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Abstract. This article is devoted to the problem of optimal control of a reaction-diffusion system for an
SEIRDS-type epidemiological model, where the dynamics evolve in a spatially heterogeneous environment.
The control variables are the transmission rates βe, β1, and β2, corresponding respectively to the contagion
resulting from contact with asymptomatic and symptomatic individuals. The aim is to optimize the number
of exposed and infected individuals at a final time T within the framework of the controlled evolution of
the system. More precisely, the aim is to determine the optimal rates β̄e, β̄1, and β̄2 so that the numbers
of exposed E and infected I1 and I2 do not exceed, at the final time T , the pre-established thresholds e,
i1, and i2. In this article, we demonstrate the existence of these optimal controls in a suitable functional
framework, and we derive the necessary first-order optimality conditions based on the adjoint variables.
2020 Mathematics Subject Classification. 35K55, 35K51, 49J20, 49K20, 49J50.
Key words and phrases. reaction-diffusion; SEIRDSmodel; optimal control; first-order necessary optimality
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1. Introduction

In recent decades, various mathematical models have been developed to analyze the evolution of
infectious diseases and curb their spread. These tools, whether statistical or mathematical in nature,
provide valuable information, enabling decision-makers to implement effective policies [9]. Time series
and compartmental models are frequently used to predict and simulate the dynamics of infectious
diseases, thereby offering key instruments for epidemic management [11]. In fact, these models have
helped to better understand these phenomena and have guided decision-makers towards the most
appropriate decisions regarding the effectiveness of the measures implemented [5]. The major impact
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of infectious diseases on the development of human society highlights the importance of adopting
strong prevention and control policies to protect public health. The recent COVID-19 pandemic has
illustrated the essential role of global surveillance systems and rapid response mechanisms, capable of
mitigating the negative impacts on both the economy and human health. Indeed, this pandemic led to
a significant slowdown of the global economy, disrupting numerous economic sectors [6].

For several decades, the scientific literature on epidemic mathematical models has expanded with
numerous contributions, often based on compartmental models [14]. These models divide the popula-
tion into different compartments based on qualitative characteristics, such as "susceptible," "infected,"
and "recovered." These models have naturally allowed for the introduction of diffusion terms. For a
recent overview of mathematical models of viral pandemics, we refer to [2]. It should be noted that
epidemic models including spatial diffusion have been studied for a long time [12]. Very recently, a
new epidemic diffusion model with nonlinear transmission rates and diffusion coefficients has been
introduced and tested [13], while in [1], the authors proved well-posedness results for an initial
boundary value problem associated with a variant of the compartmental model for COVID-19 studied
in [13]. However, most models are based on ordinary differential equations (ODEs), but here we
explore a compartmental model using partial differential equations (PDEs) to better represent spatial
variations. By exploring these models, we hope to contribute to a deeper understanding and more
effective management of infectious diseases.

The following diagram shows the contagion dynamics between the compartments of our model.

2

Figure 1. Flow chart describing the dynamics of contagion between the compartmental
sub-groups considered in our model.
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From the diagram, the state equations representing the spatio-temporal variations of the compart-
ments in our model are established as follows:

∂tS − div(ks∇S) = Λ + δrR− (β1I1 + β2I2 + βeE)S − (η + µs)S in Q

∂tE − div(ke∇E) = (β1I1 + β2I2 + βeE)S − γ1E − γ2E − µeE in Q

∂tI2 − div(k2∇I2) = γ2E − ρI2 − δ2I2 − µ2I2 in Q

∂tI1 − div(k1∇I1) = γ1E + ρI2 − αI1 − δ1I1 − µ1I1 in Q

∂tR− div(kr∇R) = δ1I1 + δ2I2 − δrR− µrR in Q

(S,E, I1, I2, R)(0) = (S0, E0, I10 , I20 , R0) in Ω

∂S

∂ν
=
∂E

∂ν
=
∂I1

∂ν
=
∂I2

∂ν
=
∂R

∂ν
= 0, in ΣT := ∂Ω× (0, T ).

(1.1)

where
� T > 0, Ω is an open bounded spatial domain in Rd, d ≥ 2, and ∂Ω denotes its boundary, assumed to
be regular.
�We denote by ν the outward normal vector to Ω.
� S(x, t),E(x, t), I1(x, t), I2(x, t),R(x, t), andD(x, t) represent the respective densities at time t ∈ [0, T )

and location x ∈ Ω of susceptible individuals (those who can contract the disease), exposed individuals
(those who carry the disease but do not yet show symptoms, although they can transmit the disease),
detected infectious individuals (those who show symptoms, tested positive, and can transmit the
disease), undetected infectious individuals (those who are sick but unaware of their status and can still
transmit the disease), recovered individuals (after an infectious period but not necessarily immune),
and finally individuals who have died from the disease.

As can be observed, the equation forD depends only on I1 and does not influence the other equations.
Consequently, D can be considered as an independent compartment since knowing I1 allows one to
determine D.

D(t, x) = D(0) + α

∫
Q
I1

where D(0) is the initial condition for the death compartment (generally D(0) = 0 if we assume no
deaths at the beginning of the epidemic). Additionally, we define the parameters involved in our model,
which we assume to be all positive:



Asia Pac. J. Math. 2025 12:2 4 of 23

Table 1: Parameter Descriptions

Parameters Description

β1 Contribution of known infectious individuals to the infection force

β2 Contribution of unknown infectious individuals to the infection force

βe Contribution of exposed individuals to the infection force

η Vaccination or immunity gain rate

δr Immunity loss rate depending on time

γ1 Progression rate of exposed individuals to the detected infectious compartment

γ2 Progression rate of exposed individuals to the undetected infectious compartment

ρ Progression rate of undetected infectious individuals to the detected infectious
compartment

δ1 Recovery rate of known infectious individuals

δ2 Recovery rate of unknown infectious individuals

Λ Natural birth rate

α Disease-induced mortality rate for known infectious individuals

µk Natural mortality rate in compartment k = s, e, 1, 2, r
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The exposed population and the infectious population refer to asymptomatic and symptomatic
individuals, respectively. As observed in the COVID-19 epidemic, exposed individuals can also spread
the disease. This means that the transmission or contagion parameters β1, β2, and βe play a crucial
role in the spread of an epidemic. It would therefore be interesting and highly beneficial to control
these different parameters in order to slow the progression of an epidemic through social prevention
policies or measures. With this in mind, we consider the transmission rates resulting from contact with
asymptomatic or symptomatic individuals β1, β2, and βe as control variables for our optimal control
problem, which we introduce in Section 3.

The article is structured into three distinct sections, each contributing specifically to our research.
Section 1, as mentioned earlier, serves as an introduction to our study. In Section 2, we list our
assumptions and notations, and we state our well-posedness results for the state problem (1.1). Finally,
Section 3, which addresses the main objective of this article, is dedicated to the study of the optimal
control problem, for which we prove the existence of an optimal control and derive a first-order
optimality condition.

2. Assumptions and Well-posedness Results

In this section, we make specific assumptions and present our well-resolved results. First, we assume
that the set Ω ⊂ Rd, 1 ≤ d ≤ 3, is bounded, connected and regular. Then, if X is a Banach space, ‖ · ‖X
is its norm. For simplicity, we use the same symbol for the norm in X and in all powers of X . We also
introduce

H := L2(Ω) and V := H1(Ω).

We have the dense and continuous embeddings V ⊂ H ∼= H∗ ⊂ V ∗, such that

〈u, v〉 =

∫
Ω
uv

for all u ∈ H and v ∈ V , where 〈·, ·〉 is the dual pairing between V ∗ and V .
We assume that

� ks, ke, k1, k2, kr : Q→ R are positive functions in L∞(Q) satisfying

k∗ ≤ ks(x, t), ke(x, t), k1(x, t), k2(x, t), kr(x, t) ≤ k∗ a.e. (x, t) ∈ Q (2.1)

with k∗ and k∗ being strictly positive constants.
� β1, β2, βe : Q→ R are positive functions in L∞(Q) satisfying

0 ≤ β1(x, t), β2(x, t), βe(x, t) ≤M, a.e. (x, t) ∈ Q (2.2)

whereM is a positive constant.

Λ, γ1, γ2, δ1, δ2, η, ρ, α, µs, µe, µ1, µ2, and µr are all positive constants. (2.3)
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� δr ∈ L∞(0, T ) and satisfies

0 ≤ δr(t) ≤ δ∗ a.e. t ∈ (0, T ) (2.4)

with δ∗ being a positive constant.
� For the initial data, we assume that

S0, E0, I10 , I20 , R0 ∈ L∞(Ω) and D0 = 0 (2.5)

are positive functions.
Additionally, the quantities appearing in the control problem, more precisely in (3.2) and (3.1),

must satisfy the following assumptions:

(H1) θi, $i ≥ 0, i = e, 1, 2, but not all equal to 0 simultaneously, (2.6)

(H2) βmin
i , βmax

i ∈ L∞(Q), i = e, 1, 2, are non-negative. (2.7)

We also use continuous embedding in dimensions three

V ↪→ Lp(Ω) for p ∈ [1, 2?] := [1, 6] (2.8)

where this embedding is compact if p < 6. In particular, there exists a positive constantCΩ that depends
only on the Ω domain, such that

‖v‖L6(Ω) ≤ CΩ‖v‖V for all v ∈ V, (2.9)

‖v‖Lp(Ω) ≤ δ‖∇v‖H + CΩ,δ,p‖v‖H for all v ∈ V, p ∈ [1, 6) and δ > 0, (2.10)

where CΩ,δ,p is a constant depending on p and δ. We now recall Young’s inequality, which we will use
very frequently for estimations.

ab ≤ δa2 +
1

4δ
b2 for all a, b ∈ R and δ > 0.

Now, we define the notion of solution for our state problem (1.1) under the assumptions (2.1)-(2.5).

Definition 2.1. Suppose (2.1)-(2.5). Given S0, E0, I10 , I20 , R0 ∈ L∞(Ω), a weak solution of the system (1.1)
is a quintuple of positive functions (S,E, I1, I2, R) satisfying the regularity properties

S,E, I1, I2, R ∈ H1 (0, T ;V ∗) ∩ L2(0, T ;V ) ↪→ C0([0, T ];H), (2.11)

S,E, I1, I2, R ≥ 0 a.e. in Q, (2.12)

S,E, I1, I2, R ∈ L∞(Q), (2.13)
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and satisfying the variational equations

〈∂tS, v〉+

∫
Ω
ks∇S · ∇v =

∫
Ω

[Λ + δrR− (β1I1 + β2I2 + βeE)S − (η + µs)S] v (2.14)

〈∂tE, v〉+

∫
Ω
ke∇E · ∇v =

∫
Ω

[(β1I1 + β2I2 + βeE)S − γ1E − γ2E − µeE] v (2.15)

〈∂tI2, v〉+

∫
Ω
k2∇I2 · ∇v =

∫
Ω

(γ2E − ρI2 − δ2I2 − µ2I2) v (2.16)

〈∂tI1, v〉+

∫
Ω
k1∇I1 · ∇v =

∫
Ω

(γ1E + ρI2 − δ1I1 − αI1 − µ1I1) v (2.17)

〈∂tR, v〉+

∫
Ω
kr∇R · ∇v =

∫
Ω

( δ1I1 + δ2I2 − δrR− µrR) v (2.18)

a.e. in (0, T ) for all v ∈ V , as well as the initial condition

(S,E, I1, I2, R,D) (0) = (S0, E0, I10 , I20 , R0, 0) . (2.19)

The results regarding the well-posedness of the problem (1.1) are given by the following theorems,
whose proofs can be found in [7].

Theorem 2.1. ( See [7], theorem 1 ). Under the assumptions (2.1)-(2.4) on the structure of the system and

(2.5) on the initial data, there exists a unique solution (S,E, I1, I2, R) satisfying the regularity conditions

(2.11)-(2.13), which solves the variational problem (2.14)-(2.19) and also satisfies the stability estimate

‖(S,E, I1, I2, R)‖W ≤ K1 whereW = C0([0, T ];H) ∩ L2(0, T ;V ) ∩ L∞(Q) (2.20)

with a positive constantK1 > 0 that depends only on Ω, T , the constants k∗, k∗,M , δ∗, γ1, γ2, δ, and ρ, as well

as the initial data.

The second result is an estimate of the continuous dependence of the solution to the problem (1.1)
with respect to the different contact rates β1, β2, and βe.

Theorem 2.2. ( See [7], theorem 2 ). Suppose (2.1)-(2.4) on the structure of the system and (2.5) on the

initial data. Let β(j)
1 , β

(j)
2 , β

(j)
e , j = 1, 2, be positive functions in L∞(Q) with norms bounded by β?, and let(

S(j), E(j), I
(j)
1 , I

(j)
2 , R(j)

)
be the corresponding solutions. Then the inequality

∥∥∥(S(1), E(1), I
(1)
1 , I

(1)
2 , R(1)

)
−
(
S(2), E(2), I

(2)
1 , I

(2)
2 , R(2)

)∥∥∥
C0([0,T ];H)∩L2(0,T ;V )

≤ K2

∥∥∥(β(1)
1 , β

(1)
2 , β(1)

e

)
−
(
β

(2)
1 , β

(2)
2 , β(2)

e

)∥∥∥
L2(0,T ;H)

(2.21)

holds with a positive constantK2 that depends only on the structure of the system, Ω, T , the initial data, and the

constantM .
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3. The Optimal Control Problem

In this section, we consider the following optimal control problem:
Minimize the cost functional J ((S,E, I1, I2, R) ; · ) : Uad → R

J ((S,E, I1, I2, R);β1, β2, βe) :=
θe
2

∫
Ω
|E − e|2 +

θ1

2

∫
Ω
|I1 − i1|2 +

θ2

2

∫
Ω
|I2 − i2|2

+
1

2

∫
Q

(
$1|β1|2 +$2|β2|2 +$e|βe|2

) (3.1)

Subject to the control constraint

(β1, β2, βe) ∈ Uad :=
{

(β1, β2, βe) ∈
(
L∞(Q)+

)3
: βmin

1 ≤ β1 ≤ βmax
1 , βmin

2 ≤ β2 ≤ βmax
2

and βmin
e ≤ βe ≤ βmax

e a.e. in Q} (3.2)

and the state system (1.1)

∂tS − div(ks∇S) = Λ + δrR− (β1I1 + β2I2 + βeE)S − (η + µs)S in Q

∂tE − div(ke∇E) = (β1I1 + β2I2 + βeE)S − γ1E − γ2E − µeE in Q

∂tI2 − div(k2∇I2) = γ2E − ρI2 − δ2I2 − µ2I2 in Q

∂tI1 − div(k1∇I1) = γ1E + ρI2 − αI1 − δ1I1 − µ1I1 in Q

∂tR− div(kr∇R) = δ1I1 + δ2I2 − δrR− µrR in Q

(S,E, I1, I2, R)(0) = (S0, E0, I10 , I20 , R0) in Ω

∂S

∂ν
=
∂E

∂ν
=
∂I1

∂ν
=
∂I2

∂ν
=
∂R

∂ν
= 0, in ΣT := ∂Ω× (0, T ).

where E, I1, and I2 (in the expression of J ) are components of the weak solution (S,E, I1, I2, R) of
(1.1) corresponding to (βe, β1, β2). For reasons of simplicity, we will very often write
J ((S,E, I1, I2, R);β1, β2, βe) by J (β1, β2, βe) .

Aim here is to keep the number of exposed or infected individuals below certain threshold values at
the final time T , specifically the values e, i1, and i2 for the compartments E, I1, and I2, respectively.
For similar work, we refer the reader to [4], where a similar approach was used to keep the prostate
index in a prostate tumor growth model below a certain threshold value. We can also cite [3]. Optimal
control is of great interest in epidemics, and at this point, we can refer the reader to very few recent
articles on this subject [10], where control or identification problems for various coefficients in ODE
models (without diffusion) have been studied, and [10] for a control problem in a reaction-diffusion
model.

3.1. Existence of Optimal Control. In this subsection, we prove the existence of an optimal control(
β̄e, β̄1, β̄2

) and derive the first-order optimality conditions.
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Theorem 3.1. Suppose the assumptions (2.1)-(2.5) and (2.6)-(2.7) hold. Then the optimal control problem

(3.1)-(3.2)-(1.1) admits at least one solution (β̄e, β̄1, β̄2) ∈ Uad, such that if (S̄, Ē, Ī1, Ī2, R̄) is the solution of

the state system (1.1) associated with (β̄e, β̄1, β̄2), we have

J (β̄e, β̄1, β̄2) = min
(βe,β1,β2)∈Uad

J (βe, β1, β2). (3.3)

Proof. Let
(
β

(n)
1 , β

(n)
2 , β

(n)
e

)
n∈N
⊂ UN

ad be a minimizing sequence for J such that

inf
(βe,β1,β2)∈Uad

{J } ≤ J
(
β

(n)
1 , β

(n)
2 , β(n)

e

)
≤ inf

(βe,β1,β2)∈Uad
{J }+

1

n
(3.4)

and {(Sn, En, I1n , I2n , Rn)}, the sequence of corresponding states for
(
β

(n)
1 , β

(n)
2 , β

(n)
e

)
, with the regu-

larities given by Definition 2.1.
Since

(
β

(n)
1 , β

(n)
2 , β

(n)
e

)
n∈N

⊂ UN
ad, we have that

(
β

(n)
i

)
i=e,1,2

is uniformly bounded in L∞ (QT ).
Therefore, by the Banach-Alaoglu theorem, we can deduce that there exists (β̄e, β̄1, β̄2) ∈ (L∞ (QT ))3

such that, after extracting a subsequence,

β(n)
e

∗
⇀ β̄e, β

(n)
1

∗
⇀ β̄1, β

(n)
2

∗
⇀ β̄2 weakly* in L∞ (QT ) . (3.5)

Moreover, since Uad is convex and closed in the space L2(Q), it is also sequentially closed for the weak
topology, and thus (β̄e, β̄1, β̄2) ∈ Uad.

Now, consider the solutions {(Sn, En, I1n , I2n , Rn)} ∈ H1 (0, T ;V ∗) ∩ L2(0, T ;V ) corresponding to(
β

(n)
1 , β

(n)
2 , β

(n)
e

)
for each n ∈ N. By the uniform estimate (2.20), these solutions are uniformly bounded

with respect to n in H1 (0, T ;V ∗) ∩ L2(0, T ;V ). Therefore, again by Banach-Alaoglu, we can say that,
after extracting a subsequence,

Sn ⇀ S̄, En ⇀ Ē, I1n ⇀ Ī1, I2n ⇀ Ī2, and Rn ⇀ R̄ (3.6)

weakly inH1 (0, T ;V ∗)∩L2(0, T ;V ), hence weakly in C0([0, T ];H), strongly in Lp(Q) for 1 ≤ p < +∞,
and almost everywhere in Q. Thus, by the same arguments used to prove the existence of a solution
(see subsection 3.1 in the proof of Theorem 2.1 in [7]), we see that (S̄, Ē, Ī1, Ī2, R̄) is the solution of
(2.14)-(2.18) corresponding to (β̄e, β̄1, β̄2).

Thus, taking the lim inf in J
(
β

(n)
1 , β

(n)
2 , β

(n)
e

)
, it follows that

lim inf
n→+∞

J
(
β

(n)
1 , β

(n)
2 , β(n)

e

)
= lim inf

n→+∞

[
θe
2

∫
Ω
|En − e|2 +

θ1

2

∫
Ω
|I1n − i1|2 +

θ2

2

∫
Ω
|I2n − i2|2

+
1

2

∫
Q

(
$1|β(n)

1 |
2 +$2|β(n)

2 |
2 +$e|β(n)

e |2
)]

= lim
n→+∞

[
θe
2

∫
Ω
|En − e|2 +

θ1

2

∫
Ω
|I1n − i1|2 +

θ2

2

∫
Ω
|I2n − i2|2

]
+ lim inf

n→+∞

1

2

∫
Q

(
$1|β(n)

1 |
2 +$2|β(n)

2 |
2 +$e|β(n)

e |2
)]
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=

[
θe
2

∫
Ω
|Ē − e|2 +

θ1

2

∫
Ω
|Ī1 − i1|2 +

θ2

2

∫
Ω
|Ī2 − i2|2

]
+ lim inf

n→+∞

1

2

∫
Q

(
$1|β(n)

1 |
2 +$2|β(n)

2 |
2 +$e|β(n)

e |2
)]

(3.7)

Exploiting the lower semicontinuity of the norm in L2(Q), we obtain

lim inf
n→+∞

J
(
β

(n)
1 , β

(n)
2 , β(n)

e

)
≥
[
θe
2

∫
Ω
|Ē − e|2 +

θ1

2

∫
Ω
|Ī1 − i1|2 +

θ2

2

∫
Ω
|Ī2 − i2|2

]
+

1

2

∫
Q

(
$1|β̄1|2 +$2|β̄2|2 +$e|β̄e|2

)
that is,

J (β̄e, β̄1, β̄2) ≤ lim inf
n→+∞

J
(
β

(n)
1 , β

(n)
2 , β(n)

e

)
. (3.8)

Therefore,
J (β̄e, β̄1, β̄2) = min

(βe,β1,β2)∈Uad
J (βe, β1, β2).

This completes the proof of Theorem 3.1. �

3.2. The State-to-Control Mapping.

Linearized System. In this section, we introduce the state-to-control mapping S and prove its Fréchet
differentiability. We define

Y :=
(
H1 (0, T ;V ∗) ∩ L2(0, T ;V )

)5
,S : Uad → Y by setting

S (βe, β1, β2) as the solution (S,E, I1, I2, R) of (1.1) corresponding to (βe, β1, β2) .

To achieve the result of Fréchet differentiability of S, we introduce the linearized system of (1.1).
We fix an optimal control (β̄e, β̄1, β̄2

) and the corresponding state (S̄, Ē, Ī1, Ī2, R̄). Given a vari-
ation

(
β̃e, β̃1, β̃2

)
∈ (L∞(Q))3, for any (βe, β1, β2) :=

(
β̄e + β̃e, β̄1 + β̃1, β̄2 + β̃2

)
∈ Uad such that

S (βe, β1, β2) = (S,E, I1, I2, R), the linearized problem consists of finding
(ξs, ξe, ξ1, ξ2, ξr) :=

(
S − S̄, E − Ē, I1 − Ī1, I2 − Ī2, R− R̄

)
∈ Y satisfying the following linear system

∂tξs − div(ks∇ξs) +A1ξs +B1ξe + C1ξ1 +D1ξ2 − δrξr = −
(
K1β̃1 + L1β̃2 +M1β̃e

)
∂tξe − div(ke∇ξe)− (A2ξs +B1ξe + C1ξ1 +D1ξ2) + (γ1 + γ2 + µe)ξe = K1β̃1 + L1β̃2 +M1β̃e

∂tξ2 − div(k2∇ξ2) = γ2ξe − (ρ+ δ2 + µ2)ξ2

∂tξ1 − div(k1∇ξ1) = γ1ξe + ρξ2 − (α+ δ1 + µ1)ξ1

∂tξr − div(kr∇ξr) = δ1ξ1 + δ2ξ2 − (δr + µr)ξr

(3.9)

in the spacetime cylinder Q := Ω× (0, T ), with

(ξs, ξe, ξ1, ξ2, ξr)(0) = (0, 0, 0, 0, 0) in Ω, (3.10)
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and
∂ξs
∂ν

=
∂ξe
∂ν

=
∂ξ1

∂ν
=
∂ξ2

∂ν
=
∂ξr
∂ν

= 0, in ΣT := ∂Ω× (0, T ). (3.11)

where

A1 = β̄1Ī1 + β̄2Ī2 + β̄eĒ, B1 = S̄β̄e, C1 = S̄β̄1,

D1 = S̄β̄2, K1 = S̄Ī1, L1 = S̄Ī2, M1 = S̄Ē. (3.12)

In variational form, the linearized system associated with
(
β̃e, β̃1, β̃2

)
is written as

〈∂tξs, v〉+

∫
Ω

[(A1 + η + µs) ξs +B1ξe + C1ξ1 +D1ξ2 − δrξr] v +

∫
Ω
ks∇ξs · ∇v

= −
∫

Ω

(
K1β̃1 + L1β̃2 +M1β̃e

)
v (3.13)

〈∂tξe, v〉 −
∫

Ω
[A1ξs + (B1 − (γ1 + γ2 + µe)) ξe + C1ξ1 +D1ξ2] v +

∫
Ω
ke∇ξe · ∇v

=

∫
Ω

(
K1β̃1 + L1β̃2 +M1β̃e

)
v (3.14)

〈∂tξ2, v〉 −
∫

Ω
[γ2ξe − (ρ+ δ2 + µ2)ξ2] v +

∫
Ω
k2∇ξ2 · ∇v = 0 (3.15)

〈∂tξ1, v〉 −
∫

Ω
[γ1ξe + ρξ2 − (α+ δ1 + µ1)ξ1] v +

∫
Ω
k1∇ξ1 · ∇v = 0 (3.16)

〈∂tξr, v〉 −
∫

Ω
[δ1ξ1 + δ2ξ2 − (δr + µr)ξr] v +

∫
Ω
kr∇ξr · ∇v = 0 (3.17)

a.e. in (0, T ) for all v ∈ V . The result we introduce now proves that the linearized system (3.13)-(3.17)
is well-posed, and the solution satisfies an estimate given by the following theorem.

Theorem 3.2. Suppose the assumptions (2.1)-(2.5) and (2.6)-(2.7) hold. For all
(
β̄e, β̄1, β̄2

)
∈ Uad and

(he, h1, h2) ∈ Uad, the corresponding linearized system (3.13)-(3.17) has a unique solution (ξs, ξe, ξ1, ξ2, ξr) ∈

Y. Furthermore, the following estimate

‖(ξs, ξe, ξ1, ξ2, ξr)‖Y ≤ C ‖h‖Uad (3.18)

is satisfied, with a positive constant C that depends only on the structure of the original system, on Ω, T , the

initial data, as well as on an upper bound for the norm
∥∥(β̄e, β̄1, β̄2

)∥∥
L∞(Q)

.

Proof. We apply a Faedo-Galerkin approximation. For this, a specific basis is needed. We introduce the
following spectral problem: find w ∈ H1(Ω) and λ ∈ R such that 〈∇w,∇φ〉H1(Ω),H1(Ω)? = λ〈w, φ〉H,H , ∀φ ∈ H1(Ω)

∇w · η = 0, on ∂Ω
(3.19)
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The problem (3.19) has a sequence of non-decreasing eigenvalues, {λk}∞k=1, and a corresponding
sequence of eigenfunctions, {ek}∞k=1, which form an orthogonal basis in H1(Ω) and an orthonormal
basis in H . Moreover, we also have (∆ek,∆em)H = 0 whenever k 6= m.

Our goal is to prove the local existence of at least one finite-dimensional Galerkin approximate solu-
tion of dimensionn for the linearized system (3.13)-(3.11) in the formof sequences {ξns , ξne , ξn1 , ξn2 , ξnr }n>0

defined for t ≥ 0 and x ∈ Ω̄ by

ξni (x, t) :=
n∑
k=1

cni,k(t)ek(x), with cni,k ∈ H1(0, T ) for i = s, e, 1, 2, r. (3.20)

where {ek(x)}nk=1 is an orthonormal basis of eigenfunctions in Vn = span {e1, . . . , en}.
Evidently, the initial conditions associated with these unknown functions are given for i = s, e, 1, 2, r

by

ξni (x, 0) = ξni,0(x) :=

n∑
k=1

cni,k(0)ek(x); cni,k(0) = 〈ξi,0; ek〉H,H . (3.21)

By definition and thanks to (3.11), it is easy to see that

(ξns , ξ
n
e , ξ

n
1 , ξ

n
2 , ξ

n
r )(0) = (0, 0, 0, 0, 0) for all n ∈ N∗, (3.22)

Therefore, it is clear that

ξni,0 → ξi,0 ∈ H as n→ +∞ for i = s, e, 1, 2, r. (3.23)

Moreover, due to our choice of bases, we observe that ξni satisfies the boundary conditions (3.11) for
i = s, e, 1, 2, r.

By inserting (3.20) into (3.13)-(3.17) and considering v = em as a test function, we obtain the
following approximate variational problem:

Determine ξni ∈ H1(0, T ;V ), i = s, e, 1, 2, r such that, for allm = 1, · · · , n,

〈∂tξns , em〉V,V ? = −
∫

Ω
[(A1 + η + µs) ξ

n
s +B1ξ

n
e + C1ξ

n
1 +D1ξ

n
2 − δrξnr ] em

−
∫

Ω
ks∇ξns · ∇em −

∫
Ω

(
K1β̃1 + L1β̃2 +M1β̃e

)
em (3.24)

〈∂tξne , em〉V,V ? =

∫
Ω

[A1ξ
n
s + (B1 − (γ1 + γ2 + µe)) ξ

n
e + C1ξ

n
1 +D1ξ

n
2 ] em

−
∫

Ω
ke∇ξne · ∇em +

∫
Ω

(
K1β̃1 + L1β̃2 +M1β̃e

)
em (3.25)

〈∂tξn2 , em〉V,V ? =

∫
Ω

[γ2ξ
n
e − (ρ+ δ2 + µ2) ξn2 ] em −

∫
Ω
k2∇ξn2 · ∇em (3.26)

〈∂tξn1 , em〉V,V ? =

∫
Ω

[γ1ξ
n
e + ρξn2 − (α+ δ1 + µ1)ξn1 ] em −

∫
Ω
k1∇ξn1 · ∇em (3.27)

〈∂tξnr , em〉V,V ? =

∫
Ω

[δ1ξ
n
1 + δ2ξ

n
2 − (δr + µr)ξ

n
r ] em −

∫
Ω
kr∇ξnr · ∇em. (3.28)
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Observing that 〈ξni , em〉 = cni,m(t) and 〈∂tξni , em〉V,V ? = cni,m
′(t) for i = s, e, 1, 2, r, the previous problem

reduces to an ODE problem for the unknown functions cni,m form = 1, · · · , n:

cns,m
′(t) + (A1 + η + µs) c

n
s,m(t) +B1c

n
e,m(t) + C1c

n
1,m(t) +D1c

n
2,m(t)− δrcnr,m(t)

+
n∑
k=1

b(ek, em)cns,k(t) = −gm

cne,m
′(t)−A1c

n
s,m(t)− (B1 − (γ1 + γ2 + µe)) c

n
e,m(t)− C1c

n
1,m(t)−D1c

n
2,m(t)

+
n∑
k=1

b(ek, em)cne,k(t) = gm

cn2,m
′(t)− γ2c

n
e,m(t) + (ρ+ δ2 + µ2)cn2,m(t) +

n∑
k=1

b(ek, em)cn2,k(t) = 0

cn1,m
′(t)− γ1c

n
e,m(t) + (α+ δ1 + µ1)cn1,m(t)− ρcn2,m(t) +

n∑
k=1

b(ek, em)cn1,k(t) = 0

cnr,m
′(t)− δ1c

n
1,m(t)− δ2c

n
2,m(t) + (δr + µr)c

n
r,m(t) +

n∑
k=1

b(ek, em)cnr,k(t) = 0

(cns,m, c
n
e,m, c

n
1,m, c

n
2,m, c

n
r,m)(0) = (0, 0, 0, 0, 0)

(3.29)

where gm =

∫
Ω

(
K1β̃1 + L1β̃2 +M1β̃e

)
em et b(ek, em) =

∫
Ω
∇ek ·∇em. Due to (2.20), the linear system

of ODEs (3.29) has bounded measurable coefficients, and by Carathéodory’s theorem, the system
(3.29) has a unique solution({

cns,m(t)
}n
m=1

,
{
cne,m(t)

}n
m=1

,
{
cn1,m(t)

}n
m=1

,
{
cn2,m(t)

}n
m=1

,
{
cnr,m(t)

}n
m=1

)
∈ (H1(0, T ))5n.

Consequently, ξni ∈ H1(0, T ;V ) i = s, e, 1, 2, r in (3.20) is well-defined and bounded due to the
estimate (2.21). Therefore, we have the following convergence:

ξni ⇀ ξi, weakly in H1(0, T ;V, V ∗) for i = s, e, 1, 2, r (3.30)

as n→ +∞, and also

‖(ξs, ξe, ξ1, ξ2, ξr)‖Y ≤ C ‖h‖Uad (3.31)

is satisfied. �

We are now in a position to establish the Fréchet differentiability of the control-to-state map. We
have the following result:

Theorem 3.3. Assume the hypotheses (2.1)-(2.5) and (2.6)-(2.7). The control-to-state map S is Fréchet

differentiable at every point in Uad.

Moreover, for any β̄ :=
(
β̄e, β̄1, β̄2

)
∈ Uad, the Fréchet derivative DS(β̄) ∈ L(Uad,Y) is defined as follows:

for any h := (he, h1, h2) ∈ Uad, we have

DS(β̄)h =
(
ξhs , ξ

h
e , ξ

h
1 , ξ

h
2 , ξ

h
r

)
,
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where
(
ξhs , ξ

h
e , ξ

h
1 , ξ

h
2 , ξ

h
r

)
is the unique solution of the linearized system (3.13)-(3.17) corresponding to β̄ and

the perturbation h.

Proof. Fix an arbitrary β̄ ∈ Uad, such that (S̄, Ē, Ī1, Ī2, R̄) = S(β̄), and consider h ∈ Uad. Since Uad is
open, there exists a sufficiently small radius r > 0 such that β̄ + h ∈ Uad and ‖h‖Uad ≤ r. Without loss
of generality, we can assume h ∈ Uad is sufficiently small so that (Sh, Eh, I1h , I2h , Rh) := S(β̄ + h), and
let (ξhs , ξhe , ξh1 , ξh2 , ξhr ) be the unique solution of the linearized system (3.13)-(3.17) associated with h.

First, note that themap h := (he, h1, h2) 7→
(
ξhs , ξ

h
e , ξ

h
1 , ξ

h
2 , ξ

h
r

) defined in the statement indeed belongs
to L(Uad,Y) thanks to Theorem 3.2. Thus, we only need to show that

‖S(β̄ + h)− S(β̄)−
(
ξhs , ξ

h
e , ξ

h
1 , ξ

h
2 , ξ

h
r

)
‖Y ≤ ‖h‖Uad ε (‖h‖Uad) (3.32)

where β̄ + h belongs to Uad, and ε : [0,+∞)→ R is a function that tends to zero as its argument goes
to zero.

Applying Theorem 2.1, we obtain the following estimation for the corresponding solutions:

‖
(
S̄, Ē, Ī1, Ī2, R̄

)
‖H1(0,T ;V ∗)∩C0([0,T ];H)∩L2(0,T ;V )∩L∞(Q) ≤ K1,

‖(Sh, Eh, I1h , I2h , Rh)‖H1(0,T ;V ∗)∩C0([0,T ];H)∩L2(0,T ;V )∩L∞(Q) ≤ K1.

We also define(
ϕhs , ϕ

h
e , ϕ

h
1 , ϕ

h
2 , ϕ

h
r

)
:=
(
Sh − S̄ − ξhs , Eh − Ē − ξhe , I1h − Ī1 − ξh1 , I2h − Ī2 − ξh2 , Rh − R̄− ξhr

)
and note that (ϕhs , ϕhe , ϕh1 , ϕh2 , ϕhr ) belongs to Y. Now if we set

Φh = β̄1

(
Sh − S̄

) (
I1h − Ī1

)
+ β̄2

(
Sh − S̄

) (
I2h − Ī2

)
+ β̄e

(
Sh − S̄

) (
Eh − Ē

)
+ h1I1h

(
Sh − S̄

)
+ h1S̄

(
I1h − Ī1

)
+ h2I2h

(
Sh − S̄

)
+ h2S̄

(
I2h − Ī2

)
+ heEh

(
Sh − S̄

)
+ heS̄

(
Eh − Ē

) (3.33)

and note that (ϕhs , ϕhe , ϕh1 , ϕh2 , ϕhr ) belongs to Y. Now, we can observe that (ϕhs , ϕhe , ϕh1 , ϕh2 , ϕhr ) is a
solution to the following problem:〈

∂tϕ
h
s , v
〉

+

∫
Ω

[
(A1 + η + µs)ϕ

h
s +B1ϕ

h
e + C1ϕ

h
1 +D1ϕ

h
2 − δrϕhr

]
v +

∫
Ω
ks∇ϕhs · ∇v

= −
∫

Ω
Φhv (3.34)〈

∂tϕ
h
e , v
〉
−
∫

Ω

[
A1ϕ

h
s + (B1 − (γ1 + γ2 + µe))ϕ

h
e + C1ϕ

h
1 +D1ϕ

h
2

]
v +

∫
Ω
ke∇ϕhe · ∇v

=

∫
Ω

Φhv (3.35)〈
∂tϕ

h
2 , v
〉
−
∫

Ω

[
γ2ϕ

h
e − (ρ+ δ2 + µ2)ϕh2

]
v +

∫
Ω
k2∇ϕh2 · ∇v = 0 (3.36)



Asia Pac. J. Math. 2025 12:2 15 of 23〈
∂tϕ

h
1 , v
〉
−
∫

Ω

[
γ1ϕ

h
e + ρϕh2 − (α+ δ1 + µ1)ϕh1

]
v +

∫
Ω
k1∇ϕh1 · ∇v = 0 (3.37)〈

∂tϕ
h
r , v
〉
−
∫

Ω

[
δ1ϕ

h
1 + δ2ϕ

h
2 − (δr + µr)ϕ

h
r

]
v +

∫
Ω
kr∇ϕhr · ∇v = 0 (3.38)

almost everywhere in (0, T ) and for all v ∈ V , along with the initial condition,(
ϕhs , ϕ

h
e , ϕ

h
1 , ϕ

h
2 , ϕ

h
r

)
(0) = (0, 0, 0, 0, 0)

Now, we test the above equations with ϕhs , ϕhe , ϕh1 , ϕh2 , and ϕhr , respectively, then sum them and integrate
over (0, t). We obtain

1

2

∫
Ω

∣∣∣ϕhs (t)
∣∣∣2 +

1

2

∫
Ω

∣∣∣ϕhe (t)
∣∣∣2 +

1

2

∫
Ω

∣∣∣ϕh1(t)
∣∣∣2 + +

1

2

∫
Ω

∣∣∣ϕh2(t)
∣∣∣2 1

2

∫
Ω

∣∣∣ϕhr (t)
∣∣∣2

+

∫
Qt

ks

∣∣∣∇ϕhs ∣∣∣2 +

∫
Qt

ke

∣∣∣∇ϕhe ∣∣∣2 +

∫
Qt

k1

∣∣∣∇ϕh1 ∣∣∣2 +

∫
Qt

k2

∣∣∣∇ϕh2 ∣∣∣2 +

∫
Qt

kr

∣∣∣∇ϕhr ∣∣∣2
=

∫
Qt

A1ϕ
h
s

(
ϕhe − ϕhs

)
+

∫
Qt

(
B1ϕ

h
e + C1ϕ

h
1 +D1ϕ

h
2

)(
ϕhe − ϕhs

)
+

∫
Qt

δrϕ
h
r

(
ϕhs − ϕhr

)
− (η + µs)

∫
Qt

|ϕhs |2 − (γ1 + γ2 + µe)

∫
Qt

|ϕhe |2 − (α+ δ1 + µ1)

∫
Qt

|ϕh1 |2

− (ρ+ δ2 + µ2)

∫
Qt

|ϕh2 |2 − µr
∫
Qt

|ϕhr |2 +

∫
Qt

(
ϕhe + ϕhr

)(
γ1ϕ

h
1 + γ2ϕ

h
2

)
+ ρ

∫
Qt

ϕh1ϕ
h
2

+

∫
Qt

Φh
(
ϕhe − ϕhs

)
≤
∫
Qt

A1ϕ
h
sϕ

h
e +

∫
Qt

(
B1ϕ

h
e + C1ϕ

h
1 +D1ϕ

h
2

)(
ϕhe − ϕhs

)
+

∫
Qt

Φh
(
ϕhe − ϕhs

)
+

∫
Qt

(
ϕhe + ϕhr

)(
γ1ϕ

h
1 + γ2ϕ

h
2

)
+ δr

∫
Qt

ϕhrϕ
h
s + ρ

∫
Qt

ϕh1ϕ
h
2 . (3.39)

Thus, by applying Young’s inequality, we obtain that∑
i∈{s,e,1,2,r}

‖ϕhi (t)‖2H + k∗
∑

i∈{s,e,1,2,r}

‖∇ϕhi ‖2L2(Qt)
≤ C

∑
i∈{s,e,1,2,r}

‖ϕhi ‖2L2(Qt)
+

∫
Qt

Φh
(
ϕhe − ϕhs

)
(3.40)

Now, we need to estimate the last integral on the right-hand side of (3.40). To do this, we will only
focus on estimating two terms from the development of this integral, as the others are analogous.

By first applying Hölder’s, Young’s, Sobolev’s, and compactness inequalities (see (2.9) and (2.10)),
and then using the continuous dependence estimate (2.21),

−
∫
Qt

β̄1

(
Sh − S̄

) (
I1h − Ī

)
ϕhe

≤
∫ t

0

∥∥β̄1

∥∥
L∞(Ω)

∥∥(Sh − S̄) (τ)
∥∥
H

∥∥(I1h − Ī
)

(τ)
∥∥
L4(Ω)

∥∥∥ϕhe (τ)
∥∥∥
L4(Ω)

dτ

≤
∫ t

0

∥∥∥ϕhe (τ)
∥∥∥2

L4(Ω)
dτ + c1

∫ t

0

∥∥(Sh − S̄) (τ)
∥∥2

H

∥∥(I1h − Ī
)

(τ)
∥∥2

V
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≤ k∗
2
‖∇ϕhe‖2L2(Qt)

+ CΩ,k∗‖ϕhe‖2L2(Qt)
+ c1

∥∥Sh − S̄∥∥2

L∞(0,T ;H)

∥∥I1h − Ī
∥∥2

L2(0,T ;V )

≤ k∗
2
‖∇ϕhe‖2L2(Qt)

+ CΩ,k∗‖ϕhe‖2L2(Qt)
+ c1‖h‖4Uad

The second term we consider is estimated as follows:

−
∫
Qt

heS̄
(
Eh − Ē

)
ϕhe ≤

∫
Qt

∣∣∣ϕhe ∣∣∣2 + c ‖he‖2L∞(Q)

∥∥Eh − Ē∥∥2

L2(0,T ;H)
≤ ‖ϕhe‖2L2(Qt)

+ C‖h‖4Uad

By treating the other terms in a similar manner and applying Gronwall’s lemma, we conclude that∥∥∥(ϕhs , ϕhe , ϕh1 , ϕh2 , ϕhr)∥∥∥Y ≤ c‖h‖2Uad
Since this inequality implies (3.32), the proof is complete. �

3.3. First-order optimality conditions. We set β = (βe, β1, β2) such that (S,E, I1, I2, R) = S (β). We
now introduce the functionals J1 :

(
C0([0, T ];H)

)5 → R and J2 : (L∞(Q))3 → R such that

J (S (β) ;β) = J1 (S (β)) + J2 (β) for all β ∈ Uad,

with
J1(S (β)) :=

θe
2

∫
Ω
|E − e|2 +

θ1

2

∫
Ω
|I1 − i1|2 +

θ2

2

∫
Ω
|I2 − i2|2

J2 (β) :=
1

2

∫
Q

(
$1|β1|2 +$2|β2|2 +$e|βe|2

)
,

Thanks to the Fréchet differentiability result above (Theorem 3.3), we can compute the derivative of
J at points of Uad by applying the chain rule to the composed mapping

Uad 3 β 7→ (S(β);β) 7→ J (S(β);β)

Noting also that Uad is a closed and convex subset of L2(Q), we immediately see that a necessary
condition for (β∗e , β

∗
1 , β
∗
2) to be an optimal control is given by the following result.

Corollary 3.1. Under the assumptions (2.1)-(2.5) and (2.6)-(2.7), suppose that (β∗e , β
∗
1 , β
∗
2) , an optimal

control and (S∗, E∗, I∗1 , I
∗
2 , R

∗) := S (β∗e , β
∗
1 , β
∗
2) , the corresponding optimal state. Then the variational

inequality

θe

∫
Ω

(E∗(T )− e) ξe(T ) + θ1

∫
Ω

(I∗1 (T )− i1) ξ1(T ) + θ2

∫
Ω

(I∗2 (T )− i2) ξ2(T )

+

∫
Q

($eβ
∗
ehe +$1β

∗
1h1 +$2β

∗
2h2) ≥ 0 (3.41)

is satisfied for all (βe, β1, β2) ∈ Uad, where ξe, ξ1, and ξ2 are the components of the solution (ξs, ξe, ξ1, ξ2, ξr)

of the linearized system (3.13) - (3.17) corresponding to the control triplet (β∗e , β
∗
1 , β
∗
2) and to the variation

(he, h1, h2) given by (he, h1, h2) = (βe − β∗e , β1 − β∗1 , β2 − β∗2).
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Proof. Let (β∗e , β
∗
1 , β
∗
2) be an optimal control corresponding to the optimal state (S∗, E∗, I∗1 , I

∗
2 , R

∗).
Consider an arbitrary admissible control (βe, β1, β2) and its corresponding state (S,E, I1, I2, R). For
any λ ∈ (0, 1), we introduce the incremented control(

βλe , β
λ
1 , β

λ
2

)
:= (β∗e , β

∗
1 , β
∗
2) + λ [(βe, β1, β2)− (β∗e , β

∗
1 , β
∗
2)] (3.42)

which belongs to Uad since Uad is convex. We also define(
Sλ, Eλ, Iλ1 , I

λ
2 , R

λ
)

as the state corresponding to
(
βλe , β

λ
1 , β

λ
2

)
(3.43)

and define the quotients

ξλs :=
Sλ − S∗

λ
, ξλe :=

Eλ − E∗

λ
, ξλ1 :=

Iλ1 − I∗1
λ

, ξλ2 :=
Iλ2 − I∗2

λ
, and ξλr :=

Rλ −R∗

λ
. (3.44)

We prove that (ξλs , ξλe , ξλ1 , ξλ2 , ξλr ) converges to the solution (ξs, ξe, ξ1, ξ2, ξr) of the linearized system
(3.13)-(3.14) in an appropriate topology as λ tends to zero. First, we observe the following regularity:(

ξλs , ξ
λ
e , ξ

λ
1 , ξ

λ
2 , ξ

λ
r

)
∈
(
H1 (0, T ;V ∗) ∩ L2(0, T ;V )

)5 (3.45)

Next, we write the system that these quotients solve. This is obtained as follows: first, we write the
equations (2.14)-(2.18) for the incremented control (3.42) and the corresponding state in (3.43); then
we do the same for the optimal control (β∗e , β

∗
1 , β
∗
2) with the corresponding state (S∗, E∗, I∗1 , I

∗
2 , R

∗);
finally, we take the differences and divide by λ. Noting that

βλi − β∗i
λ

= βi − β∗i := hi for i = e, 1, 2, (3.46)

we obtain〈
∂tξ

λ
s , v
〉

+

∫
Ω

[
(A∗1 + η + µs) ξ

λ
s +B∗1ξ

λ
e + C∗1ξ

λ
1 +D∗1ξ

λ
2 − δrξλr

]
v +

∫
Ω
ks∇ξλs · ∇v

= −
∫

Ω
(K∗1h1 + L∗1h2 +M∗1he) v (3.47)

〈
∂tξ

λ
e , v
〉
−
∫

Ω

[
A∗1ξ

λ
s + (B∗1 − (γ1 + γ2 + µe)) ξ

λ
e + C∗1ξ

λ
1 +D∗1ξ

λ
2

]
v +

∫
Ω
ke∇ξλe · ∇v

=

∫
Ω

(K∗1h1 + L∗1h2 +M∗1he) v (3.48)〈
∂tξ

λ
2 , v
〉
−
∫

Ω

[
γ2ξ

λ
e − (ρ+ δ2 + µ2)ξλ2

]
v +

∫
Ω
k2∇ξλ2 · ∇v = 0 (3.49)〈

∂tξ
λ
1 , v
〉
−
∫

Ω

[
γ1ξ

λ
e + ρξλ2 − (α+ δ1 + µ1)ξλ1

]
v +

∫
Ω
k1∇ξλ1 · ∇v = 0 (3.50)〈

∂tξ
λ
r , v
〉
−
∫

Ω

[
δ1ξ

λ
1 + δ2ξ

λ
2 − (δr + µr)ξ

λ
r

]
v +

∫
Ω
kr∇ξλr · ∇v = 0 (3.51)
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a.e. in (0, T ) and for all v ∈ V where A∗1, B∗1 , C∗1 , D∗1, K∗1 , L∗1, and M∗1 are the constants defined in
(3.12) related to the optimal control (β∗e , β

∗
1 , β
∗
2) with state (S∗, E∗, I∗1 , I

∗
2 , R

∗). Furthermore, the initial
condition (

ξλs , ξ
λ
e , ξ

λ
1 , ξ

λ
2 , ξ

λ
r

)
= (0, 0, 0, 0, 0) (3.52)

is also satisfied. To pass to the limit as λ tends to zero, an estimation is required. To achieve this, first
note that the stability estimate (2.20) holds for (S∗, E∗, I∗1 , I

∗
2 , R

∗) and (Sλ, Eλ, Iλ1 , Iλ2 , Rλ). By applying
the continuous dependence estimate (2.21) and recalling (3.42), we have∥∥∥(Sλ, Eλ, Iλ1 , Iλ2 , Rλ)− (S∗, E∗, I∗1 , I

∗
2 , R

∗)
∥∥∥H1(0,T ;V ∗)∩L2(0,T ;V )

≤ c
∥∥∥(βλe , βλ1 , βλ2)− (β∗e , β

∗
1 , β
∗
2)
∥∥∥
L∞(Q)

= cλ ‖(βe, β1, β2)− (β∗e , β
∗
1 , β
∗
2)‖L∞(Q) ≤ cλ (3.53)

from which ∥∥∥(ξλs , ξλe , ξλ1 , ξλ2 , ξλr )∥∥∥
H1(0,T ;V ∗)∩L2(0,T ;V )

≤ c

Therefore, thanks to standard compactness results, we obtain by taking the limit that(
ξλs , ξ

λ
e , ξ

λ
1 , ξ

λ
2 , ξ

λ
r

)
⇀ (ξs, ξe, ξ1, ξ2, ξr) weakly in (H1 (0, T ;V ∗) ∩ L2(0, T ;V )

)5
for some quintuplet (ξs, ξe, ξ1, ξ2, ξr) satisfying (3.45).

However, thanks to the uniqueness of the solution of the linearized problem (3.13)-(3.17) (Theorem
3.2), up to a subsequence, we prove that the limit quintuplet (ξs, ξe, ξ1, ξ2, ξr) solves the linearized
problem (3.13)-(3.17).

Thanks to (3.53) and the Aubin-Lions lemma (see, for example, [8], Thm. 5.1, p. 58), we have the
following convergences:(

Sλ, Eλ, Iλ1 , I
λ
2 , R

λ
)
→ (S∗, E∗, I∗1 , I

∗
2 , R

∗) and
(
ξλs , ξ

λ
e , ξ

λ
1 , ξ

λ
r

)
→ (ξs, ξe, ξ1, ξ2, ξr) (3.54)

strongly in (L2(0, T ;H)
)5 and a.e. in Q.

At this stage, we are ready to prove (3.41). Due to optimality, we have that
J
(
S(βλ);βλ

)
− J (S(β∗);β∗)

λ
≥ 0 for all λ ∈ (0, 1) (3.55)

where βλ =
(
βλe , β

λ
1 , β

λ
2

) and (Sλ, Eλ, Iλ1 , Iλ2 , Rλ) = S(βλ). The quantities β∗ and S(β∗) are defined
similarly.

We aim to let λ tend to zero in the inequality (3.55). We will consider only two of the terms involved
in (3.55), namely

θe
2

∫
Ω

|Eλ − e|2 − |E∗ − e|2

λ
and $e

2

∫
Q

|βλe |2 − |β∗e |2

λ
(3.56)
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since the other terms are analogous. We have that
θe
2

∫
Ω

|Eλ(T )− e|2 − |E∗(T )− e|2

λ
= θe

∫
Ω

(Eλ(T )− E∗(T ))

λ

(Eλ(T ) + E∗(T )− 2e)

2

= θe

∫
Ω
ξλe
Eλ(T ) + E∗(T )− 2e

2

−→ θe

∫
Ω

(E∗(T )− e) ξe(T ) as λ→ 0. (3.57)

The convergence (3.57) is due to the convergence results (3.54). Similarly

$e

2

∫
Q

∣∣βλe ∣∣2 − |β∗e |2
λ

= $e

∫
Q

βλe − β∗e
λ

βλe + β∗e
2

= $e

∫
Q

(βe − β∗e )
βλe + β∗e

2

−→
∫
Q
$eβ

∗
ehe as λ→ 0 where he = (βe − β∗e ) (3.58)

For the convergence (3.58), thanks to (3.42), we can note that βλe → β∗e as λ → 0. Therefore, (3.41)
follows immediately. �

The result just proved is not satisfactory. Indeed, the linearized problem (3.13)-(3.17) is involved
infinitely many times since (βe, β1, β2) is arbitrary in Uad. This issue is circumvented by introducing a
suitable adjoint problem, which we immediately present in its variational form.

Given an optimal control (β∗e , β
∗
1 , β
∗
2) and the corresponding state (S∗, E∗, I∗1 , I

∗
2 , R

∗), the associated
adjoint problem consists of finding a quintuplet (p, q, w, y, z) that satisfies the regularity requirement

p, q, w, y, z ∈ H1 (0, T ;V ∗) ∩ L2(0, T ;V ) ↪→ C0([0, T ];H) (3.59)

and the variational equations,

−
∫

Ω
∂tpv +

∫
Ω
ks∇p · ∇v +

∫
Ω
A∗1(p− q)v +

∫
Ω

(η + µs)pv = 0 (3.60)

−
∫

Ω
∂tqv +

∫
Ω
ke∇q · ∇v +

∫
Ω
B∗1(p− q)v +

∫
Ω

[γ1(q − y) + γ2(q − w) + µeq] v = 0 (3.61)

−
∫

Ω
∂twv +

∫
Ω
k2∇w · ∇v +

∫
Ω
D∗1(p− q)v +

∫
Ω

[ρ(w − y) + δ2(w − z) + µ2w] v = 0 (3.62)

−
∫

Ω
∂tyv +

∫
Ω
k1∇y · ∇v +

∫
Ω
C∗1 (p− q)v +

∫
Ω

[δ1(y − z) + (α+ µ1)y] v = 0 (3.63)

−
∫

Ω
∂tzv +

∫
Ω
kr∇z · ∇v +

∫
Ω

[δr(z − p) + µrz] v = 0 (3.64)

∂νp = ∂νq = ∂νw = ∂νy = ∂νz = 0 (3.65)

p(T ) = z(T ) = 0, q(T ) = θe(E
∗(T )− e), y(T ) = θ1(I∗1 (T )− i1), w(T ) = θ2(I∗2 (T )− i2) (3.66)

where A∗1, B∗1 , C∗1 , and D∗1 are the constants defined in (3.12) with the optimal control (β∗e , β
∗
1 , β
∗
2) and

the corresponding state (S∗, E∗, I∗1 , I
∗
2 , R

∗). We have the following existence and uniqueness result.
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Theorem 3.4. Assume that the hypotheses (2.1)-(2.5) and (2.6)-(2.7) are satisfied. Then the adjoint system

(3.60) - (3.66) has a unique solution.

Proof. Since all coefficients are bounded, this is a standard parabolic problem. Therefore, by a Galerkin
scheme and the Gronwall lemma (as in the proof of Theorem 3.2), this problem admits a unique
solution (p, q, w, y, z) with the regularity given by (3.59). �

At this stage, we are ready to prove a necessary optimality condition. Our statement concerns the
following closed convex sets:

Ue :=
{
v ∈ L2(Q) : βmin

e ≤ v ≤ βmax
e a.e. in Q} (3.67)

U1 :=
{
v ∈ L2(Q) : βmin

1 ≤ v ≤ βmax
1 a.e. in Q} (3.68)

U2 :=
{
v ∈ L2(Q) : βmin

2 ≤ v ≤ βmax
2 a.e. in Q} (3.69)

Theorem 3.5. Assume the hypotheses (2.1)-(2.5) and (2.6)-(2.7). Let (β∗e , β
∗
1 , β
∗
2) be an optimal control and

(S∗, E∗, I∗1 , I
∗
2 , R

∗) the corresponding state, respectively, and let (p, q, w, y, z) be the solution of the associated

adjoint problem. Then, the variational inequality∫
Q

[(S∗E∗(q − p) +$eβ
∗
e ) (βe − β∗e )

+ (S∗I∗1 (q − p) +$1β
∗
1) (β1 − β∗1) + (S∗I∗2 (q − p) +$2β

∗
2) (β2 − β∗2)] ≥ 0. (3.70)∫

Q
(s∗i∗(q − p) + u∗i ) (ui − u∗i ) +

∫
Q

(s∗e∗(q − p) + u∗e) (ue − u∗e) ≥ 0

is satisfied for all (βe, β1, β2) ∈ Uad, and β∗e , β∗1 , and β∗2 are the L2 projections of S∗E∗(p − q), S∗I∗1 (p − q),

and S∗I∗2 (p− q) onto Ue, U1, and U2, respectively.

Proof. We consider the linearized problem (3.13)-(3.17) where (β̄e, β̄1, β̄2

) and (S̄, Ē, Ī1, Ī2, R̄) are
interpreted as (β∗e , β

∗
1 , β
∗
2) and (S∗, E∗, I∗1 , I

∗
2 , R

∗), respectively, and we set the variation (he, h1, h2) :=

(βe − β∗e , β1 − β∗1 , β2 − β∗2) for an arbitrary control (βe, β1, β2) ∈ Uad.

〈∂tξs, v〉+

∫
Ω

[(A∗1 + η + µs) ξs +B∗1ξe + C∗1ξ1 +D∗1ξ2 − δrξr] v +

∫
Ω
ks∇ξs · ∇v

= −
∫

Ω
(K∗1h1 + L∗1h2 +M∗1he) v (3.71)

〈∂tξe, v〉 −
∫

Ω
[A∗1ξs + (B∗1 − (γ1 + γ2 + µe)) ξe + C∗1ξ1 +D∗1ξ2] v +

∫
Ω
ke∇ξe · ∇v

=

∫
Ω

(K∗1h1 + L∗1h2 +M∗1he) v (3.72)

〈∂tξ2, v〉 −
∫

Ω
[γ2ξe − (ρ+ δ2 + µ2)ξ2] v +

∫
Ω
k2∇ξ2 · ∇v = 0 (3.73)

〈∂tξ1, v〉 −
∫

Ω
[γ1ξe + ρξ2 − (α+ δ1 + µ1)ξ1] v +

∫
Ω
k1∇ξ1 · ∇v = 0 (3.74)
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〈∂tξr, v〉 −
∫

Ω
[δ1ξ1 + δ2ξ2 − (δr + µr)ξr] v +

∫
Ω
kr∇ξr · ∇v = 0 (3.75)

(ξs, ξe, ξ1, ξ2, ξr) = (0, 0, 0, 0, 0) (3.76)

a.e. in (0, T ) and for all v ∈ V , with A∗1, B∗1 , C∗1 , D∗1, K∗1 , L∗1, andM∗1 being the constants defined in
(3.12) for the optimal control (β∗e , β

∗
1 , β
∗
2) and the corresponding state (S∗, E∗, I∗1 , I

∗
2 , R

∗).
On the one hand, we fix an arbitrary element (βe, β1, β2) ∈ Uad and choose

(he, h1, h2) := (βe − β∗e , β1 − β∗1 , β2 − β∗2) in the system above. We then test the equations (3.71)-(3.75)
with p, q, w, y, and z, respectively, and sum them, then integrate over (0, T ). Thus, after rearranging
the terms, we obtain∫ T

0
(〈∂tξs, p〉+ 〈∂tξe, q〉+ 〈∂tξ2, w〉+ 〈∂tξ1, y〉+ 〈∂tξr, z〉) dt

+

∫
Q

(ks∇ξs · ∇p+ ke∇ξe · ∇q + k2∇ξ2 · ∇w + +k1∇ξ1 · ∇y + kr∇ξr · ∇z)

+

∫
Q

(A∗1ξs +B∗1ξe + C∗1ξ1 +D∗1ξ2) (p− q) +

∫
Q

[(η + µs) ξs − δrξr] p

+

∫
Q

(γ1 + γ2 + µe) ξeq −
∫
Q

[γ2ξe − (ρ+ δ2 + µ2) ξ2]w −
∫
Q

[γ1ξeρξ2 − (α+ δ1 + µ1) ξ1] y

−
∫
Q

[δ1ξ1 + δ2ξ2 − (δr + µr) ξr] z

=

∫
Q

(K∗1h1 + L∗1h2 +M∗1he) (q − p) (3.77)

On the other hand, we consider the adjoint problem (3.60)-(3.66) and test the equations respectively
with −ξs, −ξe, −ξ1, −ξ2, and −ξr. We then add them together and integrate the resulting equality over
(0, T ). After rearranging the terms, we obtain∫ T

0
(〈∂tp, ξs〉+ 〈∂tq, ξe〉+ 〈∂tw, ξ2〉+ 〈∂ty, ξ1〉+ 〈∂tz, ξr〉) dt

−
∫
Q

(ks∇ξs · ∇p+ ke∇ξe · ∇q + k2∇ξ2 · ∇w + +k1∇ξ1 · ∇y + kr∇ξr · ∇z)

−
∫
Q

(A∗1ξs +B∗1ξe + C∗1ξ1 +D∗1ξ2) (p− q)−
∫
Q

[(η + µs) ξs − δrξr] p

−
∫
Q

(γ1 + γ2 + µe) ξeq +

∫
Q

[γ2ξe − (ρ+ δ2 + µ2) ξ2]w +

∫
Q

[γ1ξeρξ2 − (α+ δ1 + µ1) ξ1] y

+

∫
Q

[δ1ξ1 + δ2ξ2 − (δr + µr) ξr] z

= 0 (3.78)

At this stage, we sum (3.77) and (3.78) and obtain that∫ T

0
[〈∂tp, ξs〉+ 〈∂tp, ξs〉+ 〈∂tqξe〉+ 〈∂tq, ξe〉+ 〈∂tw, ξ2〉+ 〈∂tw, ξ2〉
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+ 〈∂ty, ξ1〉+ 〈∂ty, ξ1〉+ 〈∂tz, ξr〉+ 〈∂tz, ξr〉] dt

=

∫
Q

(K∗1h1 + L∗1h2 +M∗1he) (q − p) (3.79)

Note that 〈∂tp, ξs〉 + 〈∂tq, ξe〉 = d
dt 〈ξs, p〉. Thus, by integrating by parts for functions in the space

H1 (0, T ;V ∗)∩L2(0, T ;V ) and taking into account the initial conditions (3.10) for (ξs, ξe, ξ1, ξ2, ξr) and
the final conditions (3.66) for (p, q, w, y, z), we deduce that

θe

∫
Ω

(E∗(T )− e) ξe(T ) + θ1

∫
Ω

(I∗1 (T )− i1) ξ1(T ) =

∫
Q

(K∗1h1 + L∗1h2 +M∗1he) (q − p) (3.80)

By adding to each side of the last equality the quantity

θ2

∫
Ω

(I∗2 (T )− i2) ξ2(T ) +

∫
Q

($eβ
∗
ehe +$1β

∗
1h1 +$2β

∗
2h2) ,

we obtain, thanks to Corollary 3.41, the inequality∫
Q

[(M∗1 (q − p) +$eβ
∗
e )he + (K∗1 (q − p) +$1β

∗
1)h1 + (L∗1(q − p) +$2β

∗
2)h2] ≥ 0. (3.81)

which can be rewritten as∫
Q

[(S∗E∗(q − p) +$eβ
∗
e ) (βe − β∗e )

+ (S∗I∗1 (q − p) +$1β
∗
1) (β1 − β∗1) + (S∗I∗2 (q − p) +$2β

∗
2) (β2 − β∗2)] ≥ 0. (3.82)

for all (βe, β1, β2) ∈ Uad. To prove the last part of the statement, we observe that Uad = Ue × U1 × U2.
Therefore, by taking (βe, β1, β2) = (βe, β

∗
1 , β
∗
2) in (3.70), we see that (3.70) is equivalent to the condition∫

Q
(S∗E∗(q − p) +$eβ

∗
e ) (βe − β∗e ) ≥ 0 for all βe ∈ Ue. (3.83)

Similarly, it can also be shown that (3.70) is equivalent to the conditions∫
Q

(S∗I∗1 (q − p) +$1β
∗
1) (β1 − β∗1) ≥ 0 for all β1 ∈ U1. (3.84)∫

Q
(S∗I∗2 (q − p) +$2β

∗
2) (β2 − β∗2) ≥ 0 for all β2 ∈ U2.. (3.85)

and this concludes the proof of Theorem 3.5. �
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