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1. INTRODUCTION

The concept of almost continuous functions was introduced by Singal and Singal [52]. Popa [47]
defined almost quasi-continuous functions as a generalization of almost continuity [52] and quasi-
continuity [42]. Munshi and Bassan [43] studied the notion of almost semi-continuous functions.
Maheshwari et al. [40] introduced the concept of almost feebly continuous functions as a general-
ization of almost continuity [52]. Dungthaisong et al. [31] introduced and investigated the concept
of g(m n)-continuous functions. In [14], the present authors studied some properties of (A, sp)-open
sets and (A, sp)-closed sets. Viriyapong and Boonpok [62] investigated several characterizations
of (A, sp)-continuous functions by utilizing the notions of (A, sp)-open sets and (A, sp)-closed sets.
Duangphui et al. [30] introduced and studied the notion of almost (u, u/) "™ -continuous functions.
Moreover, several characterizations of almost (A, p)-continuous functions, strongly §(A, p)-continuous
functions, almost strongly 0(A, p)-continuous functions, §(A, p)-continuous functions, weakly (A, b)-
continuous functions, 6(*)-precontinuous functions, x-continuous functions, §-.#-continuous functions,
almost (g, m)-continuous functions, pairwise almost M -continuous functions, (71, 72)-continuous func-

tions, almost (71, 72 )-continuous functions and weakly (71, 72)-continuous functions were presented
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in [53], [56], [11, [48], [15], [9], [10], [21], [25], [26], [2], [3] and [4], respectively. Kong-ied et al. [35]
introduced and studied the concept of almost quasi (71, 72)-continuous functions. Chiangpradit et

al. [28] introduced and investigated the notion of weakly quasi (71, 72)-continuous functions. Thong-
mon et al. [55] introduced and studied the concept of rarely (71, 72)-continuous functions. Malghan
and Hanchinamani [41] introduced the concept of N-continuous functions. Noiri and Ergun [45]
investigated some characterizations of N-continuous functions. Ekici [33] introduced and studied the
concept of nearly continuous multifunctions as a generalization of semi-continuous multifunctions and
N-continuous functions.

In 2004, Ekici [32] introduced and investigated the notion of almost nearly continuous multifunctions
as a generalization of nearly continuous multifunctions and almost continuous multifunctions [46].
Laprom et al. [39] introduced and investigated the concept of (7, 72)-continuous multifunctions.
Furthermore, several characterizations of (71, 72)a-continuous multifunctions, (71, 72)d-semicontinuous
multifunctions, almost weakly (71, 72)-continuous multifunctions, x-continuous multifunctions, 3(x)-
continuous multifunctions, weakly quasi (A, sp)-continuous multifunctions, a-x-continuous multifunc-
tions, almost a-x-continuous multifunctions, almost quasi x-continuous multifunctions, weakly o-x-
continuous multifunctions, s3(x)-continuous multifunctions, weakly s3(x)-continuous multifunctions,
6(*)-quasi continuous multifunctions, almost ¢*-continuous multifunctions, weakly (A, sp)-continuous
multifunctions, a(A, sp)-continuous multifunctions, almost (A, sp)-continuous multifunctions, almost
B(A, sp)-continuous multifunctions, (71, 72)-continuous multifunctions, almost (71, 72)-continuous mul-
tifunctions, weakly (71, 72)-continuous multifunctions, weakly quasi (71, 72)-continuous multifunctions
and s-(71, 72)p-continuous multifunctions were established in [63], [20], [18], [23], [17], [61], [5],
(5, [221, [11], [6], 171, 115, 1191, [12], [35], [16], [58], [51], [36], [57], [49] and [59], respectively.
Khampakdee et al. [34] introduced and investigated the concept of ¢-(71, 72)-continuous multifunctions.
Pue-on et al. [50] introduced and studied the notion of almost quasi (71, 72)-continuous multifunctions.
Noiri and Popa [44] introduced and investigated the notion of almost nearly m-continuous multi-
functions as multifunctions from a set satisfying some minimal conditions into a topological spaces.
Carpintero et al. [27] introduced and studied the notion of nearly w-continuous multifunctions as a
weaker form of nearly continuous multifunctions. In this paper, we introduce the concept of almost
nearly (71, 72)-continuous multifunctions. We also investigate several characterizations of almost nearly

(71, T2)-continuous multifunctions.

2. PRELIMINARIES

Throughout the present paper, spaces (X, 71, 72) and (Y, 01, 02) (or simply X and Y') always mean
bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be

a subset of a bitopological space (X, 71, 72). The closure of A and the interior of A with respect to 7;
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are denoted by 7;-Cl(A) and 7;-Int(A), respectively, for i = 1,2. A subset A of a bitopological space
(X, 71, 72) is called 7 m2-closed [24] if A = 71-Cl(72-Cl(A)). The complement of a 7 72-closed set is called
T1T2-0pen. Let A be a subset of a bitopological space (X, 71, 72). The intersection of all 71 m»-closed sets
of X containing A is called the 7y 7-closure [24] of A and is denoted by 7172-Cl(A). The union of all

T172-0pen sets of X contained in A is called the 7y mo-interior [24] of A and is denoted by 7172-Int(A).

Lemma 1. [24] Let A and B be subsets of a bitopological space (X, 1, m2). For the T m9-closure, the following
properties hold:

(1) A C mim-Cl(A) and 1y12-Cl(T172-CI(A)) = T172-CI(A).

(2) If A C B, then T112-CI(A) C 1172-CI(B).

(3) T172-CI(A) is Ty 9-closed.

(4) Ais mymo-closed if and only if A = T112-CI(A).

(5) mm-Cl(X — A) = X — mimo-Int(A).

A subset A of a bitopological space (X, 71, 72) is said to be (71, 72)r-open [63] (resp. (71, T2)s-open [20],
(11, T2)p-open [20], (11, 72)B-open [20]) if A = Ti7o-Int(7172-Cl(A)) (resp. A C 772-Cl(1172-Int(A)),
A C mmo-Int(m72-Cl(A)), A C 172-Cl(7172-Int(7372-Cl(A)))). The complement of a (71, 72)r-open
(resp. (11, T2)s-open, (11, T2)p-open, (71, T2)[-open) set is called (71, 72)r-closed (resp. (71, 72)s-closed,
(11, T2)p-closed, (11, T2)B-closed). A subset A of a bitopological space (X, 71, 72) is said to be (7, 72)-
open [60] if A C mymo-Int(7172-Cl(1172-Int(A))). The complement of an a(1, 72)-open set is said to be
a(11, T2)-closed. A subset A of a bitopological space (X, 71, 72) is said to be A" (7, 72)-closed [54] if every

cover of A by (71, 72)r-open sets of X has a finite subcover.
Lemma 2. [29] Let (X, 1, 72) be a bitopological space. If V' is a T m9-open set of X having AN (7, 2)-closed
complement, then

T172-Int(1172-CI(V))

is a (1, 72)r-open set having A (11, T2)-closed complement.

By a multifunction ' : X — Y, we mean a point-to-set correspondence from X into Y, and we always
assume that F'(z) # 0 for all # € X. For a multifunction F : X — Y, we shall denote the upper and
lower inverse of a set B of Y by F*(B) and F~(B), respectively, that is, F*(B) = {z € X | F(z) C B}
and F~(B) = {z € X | F(x) N B # 0}. In particular, F~ (y) = {x € X | y € F(x)} for each pointy € Y.
Foreach A C X, F(A) = UgeaF(x).

3. ALMOST NEARLY (77, T2)-CONTINUOUS MULTIFUNCTIONS

In this section, we introduce the notion of almost nearly (7, 72)-continuous multifunctions. Moreover,

several characterizations of almost nearly (71, 72)-continuous multifunctions are discussed.
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Definition 1. A multifunction F' : (X, 1, 7) — (Y, 01, 02) is said to be almost nearly (71, 72)-continuous
at a point © € X if for each o102-open sets V, V' of Y having A (o1, 02)-closed complements such that x €
FH(VYNF~(V'), there exists a Ty 7o-open set U of X containing x such that U C F'*(o109-Int(o109-CI(V)))N
F~(o109-Int(c109-CI(V"))). A multifunction F : (X, 11, 72) — (Y, 01, 02) is said to be almost nearly (11, 72)-

continuous if F' is almost nearly (11, m2)-continuous at each point x of X.

Theorem 1. For a multifunction F' : (X, 11, 72) — (Y, 01, 02), the following properties are equivalent:

(1) F isalmost nearly (71, T2)-continuous;

(2) for each x € X and for every (o1, 02)r-open sets V,V' of Y having AN (o1, 02)-closed complements
such that F(z) C V and F(x) NV’ # (), there exists a T1m9-open set U of X containing x such that
F(z) CVand F(z) N V' # 0 for every z € U;

(3) for each x € X and for every oioa-closed N (o1,02)-closed sets K,K' of Y such that x €
FHY — K)n F~(Y — K'), there exists a Tymo-closed set H # X such that v € X — H and
F~(0102-Cl(0102-Int(K))) U F* (0109-Cl(0102-Int(K"))) C H;

(4) Ft(o109-Int(c102-CI(V))) N F~ (o109-Int(o109-CI(V"))) is T112-0pen in X for every o1c9-0pen sets
V,V' of Y having .4 (o1, 02)-closed complements;

(5) F~(0102-Cl(0109-Int(K))) U F*(0109-Cl(0109-Int(K"))) is 71 72-closed in X for every o1c9-closed
N (01, 09)-closed sets K, K' of Y';

(6) FH(V)UFEF~ (V') is 1yme-open in X for every (o1, o2)r-open sets V, V' of Y having A (o1, 02)-closed
complements;

(7) F~(K)NFT(K') is Tymo-closed in X for every (o1, 02)r-closed A (01, 02)-closed sets K, K’ of Y.

Proof. (1) = (2): Letz € X and V, V' be any (o1, 02)r-open sets of Y having .4 (01, 02)-closed comple-
ments such that F((z) C V and F(z) NV’ # 0. By (1), there exists a 7172-open set U of X containing x
such that

U C F+(0102—Int(0102-Cl(V))) NE~ (0'10'2-111’[((710'2-C1(Vl)))
=FH(V)nEF~ (V).

(2) = (1): It is sufficient to observe that for any (o1, 02)r-open sets V, V' of Y having .4 (o1, 02)-
closed complements the sets o1092-Int(0102-C1(V)) and o102-Int(c102-CL(V")) are (o1, 02)r-openin Y
having .4 (01, 02)-closed complements.

(1) = (3): Let z € X and K, K’ be any oy02-closed .4 (01, 02)-closed sets of Y such that z €
FH(Y —K)NF (Y — K'). Then, Y — K and Y — K’ are o102-0open sets having .4 (o1, 02)-closed
complements. Since F'is almost nearly (71, 72)-continuous, there exists a 71 72-open set U of X containing

x such that

U C Ft(o109-Int(0109-Cl(Y — K))) N F~ (c102-Int(0102-CL(Y — K")))
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= X — [F1(0102-Cl(0102-Int(K))) U F~ (0109-Cl(102-Int(K")))].

It is clear that H = X — U is myme-closed in X and the inclusion F'*(0105-Cl(0109-Int(K))) U
F~(0109-Cl(0109-Int(K"))) C H is satisfied.

(3) = (1): The proof is similar to the proof (1) = (3).

(1) = (4): Let V, V' be any o;j02-open sets of Y having .4 (01, 02)-closed complements. Let

r € FT(0109-Int(c102-C1(V))) N F~ (o102-Int(o102-CL(V"))).

Then, we have oj02-Int(c102-CL(V')) and oj02-Int(c102-Cl(V’)) are ojo2-open sets of Y having
N (01, 02)-closed complements. By the definition of almost nearly (71, 72)-continuous at a point z, there

exists a 71 -open set U of X containing x such that
U C Ff(o109-Int(0102-C1(V))) N F~ (0102-Int(o109-CL(V"))).
Since U is 7172-0pen, we have
r € Tymo-Int(F T (0109-Int(0109-Cl(V))) N F~ (c102-Int(o102-CL(V"))))
and hence
FT(0109-Int(0102-Cl(V))) N F~ (c102-Int(o109-CL(V")))
C nro-Int(Ft (0102-Int(0109-CL(V))) N F~ (0109-Int(o102-C1(V")))).

Thus, F+(0102-Int(0102-Cl(V))) NnE~ (UlUg-Int(Uldg-Cl(V/))) is Ty T2-open in X.
(4) = (1): The proof is clear.
(4) = (5): Let K, K’ be any o02-closed A" (01,02)-closed sets of Y. Then, we have Y — K and

Y — K’ are 0j09-open sets having .4 (01, 02)-closed complements. By (4),
F(o102-Int(c102-CL(Y — K))) N F~ (0109-Int(0102-C1(Y — K")))
=YY — 0109-Cl(c102-Int(K))) N F~ (Y — 0102-Cl(0102-Int(K')))
= [X — F~(0102-Cl(0102-Int(K)))] N [X — F*(0102-Cl(0102-Int(K")))]
= X — [ (0102-Cl(o102-Int(K))) U F (0109-Cl(c109-Int(K")))]

is Ty-open in X. Thus,

F~(0102-Cl(0109-Int(K))) U F* (0102-Cl(0102-Int(K')))
is Ty mo-closed in X.

(5) = (4): It can be obtained similarly as (4) = (5).
(4) = (6): It is easily seen that the set

F+<V) N F+(V/) = F* (010'2-Int(0'10'2-C1(V))> NE~ (0’102-Int<0102-C1(V/)))
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for every (o1, 02)r-open sets V, V' of Y.
(6) = (4): The proof is a consequence of Lemma 2.
(6) = (7): Let K, K' be any (01, 02)r-closed .4 (01, 02)-closed sets of Y. Then, we have Y — K and

Y — K’ are (01, 02)r-open sets having .4"(01, 02)-closed complements. By (6), we have
FfTY-K)UF (Y -K)=X—(F (K)nFt(K))

is T1m9-open in X. Therefore, FF~(K) N F*(K') is 71 m2-closed in X.
(7) = (6): It can be obtained similarly as (6) = (7). O

Definition 2. [37] A function f : (X, 1, m2) — (Y, 01, 02) is said to be almost nearly (71, T2)-continuous
at a point x € X if for each o109-open set V of Y containing f(x) and having A (o1, 02)-closed complement,
there exists a Timo-open set U of X containing x such that f(U) C o109-Int(c102-CI(V')). A function f :

(X, 71, m72) = (Y, 01, 02) is said to be almost nearly (11, m2)-continuous if f has this property at every point of X.

Corollary 1. For a function f : (X, 11, 72) — (Y, 01, 02), the following properties are equivalent:

(1) f is almost nearly (1, 72)-continuous;

(2) foreachx € X and for every (o1, 02)r-openset V of Y having AN (o1, 02)- closed complement containing
f(x), there exists a T1m9-open set U of X containing x such that f(U) C V;

(3) for each x € X and for every oy109-closed N (o1, 09)-closed set K of Y such that x € f~ (Y — K),
there exists a TyTo-closed set H # X such that v € X — H and f~1(0109-Cl(0102-Int(K))) C H;

(4) f~Yo109-Int(o102-Cl(V))) is Ti7a-0pen in X for every oyoo-open set V of Y having N (o1, oo)-closed
complement;

(5) fY(o109-Cl(o109-Int(K))) is Tymo-closed in X for every oy1o9-closed N (o1, 02)-closed set K of Y;

(6) f~Y(V)is ryme-open in X for every (o1, o9)r-open set V of Y having A (o1, 02)-closed complement;

(7) f7YUK) is myma-closed in X for every (o1, 0a)r-closed N (o1, 02)-closed set K of Y.
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