

ALMOST NEARLY (τ_1, τ_2) -CONTINUOUS MULTIFUNCTIONS

BUTSAKORN KONG-IED¹, SUPUNNEE SOMPONG², CHAWALIT BOONPOK^{1,*}

¹Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

²Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajbhat University, Sakon Nakhon, 47000, Thailand

*Corresponding author: chawalit.b@msu.ac.th

Received Nov. 4, 2024

ABSTRACT. This paper is concerned with the concept of almost nearly (τ_1, τ_2) -continuous multifunctions. Furthermore, some characterizations of almost nearly (τ_1, τ_2) -continuous multifunctions are considered.

2020 Mathematics Subject Classification. 54C08; 54C60.

Key words and phrases. $\tau_1\tau_2$ -open set; $\mathcal{N}(\tau_1, \tau_2)$ -closed set; almost nearly (τ_1, τ_2) -continuous multifunction.

1. INTRODUCTION

The concept of almost continuous functions was introduced by Singal and Singal [52]. Popa [47] defined almost quasi-continuous functions as a generalization of almost continuity [52] and quasi-continuity [42]. Munshi and Bassan [43] studied the notion of almost semi-continuous functions. Maheshwari et al. [40] introduced the concept of almost feebly continuous functions as a generalization of almost continuity [52]. Dungthaisong et al. [31] introduced and investigated the concept of $g_{(m,n)}$ -continuous functions. In [14], the present authors studied some properties of (Λ, sp) -open sets and (Λ, sp) -closed sets. Viriyapong and Boonpok [62] investigated several characterizations of (Λ, sp) -continuous functions by utilizing the notions of (Λ, sp) -open sets and (Λ, sp) -closed sets. Duangphui et al. [30] introduced and studied the notion of almost $(\mu, \mu')^{(m,n)}$ -continuous functions. Moreover, several characterizations of almost (Λ, p) -continuous functions, $\theta(\Lambda, p)$ -continuous functions, (τ_1, τ_2) -continuous functions, almost (τ_1, τ_2) -continuous functions and weakly (τ_1, τ_2) -continuous functions were presented

DOI: 10.28924/APJM/12-19

in [53], [56], [1], [48], [13], [9], [10], [21], [25], [26], [2], [3] and [4], respectively. Kong-ied et al. [38] introduced and studied the concept of almost quasi (τ_1 , τ_2)-continuous functions. Chiangpradit et al. [28] introduced and investigated the notion of weakly quasi (τ_1 , τ_2)-continuous functions. Thong-mon et al. [55] introduced and studied the concept of rarely (τ_1 , τ_2)-continuous functions. Malghan and Hanchinamani [41] introduced the concept of N-continuous functions. Noiri and Ergun [45] investigated some characterizations of N-continuous functions. Ekici [33] introduced and studied the concept of nearly continuous multifunctions as a generalization of semi-continuous multifunctions and N-continuous functions.

In 2004, Ekici [32] introduced and investigated the notion of almost nearly continuous multifunctions as a generalization of nearly continuous multifunctions and almost continuous multifunctions [46]. Laprom et al. [39] introduced and investigated the concept of $\beta(\tau_1, \tau_2)$ -continuous multifunctions. Furthermore, several characterizations of $(\tau_1, \tau_2)\alpha$ -continuous multifunctions, $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, almost weakly (τ_1, τ_2) -continuous multifunctions, *-continuous multifunctions, $\beta(\star)$ continuous multifunctions, weakly quasi (Λ , sp)-continuous multifunctions, α -*-continuous multifunctions, almost α -*-continuous multifunctions, almost quasi *-continuous multifunctions, weakly α -*continuous multifunctions, $s\beta(\star)$ -continuous multifunctions, weakly $s\beta(\star)$ -continuous multifunctions, $\theta(\star)$ -quasi continuous multifunctions, almost i^{\star} -continuous multifunctions, weakly (Λ, sp)-continuous multifunctions, $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\beta(\Lambda, sp)$ -continuous multifunctions, (τ_1, τ_2) -continuous multifunctions, almost (τ_1, τ_2) -continuous multifunctions, weakly (τ_1, τ_2) -continuous multifunctions, weakly quasi (τ_1, τ_2) -continuous multifunctions and s- $(\tau_1, \tau_2)p$ -continuous multifunctions were established in [63], [20], [18], [23], [17], [61], [5], [8], [22], [11], [6], [7], [15], [19], [12], [35], [16], [58], [51], [36], [57], [49] and [59], respectively. Khampakdee et al. [34] introduced and investigated the concept of c- (τ_1, τ_2) -continuous multifunctions. Pue-on et al. [50] introduced and studied the notion of almost quasi (τ_1, τ_2) -continuous multifunctions. Noiri and Popa [44] introduced and investigated the notion of almost nearly m-continuous multifunctions as multifunctions from a set satisfying some minimal conditions into a topological spaces. Carpintero et al. [27] introduced and studied the notion of nearly ω -continuous multifunctions as a weaker form of nearly continuous multifunctions. In this paper, we introduce the concept of almost nearly (τ_1, τ_2) -continuous multifunctions. We also investigate several characterizations of almost nearly (τ_1, τ_2) -continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply *X* and *Y*) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let *A* be a subset of a bitopological space (X, τ_1, τ_2) . The closure of *A* and the interior of *A* with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [24] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [24] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -Int(A).

Lemma 1. [24] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2$ -*Cl*(*A*) and $\tau_1 \tau_2$ -*Cl*($\tau_1 \tau_2$ -*Cl*(*A*)) = $\tau_1 \tau_2$ -*Cl*(*A*).
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ - $Cl(A) \subseteq \tau_1 \tau_2$ -Cl(B).
- (3) $\tau_1 \tau_2$ -Cl(A) is $\tau_1 \tau_2$ -closed.
- (4) A is $\tau_1 \tau_2$ -closed if and only if $A = \tau_1 \tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2$ - $Cl(X A) = X \tau_1 \tau_2$ -Int(A).

A subset *A* of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [63] (resp. $(\tau_1, \tau_2)s$ -open [20], $(\tau_1, \tau_2)\beta$ -open [20]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)))). The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)\beta$ -open, $(\tau_1, \tau_2)\beta$ -open) set is called $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed). A subset *A* of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open set is said to be $\alpha(\tau_1, \tau_2)$ -closed. A subset *A* of a bitopological space (X, τ_1, τ_2) -open set is said to be $\alpha(\tau_1, \tau_2)$ -closed. A subset *A* of a bitopological space (X, τ_1, τ_2) -open set is said to be $\alpha(\tau_1, \tau_2)$ -closed. A subset *A* of a bitopological space (X, τ_1, τ_2) -open set is said to be $\alpha(\tau_1, \tau_2)$ -closed [54] if every cover of *A* by $(\tau_1, \tau_2)r$ -open sets of *X* has a finite subcover.

Lemma 2. [29] Let (X, τ_1, τ_2) be a bitopological space. If V is a $\tau_1 \tau_2$ -open set of X having $\mathcal{N}(\tau_1, \tau_2)$ -closed complement, then

$$\tau_1 \tau_2$$
-Int $(\tau_1 \tau_2$ -Cl $(V))$

is a (τ_1, τ_2) *r-open set having* $\mathcal{N}(\tau_1, \tau_2)$ *-closed complement.*

By a multifunction $F : X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F : X \to Y$, we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$. In particular, $F^-(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3. Almost nearly (τ_1, τ_2) -continuous multifunctions

In this section, we introduce the notion of almost nearly (τ_1, τ_2) -continuous multifunctions. Moreover, several characterizations of almost nearly (τ_1, τ_2) -continuous multifunctions are discussed.

Definition 1. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be almost nearly (τ_1, τ_2) -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open sets V, V' of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements such that $x \in F^+(V) \cap F^-(V')$, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $U \subseteq F^+(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V))) \cap F^-(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V')))$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be almost nearly (τ_1, τ_2) -continuous if F is almost nearly (τ_1, τ_2) -continuous at each point x of X.

Theorem 1. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *F* is almost nearly (τ_1, τ_2) -continuous;
- (2) for each $x \in X$ and for every $(\sigma_1, \sigma_2)r$ -open sets V, V' of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements such that $F(x) \subseteq V$ and $F(x) \cap V' \neq \emptyset$, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $F(z) \subseteq V$ and $F(z) \cap V' \neq \emptyset$ for every $z \in U$;
- (3) for each $x \in X$ and for every $\sigma_1\sigma_2$ -closed $\mathcal{N}(\sigma_1, \sigma_2)$ -closed sets K, K' of Y such that $x \in F^+(Y K) \cap F^-(Y K')$, there exists a $\tau_1\tau_2$ -closed set $H \neq X$ such that $x \in X H$ and $F^-(\sigma_1\sigma_2$ -Cl $(\sigma_1\sigma_2$ -Int $(K))) \cup F^+(\sigma_1\sigma_2$ -Cl $(\sigma_1\sigma_2$ -Int $(K'))) \subseteq H$;
- (4) $F^+(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(V))) \cap F^-(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(V')))$ is $\tau_1\tau_2$ -open in X for every $\sigma_1\sigma_2$ -open sets V, V' of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements;
- (5) $F^{-}(\sigma_{1}\sigma_{2}-Cl(\sigma_{1}\sigma_{2}-Int(K))) \cup F^{+}(\sigma_{1}\sigma_{2}-Cl(\sigma_{1}\sigma_{2}-Int(K')))$ is $\tau_{1}\tau_{2}$ -closed in X for every $\sigma_{1}\sigma_{2}$ -closed $\mathcal{N}(\sigma_{1},\sigma_{2})$ -closed sets K, K' of Y;
- (6) $F^+(V) \cup F^-(V')$ is $\tau_1 \tau_2$ -open in X for every (σ_1, σ_2) r-open sets V, V' of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements;
- (7) $F^{-}(K) \cap F^{+}(K')$ is $\tau_{1}\tau_{2}$ -closed in X for every (σ_{1}, σ_{2}) r-closed $\mathcal{N}(\sigma_{1}, \sigma_{2})$ -closed sets K, K' of Y.

Proof. (1) \Rightarrow (2): Let $x \in X$ and V, V' be any $(\sigma_1, \sigma_2)r$ -open sets of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complements such that $F(x) \subseteq V$ and $F(x) \cap V' \neq \emptyset$. By (1), there exists a $\tau_1 \tau_2$ -open set U of X containing x such that

$$U \subseteq F^+(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V))) \cap F^-(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V')))$$
$$= F^+(V) \cap F^-(V').$$

(2) \Rightarrow (1): It is sufficient to observe that for any $(\sigma_1, \sigma_2)r$ -open sets V, V' of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements the sets $\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)) and $\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V')) are $(\sigma_1, \sigma_2)r$ -open in Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements.

(1) \Rightarrow (3): Let $x \in X$ and K, K' be any $\sigma_1 \sigma_2$ -closed $\mathscr{N}(\sigma_1, \sigma_2)$ -closed sets of Y such that $x \in F^+(Y - K) \cap F^-(Y - K')$. Then, Y - K and Y - K' are $\sigma_1 \sigma_2$ -open sets having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complements. Since F is almost nearly (τ_1, τ_2) -continuous, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that

$$U \subseteq F^+(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(Y - K))) \cap F^-(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(Y - K')))$$

$$= X - [F^+(\sigma_1\sigma_2\operatorname{-Cl}(\sigma_1\sigma_2\operatorname{-Int}(K))) \cup F^-(\sigma_1\sigma_2\operatorname{-Cl}(\sigma_1\sigma_2\operatorname{-Int}(K')))]$$

It is clear that H = X - U is $\tau_1 \tau_2$ -closed in X and the inclusion $F^+(\sigma_1 \sigma_2 - \operatorname{Cl}(\sigma_1 \sigma_2 - \operatorname{Int}(K))) \cup F^-(\sigma_1 \sigma_2 - \operatorname{Cl}(\sigma_1 \sigma_2 - \operatorname{Int}(K'))) \subseteq H$ is satisfied.

 $(3) \Rightarrow (1)$: The proof is similar to the proof $(1) \Rightarrow (3)$.

(1) \Rightarrow (4): Let *V*, *V'* be any $\sigma_1 \sigma_2$ -open sets of *Y* having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complements. Let

$$x \in F^+(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V))) \cap F^-(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V'))).$$

Then, we have $\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)) and $\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V')) are $\sigma_1\sigma_2$ -open sets of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements. By the definition of almost nearly (τ_1, τ_2) -continuous at a point x, there exists a $\tau_1\tau_2$ -open set U of X containing x such that

$$U \subseteq F^+(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V))) \cap F^-(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V'))).$$

Since *U* is $\tau_1 \tau_2$ -open, we have

$$x \in \tau_1 \tau_2 \operatorname{-Int}(F^+(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V))) \cap F^-(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V'))))$$

and hence

$$F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V))) \cap F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V')))$$
$$\subseteq \tau_{1}\tau_{2}\operatorname{-Int}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V))) \cap F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V')))).$$

Thus, $F^+(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V))) \cap F^-(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V')))$ is $\tau_1\tau_2$ -open in X.

 $(4) \Rightarrow (1)$: The proof is clear.

(4) \Rightarrow (5): Let K, K' be any $\sigma_1 \sigma_2$ -closed $\mathcal{N}(\sigma_1, \sigma_2)$ -closed sets of Y. Then, we have Y - K and Y - K' are $\sigma_1 \sigma_2$ -open sets having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements. By (4),

$$F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(Y-K))) \cap F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(Y-K')))$$

$$= F^{+}(Y - \sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))) \cap F^{-}(Y - \sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K')))$$

$$= [X - F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))] \cap [X - F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K')))]$$

$$= X - [F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))) \cup F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K')))]$$

is $\tau_1 \tau_2$ -open in *X*. Thus,

$$F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(K))) \cup F^{+}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(K')))$$

is $\tau_1 \tau_2$ -closed in *X*.

 $(5) \Rightarrow (4)$: It can be obtained similarly as $(4) \Rightarrow (5)$.

 $(4) \Rightarrow (6)$: It is easily seen that the set

$$F^+(V) \cap F^+(V') = F^+(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V))) \cap F^-(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V')))$$

for every $(\sigma_1, \sigma_2)r$ -open sets V, V' of Y.

 $(6) \Rightarrow (4)$: The proof is a consequence of Lemma 2.

(6) \Rightarrow (7): Let K, K' be any $(\sigma_1, \sigma_2)r$ -closed $\mathcal{N}(\sigma_1, \sigma_2)$ -closed sets of Y. Then, we have Y - K and Y - K' are $(\sigma_1, \sigma_2)r$ -open sets having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements. By (6), we have

$$F^{+}(Y-K) \cup F^{-}(Y-K') = X - (F^{-}(K) \cap F^{+}(K'))$$

is $\tau_1 \tau_2$ -open in *X*. Therefore, $F^-(K) \cap F^+(K')$ is $\tau_1 \tau_2$ -closed in *X*.

 $(7) \Rightarrow (6)$: It can be obtained similarly as $(6) \Rightarrow (7)$.

Definition 2. [37] A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be almost nearly (τ_1, τ_2) -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y containing f(x) and having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complement, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $f(U) \subseteq \sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)). A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be almost nearly (τ_1, τ_2) -continuous if f has this property at every point of X.

Corollary 1. For a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *f* is almost nearly (τ_1, τ_2) -continuous;
- (2) for each $x \in X$ and for every $(\sigma_1, \sigma_2)r$ -open set V of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ closed complement containing f(x), there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq V$;
- (3) for each $x \in X$ and for every $\sigma_1 \sigma_2$ -closed $\mathcal{N}(\sigma_1, \sigma_2)$ -closed set K of Y such that $x \in f^{-1}(Y K)$, there exists a $\tau_1 \tau_2$ -closed set $H \neq X$ such that $x \in X - H$ and $f^{-1}(\sigma_1 \sigma_2 - Cl(\sigma_1 \sigma_2 - Int(K))) \subseteq H$;
- (4) $f^{-1}(\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V))) is $\tau_1\tau_2$ -open in X for every $\sigma_1\sigma_2$ -open set V of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complement;
- (5) $f^{-1}(\sigma_1\sigma_2$ -Cl $(\sigma_1\sigma_2$ -Int(K))) is $\tau_1\tau_2$ -closed in X for every $\sigma_1\sigma_2$ -closed $\mathcal{N}(\sigma_1, \sigma_2)$ -closed set K of Y;
- (6) $f^{-1}(V)$ is $\tau_1\tau_2$ -open in X for every (σ_1, σ_2) r-open set V of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complement;
- (7) $f^{-1}(K)$ is $\tau_1\tau_2$ -closed in X for every $(\sigma_1, \sigma_2)r$ -closed $\mathcal{N}(\sigma_1, \sigma_2)$ -closed set K of Y.

Acknowledgement. This research project was financially supported by Mahasarakham University.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- [1] C. Boonpok, J. Khampakdee, Almost Strong θ(Λ, p)-Continuity for Functions, Eur. J. Pure Appl. Math. 17 (2024), 300–309.
 https://doi.org/10.29020/nybg.ejpam.v17i1.4975.
- [2] C. Boonpok, N. Srisarakham, (τ₁, τ₂)-Continuity for Functions, Asia Pac. J. Math. 11 (2024), 21. https://doi.org/10.
 28924/APJM/11-21.
- [3] C. Boonpok, P. Pue-On, Characterizations of Almost (τ₁, τ₂)-Continuous Functions, Int. J. Anal. Appl. 22 (2024), 33.
 https://doi.org/10.28924/2291-8639-22-2024-33.

- [4] C. Boonpok, C. Klanarong, On Weakly (τ₁, τ₂)-Continuous Functions, Eur. J. Pure Appl. Math. 17 (2024), 416–425. https://doi.org/10.29020/nybg.ejpam.v17i1.4976.
- [5] C. Boonpok, J. Khampakdee, Upper and Lower α-*-Continuity, Eur. J. Pure Appl. Math. 17 (2024), 201–211. https: //doi.org/10.29020/nybg.ejpam.v17i1.4858.
- [6] C. Boonpok, P. Pue-on, Upper and Lower sβ(*)-Continuous Multifunctions, Eur. J. Pure Appl. Math. 16 (2023), 1634–1646. https://doi.org/10.29020/nybg.ejpam.v16i3.4732.
- [7] C. Boonpok, J. Khampakdee, Upper and Lower Weak sβ(*)-Continuity, Eur. J. Pure Appl. Math. 16 (2023), 2544–2556. https://doi.org/10.29020/nybg.ejpam.v16i4.4734.
- [8] C. Boonpok and N. Srisarakham, Almost α-*-Continuity for Multifunctions, Int. J. Anal. Appl. 21 (2023), 107. https: //doi.org/10.28924/2291-8639-21-2023-107.
- [9] C. Boonpok, θ(*)-Precontinuity, Mathematica, 65 (2023), 31–42. https://doi.org/10.24193/mathcluj.2023.1.04.
- [10] C. Boonpok, on Some Spaces via Topological Ideals, Open Math. 21 (2023), 20230118. https://doi.org/10.1515/ math-2023-0118.
- [11] C. Boonpok, P. Pue-on, Upper and Lower Weakly α-*-Continuous Multifunctions, Int. J. Anal. Appl. 21 (2023), 90. https://doi.org/10.28924/2291-8639-21-2023-90.
- [12] C. Boonpok, P. Pue-on, Upper and Lower Weakly (Λ, sp)-Continuous Multifunctions, Eur. J. Pure Appl. Math. 16 (2023), 1047–1058. https://doi.org/10.29020/nybg.ejpam.v16i2.4573.
- [13] C. Boonpok, N. Srisarakham, Weak Forms of (Λ, b) -Open Sets and Weak (Λ, b) -Continuity, Eur. J. Pure Appl. Math. 16 (2023), 29–43. https://doi.org/10.29020/nybg.ejpam.v16i1.4571.
- [14] C. Boonpok, J. Khampakdee, (Λ, sp)-Open Sets in Topological Spaces, Eur. J. Pure Appl. Math. 15 (2022), 572–588. https://doi.org/10.29020/nybg.ejpam.v15i2.4276.
- [15] C. Boonpok, θ(*)-Quasi Continuity for Multifunctions, WSEAS Trans. Math. 21 (2022), 245–251. https://doi.org/10. 37394/23206.2022.21.29.
- [16] C. Boonpok, J. Khampakdee, On Almost $\alpha(\Lambda, sp)$ -Continuous Multifunctions, Eur. J. Pure Appl. Math. 15 (2022), 626–634. https://doi.org/10.29020/nybg.ejpam.v15i2.4277.
- [17] C. Boonpok, Upper and Lower $\beta(\star)$ -Continuity, Heliyon, 7 (2021), E05986. https://doi.org/10.1016/j.heliyon. 2021.e05986.
- [18] C. Boonpok, C. Viriyapong, Upper and Lower Almost Weak (τ₁, τ₂)-Continuity, Eur. J. Pure Appl. Math. 14 (2021), 1212–1225. https://doi.org/10.29020/nybg.ejpam.v14i4.4072.
- [19] C. Boonpok, P. Pue-On, Continuity for Multifunctions in Ideal Topological Spaces, WSEAS Trans. Math. 19 (2021), 624–631. https://doi.org/10.37394/23206.2020.19.69.
- [20] C. Boonpok, $(\tau_1, \tau_2)\delta$ -Semicontinuous Multifunctions, Heliyon, 6 (2020), e05367. https://doi.org/10.1016/j. heliyon.2020.e05367.
- [21] C. Boonpok, on Characterizations of *-Hyperconnected Ideal Topological Spaces, J. Math. 2020 (2020), 9387601. https: //doi.org/10.1155/2020/9387601.
- [22] C. Boonpok, Weak Quasi Continuity for Multifunctions in Ideal Topological Spaces, Adv. Math.: Sci. J. 9 (2020), 339–355.
- [23] C. Boonpok, on Continuous Multifunctions in Ideal Topological Spaces, Lobachevskii J. Math. 40 (2019), 24–35. https: //doi.org/10.1134/s1995080219010049.
- [24] C. Boonpok, C. Viriyapong, M. Thongmoon, on Upper and Lower (τ_1, τ_2)-Precontinuous Multifunctions, J. Math. Computer Sci. 18 (2018), 282–293. https://doi.org/10.22436/jmcs.018.03.04.
- [25] C. Boonpok, Almost (g, m)-Continuous Functions, Int. J. Math. Anal. 4 (2010), 1957–1964.

- [26] C. Boonpok, *M*-Continuous Functions in Biminimal Structure Spaces, Far East J. Math. Sci. 43 (2010), 41–58.
- [27] C. Carpintero, J. Pacheco, N. Rajesh, E. Rosas, S. Saranyasri, Properties of Nearly ω-Continuous Multifunctions, Acta Univ. Sapientiae Math. 9 (2017), 13–25. https://doi.org/10.1515/ausm-2017-0002.
- [28] M. Chiangpradit, S. Sompong, C. Boonpok, Weakly Quasi (τ₁, τ₂)-Continuous Functions, Int. J. Anal. Appl. 22 (2024), 125. https://doi.org/10.28924/2291-8639-22-2024-125.
- [29] N. Chutiman, A. Sama-Ae, C. Boonpok, Almost Near (τ_1, τ_2)-Continuity for Multifunctions, Accepted.
- [30] T. Duangphui, C. Boonpok and C. Viriyapong, Continuous Functions on Bigeneralized Topological Spaces, Int. J. Math. Anal. 5 (2011), 1165–1174.
- [31] W. Dungthaisong, C. Boonpok, C. Viriyapong, Generalized Closed Sets in Bigeneralized Topological Spaces, Int. J. Math. Anal. 5 (2011), 1175–1184.
- [32] E. Ekici, Almost Nearly Continuous Multifunctions, Acta Math. Comenianae, 73 (2004), 175–186.
- [33] E. Ekici, Nearly Continuous Multifunctions, Acta Math. Univ. Comenianae 72 (2003), 229–235.
- [34] J. Khampakdee, S. Sompong, C. Boonpok, *c*-(τ₁, τ₂)-Continuity for Multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 2288–2298. https://doi.org/10.29020/nybg.ejpam.v17i3.5320.
- [35] J. Khampakdee, C. Boonpok, Upper and Lower $\alpha(\Lambda, sp)$ -Continuous Multifunctions, WSEAS Trans. Math. 21 (2022), 684–690. https://doi.org/10.37394/23206.2022.21.80.
- [36] C. Klanarong, S. Sompong, C. Boonpok, Upper and Lower Almost (τ₁, τ₂)-Continuous Multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 1244–1253. https://doi.org/10.29020/nybg.ejpam.v17i2.5192.
- [37] B. Kong-ied, A. Sama-Ae, C. Boonpok, Almost Nearly (τ_1, τ_2) -Continuous Functions, Accepted.
- [38] B. Kong-ied, S. Sompong, C. Boonpok, Almost Quasi (τ_1, τ_2)-Continuous Functions, Asia Pac. J. Math. 11 (2024), 64. https://doi.org/10.28924/APJM/11-64.
- [39] K. Laprom, C. Boonpok and C. Viriyapong, $\beta(\tau_1, \tau_2)$ -Continuous Multifunctions on Bitopological Spaces, J. Math. 2020 (2020), 4020971. https://doi.org/10.1155/2020/4020971.
- [40] S.N. Maheshwari, G.I. Chae, P.C. Jain, Almost Feebly Continuous Functions, Ulsan Inst. Tech. Rep. 13 (1982), 195–197.
- [41] S.R. Malghan, V.V. Hanchinamani, N-Continuous Functions, Ann. Soc. Sci. Bruxelles, 98 (1984), 69–79.
- [42] S. Marcus, Sur les Fonctions Quasicontinues au Sens de S. Kempisty, Colloq. Math. 8 (1961), 47–53. https://eudml. org/doc/210887.
- [43] B.M. Munshi, D.S. Bassan, Almost Semi-Continuous Mappings, Math. Student, 49 (1981), 239–248.
- [44] T. Noiri, V. Popa, A Unified Theory of Upper and Lower Almost Nearly Continuous Multifunctions, Math. Balkanica, 23 (2009), 51–72.
- [45] T. Noiri, N. Ergun, Notes on N-Continuous Functions, Res. Rep. Yatsushiro Coll. Tech. 11 (1989), 65–68.
- [46] V. Popa, Almost Continuous Multifunctions, Mat. Vesnik, 6 (1982), 75–84.
- [47] V. Popa, on a Decomposition of Quasicontinuity in Topological Spaces, Stud. Cerc. Mat. 30 (1978), 31–35.
- [48] P. Pue-on, C. Boonpok, $\theta(\Lambda, p)$ -Continuity for Functions, Int. J. Math. Comput. Sci. 19 (2024), 491–495.
- [49] P. Pue-on, S. Sompong, C. Boonpok, Weakly Quasi (τ_1, τ_2)-Continuous Multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 1553–1564. https://doi.org/10.29020/nybg.ejpam.v17i3.5191.
- [50] P. Pue-on, S. Sompong, C. Boonpok, Almost Quasi (τ₁, τ₂)-Continuity for Multifunctions, Int. J. Anal. Appl. 22 (2024),
 97. https://doi.org/10.28924/2291-8639-22-2024-97.
- [51] P. Pue-on, S. Sompong, C. Boonpok, Upper and Lower (τ_1, τ_2) -Continuous Mulfunctions, Int. J. Math. Comput. Sci. 19 (2024), 1305–1310.
- [52] M.K. Singal, A.R. Singal, Almost continuous mappings, Yokohama J. Math. 16 (1968), 63–73.

- [53] N. Srisarakham, C. Boonpok, Almost (Λ, p) -Continuous Functions, Int. J. Math. Comput. Sci. 18 (2023), 255–259.
- [54] M. Thongmoon, A. Sama-Ae, C. Boonpok, Upper and Lower Near (τ_1, τ_2) -Continuity, Accepted.
- [55] M. Thongmoon, S. Sompong, C. Boonpok, Rarely (τ₁, τ₂)-Continuous Functions, Int. J. Math. Comput. Sci. 20 (2025), 423–427. https://doi.org/10.69793/ijmcs/01.2025/chawalit.
- [56] M. Thongmoon, C. Boonpok, Strongly $\theta(\Lambda, p)$ -Continuous Functions, Int. J. Math. Comput. Sci. 19 (2024), 475–479.
- [57] M. Thongmoon, S. Sompong, C. Boonpok, Upper and Lower Weak (τ_1, τ_2)-Continuity, Eur. J. Pure Appl. Math. 17 (2024), 1705–1716. https://doi.org/10.29020/nybg.ejpam.v17i3.5238.
- [58] M. Thongmoon, C. Boonpok, Upper and Lower Almost $\beta(\Lambda, sp)$ -Continuous Multifunctions, WSEAS Trans. Math. 21 (2022), 844–853. https://doi.org/10.37394/23206.2022.21.96.
- [59] N. Viriyapong, S. Sompong, C. Boonpok, Upper and Lower s-(τ₁, τ₂)P-Continuous Multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 2210–2220. https://doi.org/10.29020/nybg.ejpam.v17i3.5322.
- [60] N. Viriyapong, S. Sompong, C. Boonpok, (τ_1, τ_2) -Extremal Disconnectedness in Bitopological Spaces, Int. J. Math. Comput. Sci. 19 (2024), 855–860.
- [61] C. Viriyapong, C. Boonpok, Weak Quasi (Λ , *sp*)-Continuity for Multifunctions, Int. J. Math. Comput. Sci. 17 (2022), 1201–1209.
- [62] C. Viriyapong, C. Boonpok, (Λ, *sp*)-Continuous Functions, WSEAS Trans. Math. 21 (2022), 380–385. https://doi.org/ 10.37394/23206.2022.21.45.
- [63] C. Viriyapong, C. Boonpok, (τ₁, τ₂)α-Continuity for Multifunctions, J. Math. 2020 (2020), 6285763. https://doi.org/ 10.1155/2020/6285763.