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1. Introduction

The concept of almost continuous functions was introduced by Singal and Singal [52]. Popa [47]
defined almost quasi-continuous functions as a generalization of almost continuity [52] and quasi-
continuity [42]. Munshi and Bassan [43] studied the notion of almost semi-continuous functions.
Maheshwari et al. [40] introduced the concept of almost feebly continuous functions as a general-
ization of almost continuity [52]. Dungthaisong et al. [31] introduced and investigated the concept
of g(m,n)-continuous functions. In [14], the present authors studied some properties of (Λ, sp)-open
sets and (Λ, sp)-closed sets. Viriyapong and Boonpok [62] investigated several characterizations
of (Λ, sp)-continuous functions by utilizing the notions of (Λ, sp)-open sets and (Λ, sp)-closed sets.
Duangphui et al. [30] introduced and studied the notion of almost (µ, µ′)(m,n)-continuous functions.
Moreover, several characterizations of almost (Λ, p)-continuous functions, strongly θ(Λ, p)-continuous
functions, almost strongly θ(Λ, p)-continuous functions, θ(Λ, p)-continuous functions, weakly (Λ, b)-
continuous functions, θ(?)-precontinuous functions, ?-continuous functions, θ-I -continuous functions,
almost (g,m)-continuous functions, pairwise almostM -continuous functions, (τ1, τ2)-continuous func-
tions, almost (τ1, τ2)-continuous functions and weakly (τ1, τ2)-continuous functions were presented
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in [53], [56], [1], [48], [13], [9], [10], [21], [25], [26], [2], [3] and [4], respectively. Kong-ied et al. [38]
introduced and studied the concept of almost quasi (τ1, τ2)-continuous functions. Chiangpradit et
al. [28] introduced and investigated the notion of weakly quasi (τ1, τ2)-continuous functions. Thong-
mon et al. [55] introduced and studied the concept of rarely (τ1, τ2)-continuous functions. Malghan
and Hanchinamani [41] introduced the concept of N-continuous functions. Noiri and Ergun [45]
investigated some characterizations of N-continuous functions. Ekici [33] introduced and studied the
concept of nearly continuous multifunctions as a generalization of semi-continuous multifunctions and
N-continuous functions.

In 2004, Ekici [32] introduced and investigated the notion of almost nearly continuous multifunctions
as a generalization of nearly continuous multifunctions and almost continuous multifunctions [46].
Laprom et al. [39] introduced and investigated the concept of β(τ1, τ2)-continuous multifunctions.
Furthermore, several characterizations of (τ1, τ2)α-continuous multifunctions, (τ1, τ2)δ-semicontinuous
multifunctions, almost weakly (τ1, τ2)-continuous multifunctions, ?-continuous multifunctions, β(?)-
continuous multifunctions, weakly quasi (Λ, sp)-continuous multifunctions, α-?-continuous multifunc-
tions, almost α-?-continuous multifunctions, almost quasi ?-continuous multifunctions, weakly α-?-
continuous multifunctions, sβ(?)-continuous multifunctions, weakly sβ(?)-continuous multifunctions,
θ(?)-quasi continuous multifunctions, almost ı?-continuous multifunctions, weakly (Λ, sp)-continuous
multifunctions, α(Λ, sp)-continuous multifunctions, almost α(Λ, sp)-continuous multifunctions, almost
β(Λ, sp)-continuous multifunctions, (τ1, τ2)-continuous multifunctions, almost (τ1, τ2)-continuous mul-
tifunctions, weakly (τ1, τ2)-continuous multifunctions, weakly quasi (τ1, τ2)-continuous multifunctions
and s-(τ1, τ2)p-continuous multifunctions were established in [63], [20], [18], [23], [17], [61], [5],
[8], [22], [11], [6], [7], [15], [19], [12], [35], [16], [58], [51], [36], [57], [49] and [59], respectively.
Khampakdee et al. [34] introduced and investigated the concept of c-(τ1, τ2)-continuous multifunctions.
Pue-on et al. [50] introduced and studied the notion of almost quasi (τ1, τ2)-continuous multifunctions.
Noiri and Popa [44] introduced and investigated the notion of almost nearly m-continuous multi-
functions as multifunctions from a set satisfying some minimal conditions into a topological spaces.
Carpintero et al. [27] introduced and studied the notion of nearly ω-continuous multifunctions as a
weaker form of nearly continuous multifunctions. In this paper, we introduce the concept of almost
nearly (τ1, τ2)-continuous multifunctions. We also investigate several characterizations of almost nearly
(τ1, τ2)-continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and Y ) always mean
bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be
a subset of a bitopological space (X, τ1, τ2). The closure of A and the interior of A with respect to τi
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are denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a bitopological space
(X, τ1, τ2) is called τ1τ2-closed [24] if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called
τ1τ2-open. Let A be a subset of a bitopological space (X, τ1, τ2). The intersection of all τ1τ2-closed sets
of X containing A is called the τ1τ2-closure [24] of A and is denoted by τ1τ2-Cl(A). The union of all
τ1τ2-open sets of X contained in A is called the τ1τ2-interior [24] of A and is denoted by τ1τ2-Int(A).

Lemma 1. [24] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-closure, the following

properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A subsetA of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-open [63] (resp. (τ1, τ2)s-open [20],
(τ1, τ2)p-open [20], (τ1, τ2)β-open [20]) if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A)),
A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). The complement of a (τ1, τ2)r-open
(resp. (τ1, τ2)s-open, (τ1, τ2)p-open, (τ1, τ2)β-open) set is called (τ1, τ2)r-closed (resp. (τ1, τ2)s-closed,
(τ1, τ2)p-closed, (τ1, τ2)β-closed). A subset A of a bitopological space (X, τ1, τ2) is said to be α(τ1, τ2)-

open [60] if A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))). The complement of an α(τ1, τ2)-open set is said to be
α(τ1, τ2)-closed. A subset A of a bitopological space (X, τ1, τ2) is said to be N (τ1, τ2)-closed [54] if every
cover of A by (τ1, τ2)r-open sets of X has a finite subcover.

Lemma 2. [29] Let (X, τ1, τ2) be a bitopological space. If V is a τ1τ2-open set of X having N (τ1, τ2)-closed

complement, then

τ1τ2-Int(τ1τ2-Cl(V ))

is a (τ1, τ2)r-open set having N (τ1, τ2)-closed complement.

By amultifunction F : X → Y , wemean a point-to-set correspondence fromX into Y , andwe always
assume that F (x) 6= ∅ for all x ∈ X . For a multifunction F : X → Y , we shall denote the upper and
lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is, F+(B) = {x ∈ X | F (x) ⊆ B}

and F−(B) = {x ∈ X | F (x)∩B 6= ∅}. In particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y .
For each A ⊆ X , F (A) = ∪x∈AF (x).

3. Almost nearly (τ1, τ2)-continuous multifunctions

In this section, we introduce the notion of almost nearly (τ1, τ2)-continuousmultifunctions. Moreover,
several characterizations of almost nearly (τ1, τ2)-continuous multifunctions are discussed.
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Definition 1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be almost nearly (τ1, τ2)-continuous

at a point x ∈ X if for each σ1σ2-open sets V, V ′ of Y having N (σ1, σ2)-closed complements such that x ∈

F+(V )∩F−(V ′), there exists a τ1τ2-open setU ofX containing x such thatU ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V )))∩

F−(σ1σ2-Int(σ1σ2-Cl(V ′))). A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be almost nearly (τ1, τ2)-

continuous if F is almost nearly (τ1, τ2)-continuous at each point x of X .

Theorem 1. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is almost nearly (τ1, τ2)-continuous;

(2) for each x ∈ X and for every (σ1, σ2)r-open sets V, V ′ of Y having N (σ1, σ2)-closed complements

such that F (x) ⊆ V and F (x) ∩ V ′ 6= ∅, there exists a τ1τ2-open set U of X containing x such that

F (z) ⊆ V and F (z) ∩ V ′ 6= ∅ for every z ∈ U ;

(3) for each x ∈ X and for every σ1σ2-closed N (σ1, σ2)-closed sets K,K ′ of Y such that x ∈

F+(Y − K) ∩ F−(Y − K ′), there exists a τ1τ2-closed set H 6= X such that x ∈ X − H and

F−(σ1σ2-Cl(σ1σ2-Int(K))) ∪ F+(σ1σ2-Cl(σ1σ2-Int(K ′))) ⊆ H ;

(4) F+(σ1σ2-Int(σ1σ2-Cl(V )))∩F−(σ1σ2-Int(σ1σ2-Cl(V ′))) is τ1τ2-open inX for every σ1σ2-open sets

V, V ′ of Y having N (σ1, σ2)-closed complements;

(5) F−(σ1σ2-Cl(σ1σ2-Int(K))) ∪ F+(σ1σ2-Cl(σ1σ2-Int(K ′))) is τ1τ2-closed in X for every σ1σ2-closed

N (σ1, σ2)-closed setsK,K ′ of Y ;

(6) F+(V ) ∪ F−(V ′) is τ1τ2-open inX for every (σ1, σ2)r-open sets V, V ′ of Y having N (σ1, σ2)-closed

complements;

(7) F−(K) ∩ F+(K ′) is τ1τ2-closed in X for every (σ1, σ2)r-closed N (σ1, σ2)-closed setsK,K ′ of Y .

Proof. (1)⇒ (2): Let x ∈ X and V, V ′ be any (σ1, σ2)r-open sets of Y having N (σ1, σ2)-closed comple-
ments such that F (x) ⊆ V and F (x) ∩ V ′ 6= ∅. By (1), there exists a τ1τ2-open set U of X containing x
such that

U ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V ′)))

= F+(V ) ∩ F−(V ′).

(2) ⇒ (1): It is sufficient to observe that for any (σ1, σ2)r-open sets V, V ′ of Y having N (σ1, σ2)-
closed complements the sets σ1σ2-Int(σ1σ2-Cl(V )) and σ1σ2-Int(σ1σ2-Cl(V ′)) are (σ1, σ2)r-open in Y
having N (σ1, σ2)-closed complements.

(1) ⇒ (3): Let x ∈ X and K,K ′ be any σ1σ2-closed N (σ1, σ2)-closed sets of Y such that x ∈
F+(Y − K) ∩ F−(Y − K ′). Then, Y − K and Y − K ′ are σ1σ2-open sets having N (σ1, σ2)-closed
complements. SinceF is almost nearly (τ1, τ2)-continuous, there exists a τ1τ2-open setU ofX containing
x such that

U ⊆ F+(σ1σ2-Int(σ1σ2-Cl(Y −K))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(Y −K ′)))
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= X − [F+(σ1σ2-Cl(σ1σ2-Int(K))) ∪ F−(σ1σ2-Cl(σ1σ2-Int(K ′)))].

It is clear that H = X − U is τ1τ2-closed in X and the inclusion F+(σ1σ2-Cl(σ1σ2-Int(K))) ∪

F−(σ1σ2-Cl(σ1σ2-Int(K ′))) ⊆ H is satisfied.
(3)⇒ (1): The proof is similar to the proof (1)⇒ (3).
(1)⇒ (4): Let V, V ′ be any σ1σ2-open sets of Y having N (σ1, σ2)-closed complements. Let

x ∈ F+(σ1σ2-Int(σ1σ2-Cl(V ))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V ′))).

Then, we have σ1σ2-Int(σ1σ2-Cl(V )) and σ1σ2-Int(σ1σ2-Cl(V ′)) are σ1σ2-open sets of Y having
N (σ1, σ2)-closed complements. By the definition of almost nearly (τ1, τ2)-continuous at a point x, there
exists a τ1τ2-open set U of X containing x such that

U ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V ′))).

Since U is τ1τ2-open, we have

x ∈ τ1τ2-Int(F+(σ1σ2-Int(σ1σ2-Cl(V ))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V ′))))

and hence

F+(σ1σ2-Int(σ1σ2-Cl(V ))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V ′)))

⊆ τ1τ2-Int(F+(σ1σ2-Int(σ1σ2-Cl(V ))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V ′)))).

Thus, F+(σ1σ2-Int(σ1σ2-Cl(V ))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V ′))) is τ1τ2-open in X .
(4)⇒ (1): The proof is clear.
(4) ⇒ (5): Let K,K ′ be any σ1σ2-closed N (σ1, σ2)-closed sets of Y . Then, we have Y − K and

Y −K ′ are σ1σ2-open sets having N (σ1, σ2)-closed complements. By (4),

F+(σ1σ2-Int(σ1σ2-Cl(Y −K))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(Y −K ′)))

= F+(Y − σ1σ2-Cl(σ1σ2-Int(K))) ∩ F−(Y − σ1σ2-Cl(σ1σ2-Int(K ′)))

= [X − F−(σ1σ2-Cl(σ1σ2-Int(K)))] ∩ [X − F+(σ1σ2-Cl(σ1σ2-Int(K ′)))]

= X − [F−(σ1σ2-Cl(σ1σ2-Int(K))) ∪ F+(σ1σ2-Cl(σ1σ2-Int(K ′)))]

is τ1τ2-open in X . Thus,

F−(σ1σ2-Cl(σ1σ2-Int(K))) ∪ F+(σ1σ2-Cl(σ1σ2-Int(K ′)))

is τ1τ2-closed in X .
(5)⇒ (4): It can be obtained similarly as (4)⇒ (5).
(4)⇒ (6): It is easily seen that the set

F+(V ) ∩ F+(V ′) = F+(σ1σ2-Int(σ1σ2-Cl(V ))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V ′)))
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for every (σ1, σ2)r-open sets V, V ′ of Y .
(6)⇒ (4): The proof is a consequence of Lemma 2.
(6)⇒ (7): LetK,K ′ be any (σ1, σ2)r-closed N (σ1, σ2)-closed sets of Y . Then, we have Y −K and

Y −K ′ are (σ1, σ2)r-open sets having N (σ1, σ2)-closed complements. By (6), we have

F+(Y −K) ∪ F−(Y −K ′) = X − (F−(K) ∩ F+(K ′))

is τ1τ2-open in X . Therefore, F−(K) ∩ F+(K ′) is τ1τ2-closed in X .
(7)⇒ (6): It can be obtained similarly as (6)⇒ (7). �

Definition 2. [37] A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be almost nearly (τ1, τ2)-continuous

at a point x ∈ X if for each σ1σ2-open set V of Y containing f(x) and having N (σ1, σ2)-closed complement,

there exists a τ1τ2-open set U of X containing x such that f(U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )). A function f :

(X, τ1, τ2)→ (Y, σ1, σ2) is said to be almost nearly (τ1, τ2)-continuous if f has this property at every point ofX .

Corollary 1. For a function f : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) f is almost nearly (τ1, τ2)-continuous;

(2) for each x ∈ X and for every (σ1, σ2)r-open set V of Y havingN (σ1, σ2)- closed complement containing

f(x), there exists a τ1τ2-open set U of X containing x such that f(U) ⊆ V ;

(3) for each x ∈ X and for every σ1σ2-closed N (σ1, σ2)-closed set K of Y such that x ∈ f−1(Y −K),

there exists a τ1τ2-closed set H 6= X such that x ∈ X −H and f−1(σ1σ2-Cl(σ1σ2-Int(K))) ⊆ H ;

(4) f−1(σ1σ2-Int(σ1σ2-Cl(V ))) is τ1τ2-open inX for every σ1σ2-open set V of Y havingN (σ1, σ2)-closed

complement;

(5) f−1(σ1σ2-Cl(σ1σ2-Int(K))) is τ1τ2-closed in X for every σ1σ2-closed N (σ1, σ2)-closed setK of Y ;

(6) f−1(V ) is τ1τ2-open in X for every (σ1, σ2)r-open set V of Y having N (σ1, σ2)-closed complement;

(7) f−1(K) is τ1τ2-closed in X for every (σ1, σ2)r-closed N (σ1, σ2)-closed setK of Y .
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