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AsstrACT. Modeling population dynamics problems leads to mathematical systems with missing data. For
instance, the problems of pollution in population dynamics have generally missing source terms as well as
missing initial or boundary conditions. The paper is concerned with identifying unknown parameters
arising in the state equation of some population dynamics system with incomplete initial condition.

To this aim the so-called sentinel method is used. We prove the existence of a sentinel by solving a new
controllability result for a linear two stroke system for which Carleman inequalities are revisisited.
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1. INTRODUCTION

We consider a linear model describing the dynamics of population with age dependence, spatial
structure and incomplete data. More precisely, let 2 be an open and bounded domain of RY, N ¢
{1, 2, 3}, with boundary I" of C*°. For the time 7" > 0 and the life expectancy of an individual A > 0,
setU =(0,T)x(0,4),Q=Ux204a=(0,4)xQ, Qr=0,T)xQE=UxI % =UxTIy,
where I'; is a nonempty open subset of I'. We denote by v the outer normal on I'. Then consider the

following two stroke problem:
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K TY EYNTYTR ST, nQ
yO,a,2) = 04 in Qa
y(t,0,2) = /OAﬁ(t,a,m)y(t,a,x)da in  Qr (1)
y = 0 on Y1
Gy = 0 on ¥\

It is assumed that ;¢ > 0 and 5 > 0. The parameters of the problem have the following sense: the final
time 7" > 0 is the horizon of the problem, the bound A > 0 is the expectation of life, the weight 3 is the
natural fertility rate, the function p = p(t, a, ) is the natural death rate of a—year old individuals at
time ¢ > 0 and in the position z, the functions ¢ and " are known with ¢ € L%(Q) and ¢° € L%(Q).

But, the terms: ¢ (so-called pollution term) and 79° (so-called perturbation term) are unknown, £

and " are renormalized and represent the size of pollution and perturbation
||§|]L2(Q) <1, HQOHLQ(Q) < 1, so that the reals A, 7 are small enough.

In the model (1), we are interested in identifying the parameter \ in the state equation, independently
from the variation 79° around the initial data. To identify this parameter, we use The sentinel method
of Lions [11]. In this paper we construct sentinels when the supports of the observation function and
of the control function are included in two different open subsets of RYV (see Nakoulima [7]).

The sentinel concept relies on the following three objects: some state equation (for instance (1)),

some observation function (2), and some control function w to be determined.

e: A state equation represented here by (1) and we suppose that (1) has a unique solution
denoted by y = y(t,a,z, A, 7) = y(\, 7) depends on two parameters A and 7 in some relevant

space. We assume the following:

Bel>), B(tax)=0ae inq,

2
(H1) swp [ (|| + [ (a0,
(t,2)€)0,T[x ) 10,4]

Jap, a1 € (0, A)with0 < ap < a1 s.t. B(.,a,.) =0 for a € (0,a0) U (a1, A).

(H2) : peC([o, T) x [0, A] x Q) p(t,a,z) > 0ae in Q.

Vi, 0<t< A, Vaxe, limeAM(L,a—t+L,x)dL:+oo,

a—A

(H3) Vi, A<t<T, VeeQ lim[ult—a+ao a z)da=+o0,

a—A

Vi e [L2(Q)]™
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e: An observation Some non empty open subset O C (2, is called observatory set. The observation

is y in O, for the time T'. We denote by ys this observation
Yobs = Mo € L*(U x O) (2)

e: A function S = S()\, 7) called “sentinel”. Let hy € L?(U x O). Let on the other hand w be
some open and non empty subset of {2 such that w # O.

For a control function w € L?(U x w), we define the functional

S(\,7) :/U/O hoy()\,r)dtdadx—|—/U/wwy()\,7-)dtdadx. (3)

We say that S defines a sentinel for the problem (1) if there exists w such that S is insensitive

(at first order) with respect the to missing terms 79", which means

‘3—5(0,0) =0 Vi, (4)
—

where here (0;0) corresponds to A = 7 = 0 and w is of minimal norm in L?(U x w). That is

Wl L2 xw) = ueLfgl(glxw)HUHm(Uw)- (5)

Several authors studied the sentinel problem. We refer to [3,7,10,11] and the reference therein.
In [9], B. Ainseba and al. used the method of sentinels to identify parameters of pollution in a rever.
O Bodart and al. applied it in [5] to identify an unknown boundary. In [3], G. M. Mophou and O.
Nakoulima studied the problem of sentinels with given sensitivity. Recently, the author S. Sawadogo
introduced in [11] the distributed sentinels into the equation of the dynamics of populations to study a
population subject to a migratory phenomenon. In this paper, we apply sentinel method to identify
parameter in population dynamics with age dependence, spatiale structure and incomplete data. The
problem is as follows: Given hy € L?(U x O), find a control w in L*(U x w) such that if y = y(\, 7) is
solution of (1) and S is defined by (3), then (4), and (5) hold.

The remainder of this paper is as follows: In section 2, we establish the equivalence between sentinel
problem and null controllability problem. Section 3 and section 4 are devoted respectively to preliminary

results and proof of main result. In section 5 we formulate the information given by sentinel.

2. NULL CONTROLLABILITY PROBLEM

We show in this section that the existence of the sentinel comes to null controllability property. We
begin by transforming the insensibility condition (4).

Set

d
Yr = d*y(/\77)|,\=7=0-
T
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Then the function y. is solution of

0y- 0y,
- A T T =
ot * da Yyrt 1y 0
yT(O, a, I‘) = ?)0
A
yr (1,0, 2) ~ [ Btaa)y.(t.a.)da
0
Yr = 0
yr _
ov N 0

n  Q,

in Qa,

n  Qr, (6)
on X1,

on X\ Xj.

Problem (6) is linear and has a unique solution y,. The insensibility condition (4) holds if and only if

/ (hoxo + wxw)y-dtdadz =0
Q

(7)

We can transform (7) by introducing the classical adjoint state. More precisely, we define the function

q = q(t; a; ) as the solution of the backward problem:

dq Oq _
+ hoxo + Wxw
q = 0
dq _
o — 0
q(T,a,z) = 0
q(t, A, z) = 0

in Q,
on 21,
(8)
on X \ 21
in  Qa,
in QT.

As for the problem (6), the problem (8) has a unique solution q . The function q depends on the control

w that we shall determine:

Indeed, if we multiply the first equation in (8) by y, , and we integrate by parts over () , we obtain

A
[ (hoxo + wxprdtdads = [ [ q(0.0,0)i0dade ¥ 3 € 12(Qa)
Q 0 w

So, the condition (4) (or (7)) is equivalent to

Q(Oa a, T; U) =0 in QA

9)

Thus, the sentinel problem (3), (4), (5) is equivalent to the following null controllability problem::

Given hg € L?(U x 0O), find a control w in L?(U x w) such that if ¢ is the solution of (8), then (5) and

(9) hold.
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In the following we set:

L = Q—FQ—A—FM’,
ot Oa
L* = —8—8—A+ I
T8t da HE (10)

1

3. EXISTENCE OF A SENTINEL

We begin with some observability inequality, which will be proved in detail in the last section. Then

we have:

Theoreme 3.1. Let be p € V, then there exists a positive constant C' = C(Q,w, O, A, T') such that

1 T rA
/6292|p\2dtdada:§ C [/Q|Lp|2dtdadx+/o /O /]p|2dtdad:v,} (11)

where 6 € C?(Q) positive with § bounded.

According to the RHS of (11), we consider the space V endowed with the bilinear form a(.;.) defined
by:

T rA
a(u;v) = /LuLvdtdadx—l—/ / /uvdtdadx. (12)
Q 0 Jo Ju

According to Theorem 3.1, this symetric bilinear form is a scalar product on V.

Let V be the completion of V with respect to the norm

v = vy = Valu,v), (13)

then, V is a Hilbert space for the scalar product a(v; 0) and the associated norm.

Remark 3.1. We can precise the structure of the elements of V' . Indeed, let Hg(Q) be the weigthed Hilbert space
defined by
1
Hy(Q) = {p € L*(Q) such that : /Qe2p|2dtdadx < 00, }

1

2
endowed with the natural norm ||p|lg = ( / 9%\ p%tdadm) . This shows that V' is imbedded continuously in
Q
Hy(Q): lpllo < Cllpllv-

Now if hg € L?(Q) and 0hg € L*(Q) (i.e. : ho € L3(Q), then from (12) and the Cauchy-Schwartz

inequality, we deduce that the linear form defined on V' by

pH/hoXopdtdadx,
Q

is continuous. Therefore, from the Lax-Milgram theorem there exits a unique u € V solution of the
variational equation:

a(u;v) = /hoxovdtdad:c YveV. (14)
Q
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Theoreme 3.2. Assume that hg € L3(Q), and let u be the unique solution of (14). We set
W= —UXw (15)

and
q = Lu. (16)

Then, the pair (w; q) is such that (8) — (9) hold (i.e there is some insensitive sentinel defined by (3) — (4)).

4. PRELIMINARY RESULTS: OBSERVABILITY INEQUALITY

The proof for the observability inequality in theorem 3.1 will hold from Carleman estimates that we
carefully show in the following results. Let us consider an auxillary function ¢ € C?(£2) which satisfies

the following conditions:

Ve e Q(x) >0 and Yz €T, (x) =0 Vo € Q\wy |V| #0. (17)

where wy designates any open set such that wy € w. Such a function 7 exists according to A.Fursikov

and O.Yu.Imanuvilov [7]. For any positive parameter value A we define the following weight functions:

(@) "

@(t,a,ﬂ?) - at(T_t)(A_a)7 ( )

@(t,a,x) - at(T—t)(A—CL), ( )
2AYle _ pMb(z)

n(taz) = — - (20)

at (T —t) (A —a)’
Ao _ o= Nb(a)

itar) = T N A—a) (21

Then

Vo =-XpVY, Vi=AIpVy (22)
and

Vo=V, V= - pVy (23)
We also notice the following properties:

lpt] < CP?, ol S CP% || < CQ?, |nul < CpP,
(24)
Ma] < C% |Nat| < CP3,  [Naal < Cpd.

The following theorem states the Carleman inequalities concerning (11):
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Proposition 4.1. There exist constants so > 0, A\g > 0and C' > 0 depending on ), w, 1, and A, T, such that
forall s > sg, X\ > Ao, and for any function p € V given by (10) , we have

283)\4/ 9036_2577|p\2dtdada:+452>\/ ( +3 ) v e=25n| p|2dtdadl’
Q

2\21
—433)\3/ ¢3\vw|2‘gfe28n|p|2dtdadr—4s2A3/ @ | V|2 9L e~ 25| p|2dt dadD
21 Z\ 1
TN / cpp( n da) 0% =250 gy dadl’ — Ash / PV pe=21V p 22 it dadl (25)
o\,
—|—2$)\/ _25’7|Vp|2dtdadf

<C </Qe_2577]‘gf — Ap + pp|*dtdadz + 33)\4/ / / _2s’7|p|2dtdadx> .

Proof. Here we will use a classic method for the proof of this proposition. For simplicity, we will give

the proof in three steps.

Step 1. Change of variables and plan of what follows. In this step, we set the differential equations
satisfied by a new function w, which will be p up to a weight function. Let us set w = e~*7p,Vp € v,

f = Lpand g = e *7f. Using the definition of 7 it then follows that
w(0,a,z) =w(T,a,x) =0,
w(t,0,2) =w(t,A,x) =0

and

w =0 on Xj.

After some calcutions we get

Piw + Pow = g, (26)
where
Piw = wy + wq 4 25AoVihVw + 2532 |Vap |2 pw (27)
Pow = —Aw — s X202 VY| w + snpw + snqw (28)
gsa = g — sSAAPow + sX*|V*ow — paw. (29)
We have from (24)
IProlaqgy + 1Pyl +2 [ | P Prwddads = s I (30)

In the following steps, with definition of V we will see that 2 / / PywPywdtdadz is positive up to
Q

several terms that can be controlled whenever we make an appropriate choice of the parameters s and
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A. More precisely, in the second step we will calculate 2 / / / PrwPywdtdadx. This will give inequality
Q

with global terms of ||w| and |Vw|? on the left-hand side, while two local terms of |g—ﬁ’ ? and |Vwl|?
will appear on the right-hand side . In the third step we will add three terms (involving w;,w,, and
Aw) to the left of (26). This will help us to eliminate the local term containing Vw that appears on the
right-hand side and will provide a Carleman inequality for the function w . Finally, we will turn back

to the original function p and deduce the inequality (25).

Step 2. In this step, we will develop the terms I}, ; appearing in / / / PrwPywdtdadz. For this, we
Q

will integrate by parts several times with respect to the space and time variables, so derivatives of the

weight functions will be involved. We will use the definitions (18) — (23) and estimates (24) — (25) .

We then have the following results:

L= —/// wiAwdtdadx
Q

(31)
ow
= —/// wy——dtdadl’ + 0,
b)) 61/
I, = - /// weAwdtdadz
p (32)
= —/// wa 22 dtdadl + 0,
b)) 81/
Ly= —s°\° // |V > *wiwdtdadr = B (33)
Q
L= —s*)\? /// |V |2 pPwawdtdads = B (34)
Q
Il,S = S/// ntwtwdtdadx
. ¢ (35)
= —3/// ntthdtdada: =B
2 Q
Iy = 5/// Newrwdtdadx
. ¢ (36)
= —s/// nathdtdadaz =B
2 Q
I3 = s/// nwewdtdadz
. ¢ (37)
= —8/// nmw2dtdadx =B
2 Q
I, = s/// NaWowdtdadx
¢ (38)

1
= —Zs / / / Neaw?dtdadz = B
2 Q
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And
I3 = — 25\ /// eVYVwAwdtdadx
Q

= — 25\ /// @Vi/J.ng—wdtdadF +25)\2 /// 0 |V¢.Vw|2dtdadx (39)
¥ 14 0
> Q

3o = —2s3)\3 / / V|23V Vw.wdtdadz
Q

=— 3\ /// O3 |Vep PV V|w|?dtdadz (40)
Q

=—s3\3 /// ¢3|Vw|2g:f|w|2dtdadf‘+353)\4/// ©3|Vep[Yw|?dtdadz + B
z Q

I3 3 =252\ /// eVyYVuwnwdtdadx
Q

; (41)
=52\ /// cpnt—w\w|2dtdadl“+ B
» 81/
I3 4 :252)\/// eViyVun,wdtdadx
© (42)
:52>\/// @na—w\w|2dtdadF+B
» 81/
Ipg = —2s)\? /// ©| V|2 Aw.wdtdadz
N s (43)
= — 25\’ //[2 ¢\V¢|2$.wdtdadl“ + 25)\2 ///Q ©| V2| Vw|*dtdads + A+ B
Ipo=—2s°)\4 /// ©3|Vip | |w|?dtdadz (44)
Q
Iy3 =25%2)\?2 /// @nt|v¢\2|w|2dtdad:ﬁ =B (45)
Q
14 =252 \? /// gpna|v¢\2|w|2dtdadx =B (46)
Q

Summing all the terms, it follows:

2///62 PywPywdtdadr =A + B + 2s)\? ///Q ©| VY |? | Vw|*dtdadz
+233)\4/// ¢3|Vw\4|w|2dtdad:v+4s/\2/// @| VY. Vw|*dtdadz  (47)
) / / / (aw )gzjdtdadl“ 45\ / / / VY. Vw—dtdadl“
+2.9)\/// —— |Vw|? dtdadl — 253\ /// 3|Vw|28w|w\2dtdadf
+232)\///( oy a”) 6¢’w| dtdadl — 45)\2/// \VW ~ wdtdadr
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But |V#| # 0 on 2 — wp, hence there is § > 0 such that

V| > 6 on Q — wp. (48)

// \gs,A\thdada: < /// 672877]9\2dtdadx + B
Q Q

\|P1wH%2(Q) + HPQUJH%2(Q) + 2/// PywPywdtdadr < /// e” 2| g|2dtdadx + B.
Q Q

Consequently:

On the other hand

so that

HleH%g(Q) + ||P2w||%2(Q) + 252262 /// o|Vw|2dtdadz

+2s53\15% /// 90|w\2dtdad:c—2/// <aw ) g—wdtd dr
—4s\ /// ng@ZJ.Vw—dtdadI‘ + 25\ /// gp—w \Vw|? dtdadl
—9253)3 /// 3|V¢]28¢|w\2dtdadl“+232)\/// ( L ) w|?dtdadl

—4s)\? /// <p|w|2—.wdtdadr +A+B
» 81/

T (A
< /// e 2 g|?dtdadz + B + 23)\252/ / / ©|Vw|*dtdadz
Q 0 0 wo
‘ T A
+23‘3)\4(54/ / / olw|*dtdadz.
0 0 wo

We can eliminate A and B by choosing s and A large enough. And we observe that: by multiplying

(28) by 6*pw and by integrating by part over @, after some calculations we obtains:

T rA
/ / /@02|Vw|2dtdadaz
0 0 w
T rA ) ) T rA
<C (// Pngdetdadx—i—/ / /@202]Vw|2cp2wdtdada;+32)\2/ / /go]w\thdadx.)
Q 0 0 w 0 0 w

For § € D(w) such that 0 < # < 1 and 6(z) = 1 on wp,using Cauchy-Schwarz and Young inequalities

the inequality under above gives

T (A T (A T (A
1
23)\252/ / / o|Vw|*dtdadz < / / /]P2w|2dtdad1:+083)\454/ / /cp|w[2dtdad:c.
0o Jo Ju 2Jo Jo Jo 0o Jo Ju

Step 3.Now, we should write the inequality below in terms of the solution p, since

]w|2 = 6_25”\u|2.
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So
L2 +1|1P 7200 + 25X |Vw|[*dtdad
o IH1WHL2(Q) U () PRAR
2537t /// e ZSindtdadx—z/// <aw ) gwdtd dr
v
—4sA /// V. Vw—dtdadf + 2sA /// —— |Vw|* dtdadl
283)\3 2 ’(/J —257] 2 77 ¢ —257] 2
<,0 3|Vl |p|?dtdadl + 2s%\ |p|*dtdadl’
9 90w
—4sA 0|V 8—.wdtdadf
» 1%
T rA
C </// e 2| g|*dtdadx + 53/\4/ / /g03e28"\p\2dtdadx.>
Q 0 0 w
Now from
Vp = e (Vw — s \pVyw),
we deduce

/ pe >V p|*dtdadx < C < / o|Vw|*dtdadz + s> / solwlzdtdadfv)
Q Q ©

We then use the explicit form of Pyw and P,w, and get

1
- a—w - ow|’ dtdadz < C ’QS”Iglzdtdadx + 83)\4 3\w|2dtdadx.
s ot da
/ — |Aw|* dtdadz < C (/// e~ 2| g|2dtdadx + 33)\4/ / / go3w|2dtdadx.>
sJQ ¥ Q 0 Jo Juw

We sum up to finally have

2530t / / / we™ 2| p2dtdadz + 452\ / / / < Ty > :f =2 |2t dadl
—453)\3 /// ¢3|V¢|2—¢6_25”|p\2dtdadf—432)\3 ///E (,02|w|28%e—28n|p|2dtdadr
/// ( +23—n—4s)\2g0]V1/1]2 432A2¢2\v¢12> 6_25"gppdtdadl“

—25\ /// W 23”( Py % >pdtdadF 4s\ /// @VweZSWVpgpdtdadr
25\ / / / 9% 25017 2t dadl — 2 / / / —2S”< Py > g,o dtdadl
<c(///@ e_QSn\g\thdad:c+s3)\4/o /0 /<p3|p|2dtdadx.>

Using the fact that Ply, (% + %@’) |y, =0and %b\zl = 0 we obtain (25) O

and
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Now we proceed as the following. For s > sp, A > A¢ and using the notation given by (17) and (19),

we define
W(t,a,z) = e 1) p(t q. x). (49)
We easily notice that
w(0,a,z) = w(T,a,x) =0, (50)
w(t,0,x) = w(t,A,x) = 0. (51)

Calculating P = e~ *g = =7 [(8; + 00 — A + pl ) (e*T)], using notation (47), we set

P + Py = gs,» (52)
where
Prib = 1y + g — 2sAGVYVD + 25M2 V|2 o (53)
Pyt = —Atb — 2 X232 V|10 + sijpib + 7 (54)
gon = € 1g + SAAYGW + sN*|VY[* @b — pab (55)

Proposition 4.2. There exist constants so > 0, \g > 0and C' > 0 depending on Q, w, 1, and A, T, such that
forall s > sg, X\ > Ao, and for any function p € V given by (10) , we have

25374 /Q G3e257| p|2dtdadz — 452\ / @ (% + %) 90 =21 p|2dtdadl

v

\S
+4S3)\3/ G|V |2 2L =257 p|2dtdadl + 452>\3/ G| V|2 9L e~ 25| p| 2dt dadD
5y D\
+2sA pp ( + aa) g—fe_zsﬁdtdadf + 4sA ng@be_QsﬁVp%dtdadF (56)
Z\El P
—23)\/ (at + %) 90 =251V p|2dtdadl
<C (/Qe_zsﬂgf — Ap + pp|?dtdads + 83)\4/ / /gp e 2s’7|p|2dtdadﬂv>
Proof. The proof is similar to the one of Proposition 4.1, so we let it to the reader. O

Finally, we give below the conclusion to theorem 3.1. We obtain from Proposition 4.1 and Proposition

4.2 the following observability inequality:

Corollaire 4.1. There is a positive constant C' = C'(Q2,w,, T, A) such that we have

dtdadx + / / / |p|*dtdadz, ] (57)

where gy = P2 + 3e =25 is a bounded weight function.

/ 2|,0\ dtdadz < C ‘—i——Ap
Qt
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Proof. Summing the terms in (25) and (56) we get the following;:
283)\4/ (pPe251 4 @3e=27) | p|2dtdadx
Q
can [ o (34 8) et - o (3 + ) et Bbatduar
1

—453/\3/ (@Pe25m — ple=2s1) |V¢|2g—7ﬁ|p|2dtdadf

3
—45°)\3 ((p2e*25” — @26*2377) lvw\z%]p]2dtdadf
T\Zy
+25)\ / (pe=251 — ge29) (% + %) % pdtdadl
S\S1
—4s)\ / (pe=251 — ge257) VoV p 2L dtdadl
P

+25)\/2 [go <% + %) e—28m _ ) (% + %) 6—2877] %]VdetdadF

_ 2
<C [/Q (6_25’7 + 6_25’7) ‘% + % — Ap‘ dtdadzx

T (A
+53)\4/ / / (3e 251 4 @Be=2sM) \p[thdad:E] .
0 JO Jw

(58)
Now, it suffices to notice that ¢y = gand n =7 0on X O
5. INFORMATIONS GIVEN BY THE SENTINEL
Because of (4) we can write
oS
S(A, 1) —5(0,0) = /\5(0, 0),for A, 7 small
In (3), S(A; 7) is observed and using (2)
S\ T) = / (hoxo + wxw)modtdadz.
Q
So that (4) becomes
oS
Ag5 (0, 0) = | (hoxo + wxw)(mo — yo)dtdadz, (59)
Q
where yp = y(A = 0,7 = 0).
From (3) we have
oS
77 (0,0) = [ (hoxo + Wxw)yadtdadz, (60)
O 0

where here xo and ., denote the characteristic functions of O and w respectively.
The derivative y) = (% (0, 0)) only depends on ¢ and other known data. Consequently, the estimates

(59) contains the informations on A¢ (see for details remark 5.1 below).

Remark 5.1. The knowledge of the optimal control w provides informations about the pollution term AE.



Asia Pac. J. Math. 2025 12:13 14 of 15

and let y) = {%’\(O7 0) be the solution of

;

Ly, = 3 nQ,
yr(0,a,2) = 0 in  Qa,
yA(t,0,2) = fOA B(t,a,z)yx(t,a,x)da in  Qr, (61)
Y = 0 on 21,
I 0 on I\ 3.
ov

Multiplying (8) by y, and integrating by parts over @, we get

/qédtdadz :/(hOXo—i—wa)y)\dtdadx. (62)
Q Q

So that from (57), (58) and (60) we deduce

/)\édtdada: = / (hoxo + wxw)(mo — yo)dtdadzx.
Q Q
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