remark 3.2. If the components of N and P are symmetric fuzzy numbers, then N'® and P* are independent of

the membership degree c.

Proposition 3.3. A fuzzy multiobjective quadratic optimization problem is formulated as:

min &(v) = ($1(v), - @i(v)) (4)

where each fuzzy objective function @; : R* — 1,1 =1,2,...,1, is defined by:

1 . .
@i(v)zivTG/\/;a@v@(Pf‘)T@U, VoeR" Vi=12...,1,

where © and & denote fuzzy multiplication and fuzzy addition, respectively.

We now extend the notion of conjugate directions to the set of real symmetric matrices parameterized

by «, denoted by j\7ﬂ, foralla € [0,1]andi=1,2,...,1.

Remark 3.4. If the components of a fuzzy matrix N are symmetric, this does not necessarily imply that the

matrices N and N'® are symmetric, and vice versa.

Definition 3.5. Let N be a symmetric matrix of order n x n. Then, the vectors
V0, V1, - - -, vy € R™ are called N*-conjugate vectors if, V k # q € {0,1,...,n — 1}, we have: v} N v, = 0,
Vi=1,2,...,L

Remark 3.6. Such vectors exist if the matrices N commute.

Lemma 3.7. Let b : R™ — T be a fuzzy function defined as follows:
h(v) :=vT ON v+ Pl ©v, Vo€ R", and let [(Ea(v))L : (Eo‘(v))R] be its a-cut ¥V a € [0, 1]. Then, we
have:

(5% ()" + (h*() ] = v N* v+ Pl v, VweR"
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n
To prove the lemma, we adopt the following notation: € (2;) =21 © 22 & - - - B Zp,.
k=1
Proof 3.8. We consider:
B B n n
ToNev=0w oN)eov= (@(Udekl)f“ 7@(7%@&1971)) Ow.

k=1 k=1

Taking the a-cuts of the fuzzy coefficients in N, denoted by [N, we obtain:

ToWN*ov= (@(vk ® [afi (), agi (@), - ... P (o © lagy (@), a;ﬁ(@)])) ©v

k=1 k=1
= (lg1 (@), g (@), - .., [g5 (@), g (a)]) @,
where
(9)"F =Y wagi(e) + Z veafs(@) and (g8 =" wafi(e) + > vkafi(a) %)
k=1 k=1 k=1
v >0 vk<0 v >0 v <0
As a result

i=1
n n n n
= D wle + D w@d)t, D wl)t+ D> wilghH)t
i=1 ;>0 i=1 ;<0 i=1 ,0;>0 i=1 ;<0
Using (5), we get:
n m n o m n o n
- Z Z ay; (o) vgv; + Z Z alt (a)vgv; alt (o) vpv; + Z Z ak (o) vpv;
v ON*Ov =2 Do i=1 k=1 i=1 k=1 i=0 k=0
vpv; > 0 vpv; <0 vEv; > 0 vpv; <0
(6)
In the same way, we obtain:
n n n n
P ov=| > wdbfl@)+ > wdf(e), Y@+ Y wbi(@)|. ()
k=0 ,u5>0 k=0 <0 k=1 v, >0 k=1 vp<0

From the equations (6) and (7) and for all v € R™, we have:
=2 Z Z ay;(@)vgv; + 2 Z Z ay; (@) vgv; + Z vpbE (o) + Z vebE(a) 5 (8)
i=1 k=1 i=1 k=1 k=1 ,05>0 k=1 ,0;,<0

vpv; > 0 vpv; <0

=2 ZZ(LM a)vgv; + 2 ZZ&M a)vgv; + Z ()vg + Z b%(a)vk. (9)

1=1 k=1 i=1 k=1 k=1 ,u;,>0 k=1 ,v,<0

vEv; > 0 vpv; <0
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Calculating {(F)O‘(v))L + (ha(v))R}, we get:

[(Be()® + (62| =237 (o + afi(@))opvs + D (0F + b
i k=1

Consequently:

[(BQ(U»L + (f)a(’l)))R} =T New+ (ﬁa)T v; YveR"etVacel0l1]

Using Lemma 3.7, we define the deterministic quadratic multiobjective optimization problem corre-

sponding to the fuzzy quadratic multiobjective optimization problem.

Proposition 3.9. The associated deterministic quadratic multiobjective optimization problem for the problem

defined in Proposition 3.3 is given by:

min U (v) = (G (), .o Y () (10)

veER"™

where ¢ : R™ = R, i = 1,2, ..., 1, is defined as follows:
) = (W )" + W) =" Nfo+ (P v, YoeR"andVi=1,2,..,1.
Let us now discuss the notion of solutions.

Definition 3.10. Let v* € X C R".

(i) v* is said to be a Pareto optimal solution of Problem (4) if there does not exist v € X such that
Qi(v) X @i(v*) foralli =1,2,...,land ¢;(v) < p;j(v*) for at least one index j € {1,2,...,1}.

(if) v* is said to be a weakly Pareto optimal solution of Problem (4) if there does not exist v € X such that
Gi(v) < @i(v*) foralli =1,2,--- L.

Proposition 3.11. Let v* € X C R" and o € |0, 1] be fixed.

(i) v* is called a Pareto optimal solution of Problem (10) if there does not exist v € X such that ¢ (v) <
Yit(v*) foralli = 1,2,....Land ¢ (v) < ¢ (v*) for at least one index j € {1,2,--- ,1}.

(if) v* is called a weakly Pareto optimal solution of Problem (10) if there does not exist v € X such that
P (v) < Y (v*) foralli = 1,2, ..., 1.

Theorem 3.12. If v* is a Pareto optimal solution of Problem (10), then v* is an efficient solution of Problem (4).

Proof. We proceed by contraposition.
Suppose that v* is not an efficient solution of Problem (4). Then there exists v € R" such that

©®i(v) = @i(v*), and ¢;(v) < @;(v*) for allv € R™.
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From Proposition 3.9 and Lemma 3.7, we have:

Zi(v) = @i(v") = (¢ (v)" < (¢ (v*)" and (57 (v))" < (g (v*)" (11)
= (&5 ()" + (B ()T < (BN + (g ()T (12)
= 1 (v) < Y (V7). (13)
Similarly, we obtain: [1%(v)] < [1(v*)] for at least one j € {1,2,--- ,1}.

This contradicts the fact that v is a Pareto optimal solution of Problem (10).

Therefore, v* is a Pareto optimal solution of Problem (4). O

The conjugate direction algorithm for the fuzzy quadratic multiobjective optimization problem is

presented as follows:

Algorithm 1 Conjugate Direction Algorithm for Problem (4)

1: Foralli = 1,2,...,l and for a € [0, 1], compute N* and P?.

2: Determine the set of vectors {vg, - -+ ,v,—1} that are J\Nfia-conjugate forall:=1,2,---,1.

3: Consider a strongly increasing continuous function 7 : R! — R such that T o ¥ : R® — Ris a
strongly convex function.

4: Choose an initial point 79 € R™ and set [ = 0.

5: Compute the step size (; in the direction v; by solving:

G = argmin T(¥*(m + Tvr)) (14)
6: Update the current point:
M+1 =M + QUi (15)

7: Stop if | = n — 1. Otherwise, return to Step 5.

Remark 3.13. Since the function T o ¥* : R™ — R is strongly convex, then (; is unique for all k. Therefore,
beginning with an arbitrary initial point 1o, the algorithm generates 1, - - -,y € R™, such that (T o [W*(m)])1ez

forms a decreasing sequence. Indeed, from (14) and (15), we have:
T (1)) = T (e + Geow)]) < T (e)]), k=01, 0= 1. (16)
Now, let us consider the composite function 7 o ¥* and the initial point (.

Theorem 3.14. Let {1y, ,n,} be the sequence generated by Algorithm 1, executed with the N'®-conjugate
basis {uy,--- ,u,} forall i = {1,2,--- 1} and an initial point ny € R™. Let T : R' — R be a continuous
strongly increasing function. Then, there exists v > 0 and a set A C R™ such that if n,, € R™ \ A, then n,, is an
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effective solution of Problem (4),

n—1

where A = {770 —I—Zpivi, lpi| <& for someie{0,---,n— 1}},
1=0

and § = max{|BF|; k=0,1,--- ;1 —1, i=1,2,--- 1} with L¥(BF) = 0.

Proof 3.15. Let k € {0,--- ,n—1},i=1,2,--- land a € [0,1].
Consider a quadratic function L defined from R — R by

£H6) = L. )= 3| "W+ | (R + P)Tk} o (17)

2

Since L¥ is a quadratic function with 0 as a root and lirin LE(p) = oo, there exists & such that
p—Eoo

L(p) >0, forall k € {0,--- ,n—1},i € Tand |p| > 6.
Thus, there exists a real number § such that:
n—1

> LE(pr) =0V ok =6,k €{0,--- ,n—1}and i =1,2,--- L. (18)
k=0

n—1
Let us define the set A = {770 + Zpkvk Spkl <6, ke {0,--- ,n— 1}},
k=0
where py, is a root of the function LF.
n—1

Let k € R™\ A, there exist pg, - -+ , pp—1 such that k = ny + Z PEVEs || = 6 for all

k=0
k=0, ,n—1

From equation (16),
TW*(m) < TE@(no))

= < [ <770 + Z PEVE — Z kak> <770 + Z PEVE — Z kak>
(770 + Z PkVk — Zpkvk;ﬂ _ 1>,

1 w1
<H2><2> (En)
(G (o) -0 (o))
:T@W@+§W@—§ﬂﬂmr
= = =1
< (o Ene)])
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This establishes that if n,, € arg Ini]ﬁl T (& (n + Tvy)), then it is an effective solution of Problem (4) on R™\.A.
TE
If § = 0, the following inequality holds:

n—1

T () <T (Wa (770 + Z Pk Uk
k=0

<To¥%k), VkeR"

>>, Vor €R,

(19)

From inequality (19), we observe that Algorithm 1 converges to an optimal solution of problem (4)

on R™ when § = 0, which is not always guaranteed. Let us illustrate this through a didactic example.

Example 3.16. Consider the following quadratic multiobjective optimization problem where the matrix and

vector components are symmetric triangular fuzzy numbers:

min Q(v) = (P1(v1,v2,v3), P2(v1,v2,v3))

[vl,vg,vg]TE]R3

where @; : R3 — F, i € {1,2} are defined as follows:

With ./\71 =

Ny =

V1
- 1 - N
@1(121,112,113):5@1&2&3)@/\/}@ vo | BPLO
U3
U1
- 1 - N
@2(01,02,1)3)25(111,112,113)@/\/2@ vo | DP2®
U3
(3>5>7) (17273) (_17071)
(1,2,3)  (1,5,9) (-2,0,2)| P
(_170a1) (_2’052) (_13337)
(6,8,10) (—1,2,5) (—3,0,3)
(-1,2,5) (5,8,11) (=1,0,1) | and Py =
(—3,0,3) (—1,0,1) (—2,1,4)

Let us compute [N;]* and [P;]* using the a-cuts of the fuzzy components of the matrices N; and P;.

V1
V2
U3
U1
V2

U3

(—2,0,2)

(0,1,2)

(1,2,3)

(-1,1,3)

(1,3,5)

(—=2,-1,0)

(20)
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2a+3,-2a4+7 [a+1,—a+3 [ —1,—a+1]

Wil*= | [a+1,—a+3] [a+1,—4a+9] [2a-2,-2a+2]|; [P =

[a—1,—a+1] [2a—2,—2a+2] [da—1,—4a+T]

2a+6,—2a4+10] [Ba—1,-3a+5] [3a—3,—3a+ 3]

Wal*=| Ba—1,-3a+5 [Ba+5-3a+11] [a—1,—a+1] [/ [P]*=

[Baw — 3, =3 + 3] [a—1,—a+1] [Ba—2,-3a+4]

5 2 0 8 2 0 0 1
Ne=12 5 o, Neo=|2 s o, Pr=[1]etPs=1] 3
00 3 00 1 2 -1

[2a — 2, —2c + 2]

[, —c + 2]

[a+1,—a+ 3

[2a — 1, —20 + 3]

2a+1,—2a+ 5]

[ — 2, —q]

Note that, since the fuzzy coefficients are symmetric, the matrices N, Ns*, P, and Ps do not depend

on .

The vectors N*-conjugate for i € {1,2} are

1 1 0
=111, v1i=1-11, and vo =10
0 0 1

Subsequently, we choose the initial point ng = (0,0, 0) and represent the set A.

Set A

®  Qutside A
® nA

Ficure 1. 3D representation of the set A
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FIGURE 1 shows a representation of the set A, which is a region where the convergence of Algorithm 1 is not
quaranteed. Thus, if a solution generated by Algorithm 1 belongs to A, then this solution will not be effective for
problem (20).

Let us now express the quadratic function L in terms of p:
LUp)=Tp*+p,  Lilp)=3p"—p  L3(p) = 30> +2p,
L3(p) =100 +4p,  Li(p) =60 =20,  L3(p) = 30° — p.

The functions LF(p), for i = 1,2 and k = 0, 1,2, are computed using relation (17).
We observe that all these functions have 0 as a root.

FIGURE 2 shows a graphical representation of these functions.

Representation of all functions L:‘(p)
50

L3(e)
L3(e)
L3(e)

40

-10 1 1 1 1 I 1 1 |

Ficure 2. Graphical representation of the functions Ef

FIGURE 2 shows that § is obtained from the function £3(p), and for this example § = 2 satisfies inequality
(18). Consequently, it is not guaranteed that Algorithm 1 will find an optimal solution for the considered problem

(4).

To address this limitation, we propose a method for determining optimal solutions of (20) on R" that
coincides with {770 + ZZ;& PkVk, Vp € R} . For this purpose, we introduce a new algorithm that
executes Algorithm 1 (n + 1) times. In each execution, a new initial point is carefully selected outside

A. Subsequently, we compare the previous values of the function 7 o ¥ with the newly obtained ones
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and retain the solutions that best optimize this function. We present this algorithm in the following

lines:

Algorithm 2 Conjugate Direction Algorithm for Problem (4)

1: Foralli=1,2,...,l and for a € [0, 1], compute /\72»0‘ and 75{3‘;

2: Determine the set of Ma-conjugate vectors {vg, v1...,Up—1},Vi=1,2,..,1;

3: Consider a strongly increasing continuous function 7 : R! — R such that T o ¥* : R® — Risa
strongly convex function;

4: Choose an initial point 7y € R™ and for v = 0, ..., n, execute Algorithm 1 with initial points:

n—1

Mo =10+ (26 +1) > v; (21)
k=0

where § = max{d(n,0) : v = 0,...,n} and §(n,0) is given by (18). This creates a sequence of
elements {1,,0, M1, -, Mun};

5. Letv, € {0,1,...,n} such that T (¥(n,, 0)) = E%in {T@*(nyn))} and 0y = 1y, .

We now show that the optimal solution to problem (4) is obtained in n(n + 1) iterations.

4. CONVERGENCE ANALYSIS

This section will validate the solution 7, obtained in Step 5 of Algorithm 2 as an efficient solution to

problem (4). We will also demonstrate that the optimal solution is achieved within n(n + 1) iterations.

Theorem 4.1. Let 1,1, ..., My n for v = 0,1, ..., n be a sequence generated by Algorithm 2, implemented with:
o An initial point ny € R",
e A conjugate basis vy, ..., vn—1 for matrices NV i =1,2,...,1,
e A strongly increasing continuous auxiliary function T : R! — R.

Then n, provided by Algorithm 2 is a Pareto optimal solution to problem (4).

Proof 4.2. From Remark 3.13, Proposition 2.7, and Theorem 3.12, we have:
TW@(nn)) <TW@W); YveR"\Aandv =0,1,...,n. (22)

where A = A(ny,0,8) = Uiy Hi(n0) and Hi(n,o) = R x (0" = 6,070 + 6) x R"=71,
From Step 5 of Algorithm 2 and inequality (22), we obtain:
TW*(n.) <T@ (v); Yo e [ RNAY). (23)
v=0
We now show that | J;,_, (R"\A") = R".
Considering the definition of A” as an interval of length 28 with 1, = 1o +v/(25+1) S04 viforv = 0, ..., n.
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Let z € R™. In the basis {vy}, we have:

n—1

$=770+Zakvk, Vo, € R.
k=0

Using the controlled offset technique, the expression of x relative to 1), is:

n—1

T ="1My0+ Z(O’k —v(20 4+ 1)) vg.
k=0

For x ¢ A", it is necessary that |0, — v(20 + 1)| > ¢ forall k, i.e., o ¢ (v(20 +1) — §,v(20 + 1) +9).
We seek v € {0, ...,n} such that:

n—1

v(20+1) ¢ | J(on — 6,00+ ).
k=0

The total length of the n intervals (oy, — 0, o, + 9) is 2nd.

The points {v(26 + 1)}}'_,, numbering n + 1 in total, are equally spaced with separation 26 + 1 > 20.

We therefore have n + 1 equally spaced points with separation 26 + 1 to place within an interval of total length
2nd. It is thus clear that at least one point v*(25 + 1) lies outside all intervals (o, — 9, o, + ).

For this point v*, we have |}, — v*(26 + 1)| > 0 for all k. Hence, ¢ AY". Consequently, we conclude that:

n

U ®RMAY) = R™

v=0
If the function 7 defined in Step 3 of Algorithm 2 is weakly increasing, then using Theorem 4.1 we

formulate the following corollary.

Corolla 4.3. Let 1,1, ..., nun for v =0, ..., n be a sequence generated by Algorithm 2, implemented with:
o An initial point g,
o A conjugate basis v, ..., v,—1 for matrices /\7{1 Vi=1,2,..1,
e A weakly increasing continuous auxiliary function T : Rl — .

Then n, provided by Algorithm 2 is a weakly Pareto optimal solution to problem (4).
Proof 4.4. The proof of this corollary follows similarly to that of Theorem 4.1.

The implementation of Algorithm 2 begins by generating initial points 7, for all v = 0,...,n.
Subsequently, using a "for" loop, we compute and store the values 7, ,. After exiting the loop, we
evaluate the function 7 o ¥ for each solution 7,,,, and perform a comparison to retain the optimal
solution 7),~ ,, satisfying:

T () = moin T(& (1))
We now solve problem (20) using Algorithm 2. We begin by arbitrarily selecting the initial point

no = (0,0,0)7. For this problem, we consider the strongly increasing function defined by:

T = 0.5¢1 + 0.5¢s.
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To determine the value of §, we first compute § for each initial point and then select the maximum
obtained § value, yielding § = 31.33.
The sequence of solutions is recorded in Table 1. Analysis of the values in Table 2 and Theorem 4.1

leads us to retain 703 = (0.0196, —0.3137, —0.2500)7 as an efficient solution to problem (20).

TabLE 1. Solution sequences for problem (20) generated by Algorithm 2

U, (1,1,0)T (1,-1,00T (0,0,1)T
n0,i (0,0,0)T (—0.1471, —0.1471,0)T (0.0196, —0.3137,0)T (0.0196, —0.3137, —0.2500) T
G —0.1471 0.1667 —0.2500
m,i (12,0,6)T (5.8529, —6.1471, 6.0000) " (0.0196, —0.3137,6.0000)T | (0.0196,—0.3137, —0.2500)T
¢ —6.1471 —5.8333 —6.2500

n2. | (24.0000,0,12.0000)7 | (11.8529, —12.1471,12.0000)7 | (0.0196, —0.3137,12.0000)7 | (0.0196, —0.3137, —0.2500)T

G —12.1471 ~11.8333 —12.2500
n3. | (36.0000,0,18.0000)7 | (17.8529, —18.1471,18.0000) | (0.0196, —0.3137,18.0000)7 | (0.0196, —0.3137, —0.2500)T
G —18.1471 —17.8333 —18.2500

TaBLE 2. Evaluation of the function 7 o ¥¢

M3 T (Nw3))
(0.0196, —0.3137, —0.2500)" | —0.3713
(0.0196, —0.3137, —0.2500)" | —0.3713
(0.0196, —0.3137, —0.2500)" | —0.3713
(0.0196, —0.3137, —0.2500)" | —0.3713

W N~ O

5. NUMERICAL EXAMPLES

The objective of this section is to test the effectiveness of our method by applying it to solve fuzzy
quadratic multiobjective optimization problems. The considered examples differ in their fuzzy number

asymmetry.

Example 5.1. Consider the fuzzy quadratic multiobjective optimization problem where the components of

matrices Nj and vectors P; are asymmetric triangular fuzzy numbers:

min ®(v) = (p1(v1,v2,v3), P2(v1,v2,v3)), (24)

[1)1,1}2,U3]T€IR3
where $; : R? — F, i € {1,2} are defined as follows:
U1 U1
~ 1 - -
@1(v1,v2,v3) = 5(1}1,@2,113)@/\/1@ vy | ®P1O | vy

U3 U3
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V1 (%

_ 1 ~ -
@2(@1,1}2,113):§(v1,v2,v3)®Nz® vy | BP2O | vy

U3 U3
with
(0,1.3,1.6)  (0.4,0,0.6) (0.1,0.2,1.3) (0,0,1)
N =] (04,0,06) (2.546,47)  (0,1,1) |, Pi=1](0.1,11,11)
(0.1,0.2,1.3)  (0,1,1) (4.1,6.5,7) (0.5,0.7,1.9)
and
(12,3.6,4)  (0,0,2)  (0.2,0.4,2.6) (0,0.2,1.4)
No=1] (0,02  (4,102,12)  (0,2,2) |, P2=](0.1,02,1.3)
(0.2,0.4,2.6)  (0,2,2)  (5.6,12.8,14) (0,0,1)

Let us compute [N;]* and [P;]* whose components are the a-cuts of the components of N and P;, for i = 1, 2.

[1.3a, —0.3x 4 1.6] [0, —a+1] [0.1a+0.1,—-1.1ac + 1.3]
(Ni]e = [0, —a + 1] 2.1+ 2.5, —0.1a + 4.7] [, 1] ,
0.1+ 0.1, —1.1a + 1.3] [a,1] [5.50 + 1, —0.50 + 7]
2.4 + 1.2, 0.4 + 4] [0, —2a + 2] [0.2a 4+ 0.2, —2.2x + 2.6]
NR]e = [0, —2a + 2] 6.2a 4 4, —1.80x + 12] 201, 2] ,
[0.2a + 0.2, —2.2cx + 2.6] 2a, 2] [7.2a + 5.6, —1.2a + 14]
[0, —a + 1] 0.2, —1.200 + 1.4]
[P1]e = [a+0.1,1.1] and  [P2]* = | [0.1a + 0.1, —1.1a + 1.3]
[0.2a0 + 0.5, —1.2a 4 1.9] [0, —a + 1]
at+1.6  —at+l —a+l4 —a+1
B 2 2 2 ~ 2
| g e ep | Ppe | ez |

—a+1.4 a+1 5a+48 —a+2.4
2 2 2 2
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204+5.2 —2042 —20+2.8 —a+1.4
2 2 2
N[ —2042  40416.4 2042 po — | 2a+2.4
N = at o e and Py = [ 2ef22
—2a+2.8 242 6a+419.6 —a+1
2 2 2

The two matrices N and Ns* commute only when o = 0.4. We therefore obtain:

1 03 05 3 06 1 0.3 0.5
NPt =103 4 07|, N'=|o06 9 14| PM=]o08|and P =16
0.5 0.7 5 1 14 11 1 0.3

Table 3 presents the solution sequence for problem (24) generated by Algorithm 2.

TaBLE 3. Solution sequences for problem (24) generated by Algorithm 2

—0.1442

U, | (0.9914,—0.0718, —0.1093)% (0.0134, 0.8870, —0.4616) T (0.1301,0.4561, 0.8804) .
n0.i (0,0,0)T (—0.1259,0.0091, 0.0139) T (—0.1276, —0.1054, 0.0735)7 | (—0.1452, —0.1672, —0.0457)T
G —0.1270 —0.1291 —0.1354
mii | (28.3725,31.7825,7.7375)7 (3.4617,33.5866, 10.4839) T (3.1250, 11.2994, 22.0823)T | (—0.1451, —0.1649, —0.0469) T
o G —25.1269 —25.1265 —25.1354
«a = U.
N2 | (56.7450,63.5650,15.4750)7 | (7.0494,67.1641,20.9539)7 (6.3777,22.7042,44.0910)7 | (—0.1449, —0.1625, —0.0481)T
G —50.1267 —50.1239 —50.1354
ns.i | (85.1175,95.3475,23.2125)7 | (10.6370,100.7416,31.4238)7 | (9.6304,34.1090, 66.0998)7 | (—0.1448, —0.1602, —0.0494)7
G —175.1266 —75.1213 —75.1354
TasLE 4. Evaluation of the function 7 o ¥®
(6%
M3 T(@*(nw,3))
0.1452,—-0.1672, —0.0457 T —0.1442
a=0.4

Wi |~ | o]

(— )

(—0.1451, —0.1649, —0.0469)

(—0.1449, —0.1625, —0.0481)" |  —0.1441
(—0.1448, —0.1602, —0.0494) "

—0.1440

The results presented in Table 4 demonstrate that no 3 = (—0.1452, —0.1672, —0.0457)7" is the efficient

solution to problem (24).

Example 5.2. In the following problem, the matrices N; have symmetric components while the vectors P; have

asymmetric components:

min  ®(v) = (@1(v1,v2,v3), P2(v1, v2,v3)),

[v1,v2,v3]T€IR3
where @; : R3 — F, i € {1,2} are defined as follows:
U1 V1

OPLO | v |,

(25)

. 1 ~
@1(v1, v2,v3) = 5(111,@27@3) ON O | vy

U3 U3
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with /\71 =

Ny =

952(171,”2,'03):%(UMUQ,US;)@NQ@ Z; %20 :
VU3 VU3
(1,4,7)  (2,3,4) (=1,1,3) (0,3,4)
(2,3,4) (2,5,8) (0,2,4) |, Pi=](-1,2,6) |,
(-1,1,3) (0,2,4) (1,3,5) (1,1,3)
(1,2,3)  (0,1,2) (—=2,1,4) (2,3,5)
(0,1,2)  (0,2,4) (=1,1,3) | and Po=|(-1,0,3)
(=2,1,4) (=1,1,3) (=3,2,7) (3,4,7)

Let us compute [N;]* and [P;] through the a-cuts of the fuzzy components of N; and P;.

[Ba+1,—3a+ 7]

[+ 2, —a + 4]

[2a — 1, —20 + 3]

[a+1,—a+ 3]

[, o + 2]

[Ba — 2, —3a + 4]

[Ba, —a + 4]

[Ba— 1, —4a + 6]

[1, —2a + 3]

[a+2,—a+4]

[Ba+ 2, —3a + §]

[2a, —2c + 4]

[, —a + 2]

[2c, —2c + 4]

[2a — 1, —20 + 3]

and [Pe]® =

20— 1, —2a + 3]

2, —2cx + 4]

[2a+ 1, —2a + 5]

[Ba — 2, =3 + 4]

20 — 1, —2a + 3]

[ba — 3, —ba + 7]

[+ 2, —2a + 5]

[ —1,-3a+ 3]

[+ 3,—3a+ 7]

~
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Using the interval centers, we compute N and P& forall i = 1,2.

431 2 11 o+ 2 =otl
Ne=13 5 2| Ng=|[12 1], Pr=| =25 [and Pg=|-a+1
123 11 2 —a+2 —a+5

We observe that the vectors P depend on the membership degree o. We now discuss the solution to

problem (25) as a function of o using the strongly increasing function T = a1 + (1 — «)1pa. The obtained

solutions are reported in Table 5.

TasLE 5. Solution sequences for problem (25) generated by Algorithm 2

U, (1,1,0)T (1,0,1)T 0,1,1)T .
n0,i 0,0,0)T (—0.4862, —0.4862,0)T (—1.0188, —0.4862, —0.5326) T (—1.0188, —0.2794, —0.3258) T
a —0.4862 —0.5326 0.2068
n1.i | (13.4000, 13.4000, 13.4000)7 (—4.0287, —4.0287, 13.4000) 7 (—7.6328, —4.0287,9.7959) T (—7.6328, —4.4767,9.3479) T
w_os LG —17.4287 —3.6041 —0.4480
7 ["m2.: | (26.8000, 26.8000, 26.8000) T (=7.5713, —7.5713, 26.8000) © (—14.2469, —7.5713,20.1244) T (—14.2469, —8.6740, 19.0216) "
a —34.3713 —6.6756 —1.1028
n3.: | (40.2000,40.2000,40.2000)T | (—11.1138, —11.1138,40.2000)T | (—20.8609, —11.1138,30.4528)7 | (—20.8609, —12.8713, 28.6953)7
< —51.3138 —9.7472 —1.7575
U, (1,1,0)T (1,0,1)T 0,1,1)T .
n0,i 0,0,0)T (—0.4048, —0.4048,0)T (—0.7833, —0.4048, —0.3786) (—0.7833, —0.2366, —0.2104) T
a —0.4048 —0.3786 0.1681
n1.i | (13.2000, 13.2000, 13.2000)7 (—3.5476, —3.5476, 13.2000) 1 (—6.9433, —3.5476, 9.8043) T (—6.9433, —4.1058, 9.2461) 1
weos LG —16.7476 —3.3957 —0.5582
[ 2 | (26.4000, 26.4000, 26.4000) T (—6.6905, —6.6905, 26.4000) 7 (—13.1033, —6.6905, 19.9871) 7 (—13.1033, —7.9751, 18.7026) ©
a —33.0905 —6.4129 —1.2846
n3.i | (39.6000,39.6000,39.6000)T (—9.8333, —9.8333, 39.6000) T (—19.2633, —9.8333,30.1700) T | (—19.2633, —11.8443, 28.1591)7
< —49.4333 —9.4300 —2.0109
U, (1,1,0)T (1,0,1)T 0,1,1)T .
n0,i 0,0,0)T (—0.3333, —0.3333,0) T (—0.4074, —0.3333, —0.0741) T (—0.4074, —0.2222,0.0370) T
a —0.3333 —0.0741 0.1111
n1.i | (17.4800, 17.4800, 17.4800)7 (—3.8293, —3.8293, 17.4800) 1 (—=7.7879, —3.8293, 13.5215) L (—7.7879, —4.8836, 12.4673) L
w1 a —21.3093 —3.9585 —1.0542
- n2.: | (34.9600,34.9600, 34.9600)T (—7.3253, —7.3253, 34.9600) T (—15.1683, —7.3253,27.1170) T (—15.1683, —9.5449, 24.8975) T
s —42.2853 —7.8430 —2.2196
n3.s | (52.4400, 52.4400, 52.4400)7 | (—10.8213, —10.8213,52.4400)7 | (—22.5487, —10.8213,40.7126)7 | (—22.5487, —14.2062, 37.3277) %
a —63.2613 —11.7274 —3.3849

TaBLE 6. Evaluation of the function 7 o ¥¢

v Nv,3 T(Q/(nv,?;))
0] (—1.0188,-0.2794, —0.3258)T | —2.1736
@ =03 T (276328, —4.4767,9.3479)T | 141.2141
2 | (—14.2469, —8.6740, 19.0216)T | 519.9682
3 | (—20.8609, —12.8713,28.6953)T | 1134.0887
0] (—0.7833,-0.2366,—0.2104)7 | —1.5247
1| (—6.9433,-4.1058,9.2461)T | 146.6825
@ =05 5 (C13.1083, —7.9751, 18.7026)T | 553.7536
3 [ (—19.2633, —11.8443,28.1591)7 | 1219.6886
0| (—0.4074,-0.2222,0.0370)T | —0.9321
1| (—7.7879,—4.8836,12.4673)7 | 288.6444
@ =1 T (C15.1683, —0.5449, 24.8075)T | 1159.4457
3 | (—22.5487, —14.2062, 37.3277)T | 2611.4718
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An analysis of Table 6 reveals that smaller values of « lead to convergence toward the efficient solution of

problem (25). Thus, for a = 0, the optimal solution is no 3 = (—1.5417, —0.4653, —0.5069)7 .

6. CONCLUSION

This article has presented the first conjugate direction-type method for solving fuzzy quadratic
multiobjective optimization problems. The proposed method begins by transforming a fuzzy qua-
dratic multiobjective optimization problem into a quadratic multiobjective optimization problem. It
establishes a relationship between the efficient solution of the fuzzy quadratic multiobjective problem
and the Pareto optimal solution of the quadratic multiobjective problem. The developed methodology
relies on the existence of conjugate vectors for all matrices in the quadratic part of the multiobjective
optimization problem’s objective functions. The proposed algorithm has been successfully applied to
solve unconstrained fuzzy quadratic multiobjective optimization problems effectively. The obtained
results demonstrate that, compared to existing approaches, our method provides better control over
the optimal solution through the use of a confidence degree a. The numerical experiments confirm
the practical applicability and effectiveness of the proposed approach in handling fuzzy uncertainties

while maintaining solution quality.
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