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Abstract. The fractional Natural homotopy perturbation method (FNHPM) is employed in the present
investigation to find the solution for linear and nonlinear fractional Schrodinger Equation. This method
is coupled by the Natural transform (NT) and homotopy perturbation method (HPM). The method in
general is easy to implement and yields good results. Illustrative examples are included to demonstrate
the validity and applicability of the presented method.
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1. Introduction

Fractional order partial differential equations are generalizations of classical partial differential
equations. These have been of considerable interest in the recent literatures. These topics have received
a great deal of attention especially in the fields of viscoelasticity materials, electrochemical processes,
dielectric polarization, colored noise, anomalous diffusion, signal processing, control theory and
others. Increasingly, these models are used in applications such as fluid flow, finance and others.
Most nonlinear fractional differential equations do not have analytic solutions, so approximation and
numerical techniques must be used. In recent years, many researchers have paid attention to study the
behavior of physical problems by using various analytical and numerical techniques which are not
described by the common observations, such as the FVIM [1–5], FDTM [6–8], FSEM [9], FSTM [10],
FLTM [11,12], FHPM [13], FLDM [14,15], FFSM [16], FLVIM [17–21], FRDTM [22–25], FFDM [26,27]
FSDM [28,29] and other methods [30–70].
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This paper considers the efficiency of fractional Natural homotopy perturbation method (FNHPM)
to solve linear and nonlinear time-fractional fractional Schrodinger Equation. The FNHPM is a graceful
coupling of two powerful techniques namely HPM and Natural transform methods and gives more
refined convergent series solution. The remaining sections of this work are organized as follows. In
Section 2, some background notations of fractional calculus are presented. In Section 3, the analysis of
fractional Natural homotopy perturbation method are discussed. Applications of FNHPM are shown
in Section 4. The conclusion of this paper is given in Section 5.

2. Preliminaries of Fractional Calculus

Some fractional calculus definitions and notation needed [29, 30] in the course of this work are
discussed in this section

Definition 2.1. A real function x(τ), τ > 0, is said to be in the space Cϑ, ϑ ∈ R if there exists a real number

q, (q > ϑ), such that x(τ) = τ qx1(τ), where x1(τ) ∈ C[0,∞), and it is said to be in the space Cmϑ if

x(m) ∈ Cϑ,m ∈ N.

Definition 2.2. The Riemann Liouville fractional integral operator of order ν of a function x(τ) ∈ Cϑ, ϑ ≥ −1

is defined as

Iνx(τ) =


1

Γ(ν)

∫ τ
0 (τ − κ)ν−1x(κ)dκ, ν > 0, τ > 0,

x(τ), ν = 0,

where Γ(·) is the well-known Gamma function.

Properties of the operator Iν , which we will use here, are as follows:
For x ∈ Cϑ, ϑ ≥ −1, ν, σ ≥ −1, then

(1) IνIσϕ(µ) = Iγ+σx(τ).

(2) IνIσϕ(µ) = IσIνx(τ).

(3) Iντm =
Γ(m+ 1)

Γ(ν +m+ 1
τν+m.

Definition 2.3. The fractional derivative of x(τ) in the Caputo sense is defined as

Dνx(τ) = Im−νDmx(τ)

=
1

Γ(m− ν)

∫ τ

0
(τ − ξ)m−ν−1x(m)(ξ)dξ, (2.1)

form− 1 < ν ≤ m,m ∈ N,µ > 0, x ∈ Cm−1.

The following are the basic properties of the operator Dν :
(1) DνIνx(τ) = x(τ).

(2) DνIνx(τ) = x(τ)−
∑m−1

k=0 x
(k)(0)

τk

k!
.
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Definition 2.4. The Mittag-Leffler function Eν with ν > 0 is defined as

Eν(z) =
∞∑
m=0

zν

Γ(mν + 1)
. (2.2)

Definition 2.5. The natural transform (NT) of x(τ) is symbolized by N {x(τ)} presented by

N {x(τ)} =

∫ ∞
0

e−sτx(wτ)dτ, (2.3)

where s and w are the NT variables.

Definition 2.6. The Natural transform of the Caputo fractional derivative is defined as

N
{
D(ν)
τ [x(ρ, τ)]

}
=
sν

wν
N {x(ρ, τ)} −

n−1∑
j=0

sν−k−1w−(ν−k)x(k)(ρ, 0). (2.4)

Some basic properties of the natural transform are defined as below:
(1) N {1} =

1

sν
.

(2) N {τν} =
Γ(ν + 1)wν

sν+1
.

3. Fractional Natural Homotopy Perturbation Method

Let us consider the following fractional partial differential equation:

D(ν)
τ [x(ρ, τ)] +R [x(ρ, τ)] + F [x(ρ, τ)] = g(ρ, τ), (3.1)

with n− 1 < ν ≤ n and subject to initial conditions
∂rx(ρ, 0)

∂τ r
= x(r)(ρ, 0), r = 0, 1, ... (3.2)

whereD(ν)
τ =

∂ν

∂τν
denote Caputo fractional derivative, R is linear LFDOs, F is nonlinear LFDOs and g

is an inhomogenuous term.
Taking the NT on both side of (3.1), we construct

N
{
D(ν)
τ [x(ρ, τ)]

}
+N {R [x(ρ, τ)]}+N {F [x(ρ, τ)]} = N {g(ρ, τ)} , (3.3)

or equivalent

N {x(ρ, τ)} =
wν

sν

n−1∑
j=0

sν−k−1w−(ν−k)x(k)(ρ, 0) +

wν

sν
(N {g(ρ, τ)} −N {R [x(ρ, τ)]} −N {F [x(ρ, τ)]}) . (3.4)

Now applying inverse NT on both side of (3.4), we get

x(ρ, τ) = N−1

wν
sν

n−1∑
j=0

sν−k−1w−(ν−k)x(k)(ρ, 0)

+



Asia Pac. J. Math. 2025 12:18 4 of 11

N−1
[
wν

sν
(N {g(ρ, τ)} −N {R [x(ρ, τ)]} −N {F [x(ρ, τ)]})

]
. (3.5)

Now we apply the HPM.

x(ρ, τ) =

∞∑
n=0

pnxn(ρ, τ), (3.6)

and the nonlinear terms F [x(ρ, τ)] is decomposed as:

F [x(ρ, τ)] =
∞∑
n=0

pnHn(x), (3.7)

where Hn(x) is the Heâ€™s polynomial and be computed using the following formula:

Hn(x1, x2, ..., xn) =
1

n!

∂n

∂pn

[
F

(
n∑
i=0

pixi(ρ, τ)

)]
p=0

, n = 0, 1, 2, .... (3.8)

Substituting (3.6) and (3.7) into (3.5), we have:
∞∑
n=0

pnxn(ρ, τ) = N−1

wν
sν

n−1∑
j=0

sν−k−1w−(ν−k)x(k)(ρ, 0)

+

N−1

[
wν

sν

(
N {g(ρ, τ)} −N

{
R

[ ∞∑
n=0

pnxn

]}
−N

{ ∞∑
n=0

pnHn

})]
. (3.9)

Using the coefficient of the likes powers of p in (3.9), the following approximations are obtained:

p0 : x0(ρ, τ) = N−1

wν
sν

n−1∑
j=0

sν−k−1w−(ν−k)x(k)(ρ, 0)

+N−1
[
wν

sν
(N {g(ρ, τ)})

]
,

pn+1 : xn+1(ρ, τ) = N−1
[
wν

sν
(N {R [xn]} −N {Hn})

]
, n ≥ 0. (3.10)

Hence, the series solution of (3.1) is given by:

x(ρ, τ) = limM−→∞

M∑
n=0

xn(ρ, τ), (3.11)

4. Applications

Example 4.1. Let us consider the linear fractional Schrodinger equation of the form

iDν
τx(ρ, τ) + xρρ(ρ, τ) = 0, (4.1)

subject to initial condition

x(ρ, 0) = sin(ρ). (4.2)

Applying the Natural transform on both sides of (3.5), we get:

N {x(ρ, τ)} =
1

s
sin(ρ)− iw

ν

sν
[N {xρρ(ρ, τ)}] . (4.3)
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Taking the inverse Natural transform of (4.3), we obtain

x(ρ, τ) = sin(ρ)− iN−1
(
wν

sν
[N {xρρ(ρ, τ)}]

)
. (4.4)

We now assume that

x(ρ, τ) =
∞∑
n=0

pnxn(ρ, τ). (4.5)

Then by using (4.5), we can re-write (4.4) in the form:
∞∑
n=0

pnxn = sin(ρ)− iN−1
(
wν

sν

[
N

{ ∞∑
n=0

pn(xn)ρρ

}])
. (4.6)

By comparing both sides of (4.6), we can easily generate the recursive relation as follows:

p0 : x0(ρ, τ) = sin(ρ).

p1 : x1(ρ, τ) = −iN−1
(
wν

sν
[N {(x0)ρρ}]

)
= −iN−1

(
wν

sν
[N {− sin(ρ)}]

)
= i sin(ρ)N−1

(
wν

s2ν

)
= sin(ρ)

iτν

Γ(1 + ν)
.

p2 : x2(ρ, τ) = −iN−1
(
wν

sν
[N {(x1)ρρ}]

)
= −iN−1

(
wν

sν

[
N

{
− sin(ρ)

iτν

Γ(1 + ν)

}])
= i2 sin(ρ)N−1

(
w2ν

s3ν

)
= sin(ρ)

(iτν)2

Γ(1 + 2ν)
.

p3 : x3(ρ, τ) = −iN−1
(
wν

sν
[N {(x2)ρρ}]

)
= −iN−1

(
wν

sν

[
N

{
− sin(ρ)

(iτν)2

Γ(1 + 2ν)

}])
= i3 sin(ρ)N−1

(
w3ν

s4ν

)
= sin(ρ)

(iτν)3

Γ(1 + 3ν)
.

...
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Hence, the approximate series solution is given by

x(ρ, τ) = sin(ρ)

[
1 +

iτν

Γ(1 + ν)
+

(iτν)2

Γ(1 + 2ν)
+

(iτν)3

Γ(1 + 3ν)
+ · · ·

]
= sin(ρ)Eν(iτ). (4.7)

For ν = 1 the above solution reduces to exact solution x(ρ, τ) = eiτ sin(ρ).

From Eqs. (4.7) , the approximate solution of the given problem (4.1) by using FNHPM is the same
results as that obtained by FDTM and it clearly appears that the approximate solution remains closed
form to exact solution.

Example 4.2. Consider the following nonlinear Schrödinger equation with Caputo fractional operator:

iDν
τx(ρ, τ) + xρρ(ρ, τ)− 2|x(ρ, τ)|2x(ρ, τ) = 0, (4.8)

subject to initial condition

x(ρ, 0) = eiρ. (4.9)

Taking the Natural transform on both sides of (4.8), we get:

N {x(ρ, τ)} =
1

sν
x(ρ, 0) + i

wν

sν
[N{xρρ(ρ, τ)}]

−2i
wν

sν
[
N{|x(ρ, τ)|2x(ρ, τ)}

]
. (4.10)

Applying the inverse Natural transform of (4.10), we obtain

x(ρ, τ) = eiρ + iN−1
(
wν

sν
[N{xρρ(ρ, τ)}]

)
− 2iN−1

(
wν

sν
[
N{|x|2x}

])
. (4.11)

We now suppose that

x(ρ, τ) =
∞∑
n=0

pnxn(ρ, τ),

|x|2x =
∞∑
n=0

pnΩn. (4.12)

Then by using (4.12), we can re-write (4.11) in the form:
∞∑
n=0

pnxn = eiρ + iN−1

(
wν

sν

[
N

{ ∞∑
n=0

pn(xn)ρρ

}])

−2iN−1

(
wν

sν

[
N

{ ∞∑
n=0

pnΩn

}])
, (4.13)

where

Ω0 = x20x0,

Ω1 = 2x0x0x1 + x20x1,
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Ω2 = 2x0x0x2 + x21x0 + 2x0x1x1 + x20x2,

...

By comparing both sides of (4.13), we can easily generate the recursive relation as follows:

p0 : x0(ρ, τ) = eiρ.

p1 : x1(ρ, τ) = iN−1
(
wν

sν
[N {(x0)ρρ}]

)
− 2iN−1

(
wν

sν
[N {Ω0}]

)
= −eiρ 3iτν

Γ(1 + ν)
.

p2 : x2(ρ, τ) = iN−1
(
wν

sν
[N {(x1)ρρ}]

)
− 2iN−1

(
wν

sν
[N {Ω1}]

)
= eiρ

(3iτν)2

Γ(1 + 2ν)
.

p3 : x3(ρ, τ) = iN−1
(
wν

sν
[N {(x2)ρρ}]

)
− 2iN−1

(
wν

sν
[N {Ω2}]

)
= −eiρ (3iτν)3

Γ(1 + 3ν)
.

...

Hence, the approximate series solution is given by

x(ρ, τ) = eiρ
(

1− 3iτν

Γ(1 + ν)
+

(3iτν)2

Γ(1 + 2ν)
− (3iτν)3

Γ(1 + 3ν)
+ · · ·

)
= eiρEν(−3iτ). (4.14)

For ν = 1 the above solution reduces to exact solution x(ρ, τ) = ei(ρ−3τ).

From Eqs. (4.14) , the approximate solution of the given problem (4.8) by using FNHPM is the same
results as that obtained by FDTM and it clearly appears that the approximate solution remains closed
form to exact solution.

Conclusions

In this work, we utilized new technique called the fractional Natural homotopy perturbation method
for solving fractional Schrödinger equation. The new technique provides an elegant series solution
which converge very rapidly with reduced computational size. The results obtained by the FNHPM
are in excellent agreement with the results of the existing methods. Thus, the proposed technique is a
powerful, reliable and efficient mathematical tool for solving nonlinear PDEs.

Authors’ Contributions: All authors have read and approved the final version of the manuscript. The
authors contributed equally to this work.
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