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Abstract. In this paper, we introduce a new modified proximal point algorithm to approximate a common
element of the set of solutions of convex minimization problems and the set of fixed points of nearly
asymptotically quasi-nonexpansive mapping in CAT(0) space. We also provide convergence guarantees
for solving convex optimization problems and fixed-point problems involving total asymptotically nonex-
pansive mappings, while assuming only mild and practical conditions.
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1. Introduction

Let C be a nonempty subset of a metric space (X , d) and T : C → C be a nonlinear mapping. The
fixed point set of T is denoted by F (T ), that is, F (T ) = {x ∈ C : x = T x}.

Fixed point theory in CAT(0) spaces was proposed by Kirk [20], which subsequently drew the
attention of many researchers in this subject and has been a fascinating area of study for the past few
years. Kirk demonstrated that a nonexpansive mapping constructed on a bounded convex closed subset
of a complete CAT(0) space has a fixed point (see [23]).

Recently, Asifa et al. [1] proposed a four step iterative algorithm to solve the fixed point problem,
and they also used a numerical example to understand the effectiveness of the new four step iteration
procedure, which is given as follows:

Let C be a nonempty closed convex subset of complete CAT(0) space and T : C → C be a mapping.
Let x1 ∈ T be arbitrary and the sequence generated iteratively by
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cn = T n((1− ρn)xn ⊕ ρnT nxn),

bn = T n(T ncn),

an = T n(T nbn),

xn+1 = T nan, n ≥ 1.

(1.1)

Let (X , d) be a metric space and f : X → (−∞,∞] be a proper and convex function. One of the major
problems in optimization is to find x ∈ X such that

f(x) = min
y∈X

f(y). (1.2)

The set of minimizers of f is denoted by arg miny∈X f(y). The proximal point algorithm (PPA) was
developed byMartinet [2] in 1970 as a technique for locatingminimizers of convex lower semicontinuous
(lsc) functions constructed on Hilbert spaces. Since then, the PPA has grown incredibly popular
among the different scholars’ interest in optimization theory and also exposed a number of difficult
mathematical problems. Optimization problems onmanifolds are solved by awide range of applications
in computer vision, machine learning, electronic structure computation, system balance, and robot
manipulation (see [4–7]).

In 2014, Bačák [8] attained some results using the proximal point algorithm in CAT(0) spaces. Also,
he extended the findings of Bertsekas [9] into Hadamard spaces by using a splitting version of the PPA
to determine the minimizer of a sum of convex functions. Since then, a great deal of mathematician
have produced a number of findings pretaining to the proximal point methods within the context of
CAT(0) spaces (see [10–16,28]).

We provide the following modified proximal point approach for nearly asympotically quasi-
nonexpansive mappings in CAT(0) spaces utilising the iteration process defined by Asifa et al. [1]:

x1 ∈ C

vn = arg min
c∈C

(
L(c) +

1

2λn
d2(c, xn)

)
,

un = arg min
b∈C

(
G(b) +

1

2ϕn
d2(b, vn)

)
,

cn = ((1− ρn)xn ⊕ ρnT nun),

bn = T n(T ncn),

an = T n(T nbn),

xn+1 = T nan, n ≥ 1.

(1.3)

We illustrate convergence outcomes of the proposed process under several moderate conditions
based on previous work.
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2. Preliminaries

This section reiterates a few commonly employed lemmas and ideas that are frequently used in our
main findings.

If every geodesic triangle in a metric space X is at least as thin as its corresponding triangle in the
Euclidean plane and the space is geodesically connected, it is referred to as a CAT(0) space (more
information may be found in [17]).
When a subset C of a CAT(0) space X contains every geodesic segment linking two of its points, it
is said to be convex; that is, for every pair of points u, v ∈ C, we obtain [u, v] ⊂ C, where [u, v] :=

{%u⊕ (1− %)v : 0 ≤ % ≤ 1} is the unique geodesic joining u and v.
If, for every u, v ∈ C, d(T u, T v) ≤ d(u, v), then single-valued mapping T : C → C is referred as
nonexpansive mapping.
If any sequence {uk} in C fulfilling lim

k→∞
d(T uk, uk) = 0, has a convergent subsequence, then the single-

valued mapping T : C → C is referred to as semi-compact.
F (T ) represents the set of all fixed points of T . Now, we talk about the following lemma, which turns
out to be helpful later on.

Lemma 2.1. ( [18]) Given CAT(0) space (X , d), the subsequent claims hold:

(i) A unique z ∈ [u, v] exists for u, v ∈ X and p ∈ [0, 1] such that

d(u, z) = pd(u, v) and d(v, z) = (1− p)d(u, v).

(ii) For u, v, z ∈ X and p ∈ [0, 1], we have

d((1− p)u⊕ pv, z) ≤ (1− p)d(u, z) + pd(v, z)

and

d2((1− p)u⊕ pv, z) ≤ (1− p)d2(u, z) + pd2(v, z)− p(1− p)d2(u, v).

In the preceding Lemma, for the unique point z, we use the notation (1− p)u⊕ py.
Now, we gather some fundamental geometric properties that will be useful in the article.
Let {uk} be a bounded sequence in a complete CAT(0) space X . For u ∈ X we write:

r(x, {uk}) = lim sup
k→∞

d(u, uk).

The asymptotic radius r({uk}) is provided by

r({uk}) = inf{r(u, uk) : x ∈ X}

and the asymptotic center A({uk}) of {uk} is characterized as:

A({uk}) = {x ∈ X : r(u, uk) = r({uk})}.
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The fact thatA({uk}) is composed of exactly one point in a complete CAT(0) space is widely known [19].
Now, in order to help with our explanation that follows, we provide the definition and some basic
properties of the ∆-convergence.

Definition 2.1. ( [20]) For every subsequence {sk} of {uk}, if u is the unique asymptotic center of {sk}, then

{uk} in a CAT(0) space X is said to be ∆-convergent to a point u ∈ X . In this instance, we denote u the ∆-limit

of {uk} and write ∆− limk→∞ uk = u.

Lemma 2.2. ( [20]) There exists a ∆-convergent subsequence for every bounded sequence in a complete CAT(0)

space.

Lemma 2.3. ( [21]) If C is a closed convex subset of a complete CAT(0) spaceX and {uk} is a bounded sequence

in C, then the asymptotic center of {uk} is in C.

Lemma 2.4. ( [18]) In a complete CAT(0) space (X , d), let C be a nonempty closed convex subset, and let

T : C → C be a nonexpansive mapping. Then x is a fixed point of T if {uk} is a bounded sequence in C such that

∆− limk uk = x and lim
k→∞

d(T uk, uk) = 0.

Lemma 2.5. ( [18]) If {uk} is a bounded sequence in a complete CAT(0) space with A({uk}) = {x}, {Sk} is

a subsequence of {uk} with A({Sk}) = {u} and the sequence {d(uk, u)} converges, then x = u.

In this paper, we mainly study lower semi-continuous and convex functions on CAT(0) spaces. Note
that a function L : C → (−∞,∞] defined on a convex subset C of a CAT(0) space is convex if and
only if the function Loγ is convex for any geodesic γ : [a, b]→ C. In other words, L(%u⊕ (1− %)v) ≤

%L(u) + (1− %)L(v) for all u, v ∈ C. See [24] for a few noteworthy examples.
Further, a function L defined on C is considered as lower semi-continuous at u ∈ C if

L(u) ≤ lim infk→∞L(uk)

for each sequence {uk} such that uk → u as k → ∞. A function L is considered as a lower
semi-continuous on C if it is lower semi-continuous at any point in C.

For any λ > 0, define the Moreau-Yosida resolvent of L in CAT(0) space as follows:

Jλ(u) = arg min
v∈C

[L(v) +
1

2λ
d2(v, u)]

for all u ∈ C. For any λ ≥ 0, the mapping Jλ is clearly defined; see [3]. The set U(Jλ) of the fixed
point of the resolvent Jλ associated with L coincides with the set arg min

v∈C
L(v) of minimizers of L if L

is a proper, convex, and lower semi-continuous function; see [24]. Moreover, the resolvent Jλ of L is
nonexpansive for every λ > 0; see [25].
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Lemma 2.6. ( [26]) For a given complete CAT(0) space (X , d), consider that L : X → (−∞,∞] is a proper,

convex and lower semi-continuous function, then for all u, v ∈ X and λ > 0, we have

1

2λ
d2(Jλu, v)− 1

2λ
d2(u, v) +

1

2λ
d2(y, Jλu) + L(Jλu) ≤ L(v).

Lemma 2.7. ( [25,27]) Assume that (X , d) is a complete CAT(0) space and that L : X → (−∞,∞] is a lower

semi-continuous, proper, convex function. Then, the subsequent identity is valid:

Jλu = Jµ(
λ− µ
λ

Jλu⊕
µ

λ
u)

for all u ∈ X and λ > µ > 0.

Lemma 2.8. [29] (Ariza-Ruiz et al. 2014). Let (X , d) be a complete CAT(0) space and G : X → (−∞,∞] a

proper convex and lower semi-continuous. Then, for any χ > 0,

(a) the proximal operator proxχG of G is firmly nonexpansive, i.e.,

d
(
proxχG(a), proxχG(b)

)
≤ d

(
(1− t)a⊕ tproxG(a), (1− t)b⊕ tproxχG(b)

)
for all a, b ∈ X and t ∈ (0, 1);

(b) the set Fix(proxχG) of fixed points of proxχG coincides with the set argminb∈X G(b) of minimizers of G.

It is well known that every firmly nonexpansive mapping is nonexpansive.

Lemma 2.9. [30] Let {sn} be the sequence of nonnegative numbers such that

sn+1 ≤ γnsn + ξn

where {γn} and {ξn} are sequences of non negative numbers such that γn ⊆ [1,∞) and
∑∞

n=1 (γn − 1) <∞

and
∑∞

n=1 ξn <∞. Then limn→∞ sn exists.

3. Main results

We begin this section by the following useful theorem:

Theorem 3.1. Let C be a nonempty closed convex subset of a complete CAT (0) space (X , d). Let L,G : C →

(−∞,∞] be proper convex and lower semi-continuous functions and T : C → C be uniformly continuous

mapping satisfying the following:

(a) T is nearly asymptotically quasi-nonexpansive mapping with sequence {(κn, γn)} such that
∑∞

n=1 κn <∞

and
∑∞

n=1 (γn − 1) <∞;

(b) T is nearly uniformly Υ-Lipschitzian mapping with sequence {(θn,Υ)}.

Let P = Fix(T ) ∩ argminb∈C L(b) ∩ argminc∈C G(c) 6= ∅. Let {ρn} be the sequence in (0, 1) such that

0 < ρ ≤ ρn < 1 for all n ∈ N and for some ρ and let {λn} and {ϕn} be sequences in (0,∞) such that 0 < λ ≤ λn
and 0 < ϕ ≤ ϕn for all n ∈ N. For x1 ∈ C, let {xn} be a sequence in C defined by (1.3). Then we have the
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following:

(D1) limn→∞ d (xn, p) exists for each p ∈ P ;

(D2) limn→∞ d (xn, T xn) = 0.

Proof. Let p ∈ P . Then p = T p and L(p) ≤ L(b) and G(p) ≤ G(c) for all b, c ∈ C. Since, L(p) ≤ L(b), it
follows that

L(p) +
1

2λn
d2(p, p) ≤ L(b) +

1

2λn
d2(b, p)

for all b ∈ C and hence p = proxλnL(p) for all n ∈ N. Similarly, we have p = proxϕnG (p) for all n ∈ N.
First, we prove that limn→∞ d (xn, p) exists. Note that un = proxλnL (vn) and vn = proxϕnG (xn) for

all n ∈ N. By Lemma 2.8, it follows that

d (un, p) = d
(
proxλnL (vn) ,proxλnL(p)

)
≤ d (vn, p)

and
d (vn, p) = d

(
proxϕnG (xn) , proxϕnG (p)

)
≤ d (xn, p) .

Hence,

d (un, p) ≤ d (xn, p) (3.1)

Using the definition of nearly asymptotically quasi-nonexpansive mapping and (1.3), we have

d (cn, p) = d
(

(1− ρn)xn ⊕ ρnT nun, p
)

≤
(

(1− ρn) d (xn, p) + ρnd (T nun, p)
)

≤ (1− ρn) d (xn, p) + ρn [γnd (un, p) + κn]

≤ (1− ρn) d (xn, p) + ρn [γnd (vn, p) + κn]

≤ (1− ρn) d (xn, p) + ρn [γnd (xn, p) + κn]

≤ γnd (xn, p) + κn,

(3.2)

Also, we attain

d (bn, p) = d (T n (T ncn) , p)

≤ γnd (T ncn, p) + κn

≤ γn [γnd (cn, p) + κn] + κn

≤ γ2
nd (cn, p) + (1 + γn)κn

≤ γ2
n [γnd (xn, p) + κn] + (1 + γn)κn

≤ γ3
nd (xn, p) +

(
γ2
n + γn + 1

)
κn,

(3.3)
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and
d (xn+1, p) = d (T nan, p)

≤ γnd (an, p) + κn

≤ γnd (T nbn, p) + κn

≤ γnd [γnd (bn, p) + κn] + κn

≤ γ2
nd (bn, p) + γnκn + κn

≤ γ2
n

[
γ3
nd (xn, p) + γ2

nκn + γnκn + κn
]

+ γnκn + κn

≤ γ5
nd (xn, p) +

(
γ4
n + γ3

n + γ2
n + γn + 1

)
κn

≤ (1 + (γn − 1)(γ4
n + γ3

n + γ2
n + γn + 1))d (xn, p)

+
(
γ4
n + γ3

n + γ2
n + γn + 1

)
κn.

(3.4)

whereM1 = 1 + supn∈N
(
γ4
n + γ3

n + γ2
n + γn + 1

)
γn. By Lemma 2.9, limn→∞ d (xn, p) exists. (ii) Next

we will prove that limn→∞ d (xn, vn) = 0 and limn→∞ d (xn, un) = 0. Assume that

lim
n→∞

d (xn, p) = r (3.5)

for some r > 0. By Lemma 2.6, we have
1

2ϕn
d2
(
proxϕnG (xn) , p

)
− 1

2ϕn
d2 (xn, p) +

1

2ϕn
d2
(
xn,proxϕnG (xn)

)
≤ G(p)− G (xn) .

Since G(p) ≤ G (xn) for all n ∈ N, it follows that

d2 (xn, vn) ≤ d2 (xn, p)− d2 (vn, p) (3.6)

and
1

2λn
d2
(
proxλnL (vn) , p

)
− 1

2λn
d2 (vn, p) +

1

2λn
d2
(
vn, proxλnL (vn)

)
≤ L(p)− L (vn) .

Since L(p) ≤ L (vn) for all n ∈ N, it follows that

d2 (vn, un) ≤ d2 (vn, p)− d2 (un, p) (3.7)

From (3.4), we have
d (xn+1, p) ≤ γ2

nd (bn, p) + γnκn + κn.

By taking limn→∞ both sides, we have

r = lim inf
n→∞

d (xn+1, p) ≤ lim inf
n→∞

d (bn, p) .

From (3.3), we have lim supn→∞ d (bn, p) ≤ lim supn→∞ d (xn, p) = r. Thus,

lim
n→∞

d (bn, p) = r (3.8)
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From (3.3), we also have,
d (bn, p) ≤ γ2

nd (cn, p) + γnκn + κn

By taking limn→∞ both sides, we have

r = lim inf
n→∞

d (bn, p) ≤ lim inf
n→∞

d (cn, p

From (3.2), we have lim supn→∞ d (cn, p) ≤ lim supn→∞ d (xn, p) = r. Thus,

lim
n→∞

d (cn, p) = r (3.9)

From (3.2), we also get

d (cn, p) ≤ (1− ρn) d (xn, p) + ρn [d (un, p) + κn]

d (cn, p) ≤ d (xn, p)− ρnd (xn, p) + ρnd (un, p) + ρnκn

ρnd (xn, p) ≤ d (xn, p)− d (cn, p) + ρnd (un, p) + ρnκn

d (xn, p) ≤
1

ρn
(d (xn, p)− d (cn, p)) + d (vn, p) + κn.

(3.10)

Using (3.5) and (3.9), we get r = lim infn→∞ d (xn, p) ≤ lim infn→∞ d (vn, p) which together with
d (vn, p) ≤ d (xn, p) gives us that

lim
n→∞

d (vn, p) = r (3.11)

Hence, from (3.6), we obtain

lim
n→∞

d (xn, vn) = 0 (3.12)

From (3.2), we have

d (cn, p) ≤ (1− ρn) d (xn, p) + ρn [d (un, p) + κn]

d (cn, p) ≤ d (xn, p)− ρnd (xn, p) + ρnd (un, p) + ρnκn

ρnd (xn, p) ≤ d (xn, p)− d (cn, p) + ρnd (un, p) + ρnκn

d (xn, p) ≤
1

ρn
(d (xn, p)− d (cn, p)) + d (un, p) + κn

(3.13)

Using (3.5) and (3.9), we get r = lim infn→∞ d (xn, p) ≤ lim infn→∞ d (un, p) which together with
d (un, p) ≤ d (xn, p) gives us that

lim
n→∞

d (un, p) = r. (3.14)

Hence, from (3.7), (3.11) and (3.13), we have

lim
n→∞

d (vn, un) = 0 (3.15)
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From (3.5) and (3.14), we get

lim
n→∞

d (xn, un) = 0 (3.16)

From (3.1), we have

d2 (cn, p) =d2 ((1− ρn)xn ⊕ ρnT nun, p)

≤ (1− ρn) d2 (xn, p) + ρnd
2 (T nun, p)− ρn (1− ρn) d2 (xn, T nun)

≤ (1− ρn) d2 (xn, p) + ρn (γnd (un, p) + κn)2 − ρn (1− ρn) d2 (xn, T nun)

= (1− ρn) d2 (xn, p) + ρn
(
γ2d2 (un, p) + (κn + 2γnd (un, p))κn

)
− ρn (1− ρn) d2 (xn, T nun)

≤γ2
n (1− ρn) d2 (xn, p) + ρn

(
γ2
nd

2 (un, p) +M2κn
)
− ρn (1− ρn) d2 (xn, T nun)

≤γ2
n (1− ρn) d2 (xn, p) + ρ2

nγ
2
nd

2 (un, p) +M2κn − ρn (1− ρn) d2 (xn, T nun)

=γ2
nd

2 (xn, p) +M2κn − ρn (1− ρn) d2 (xn, T nun) ,

(3.17)

whereM2 = supn∈N (κn + 2d (un, p)). From (3.17),

ρn (1− ρn) d2 (xn, T nun) ≤
(
γ2
nd

2 (xn, p)− d2 (cn, p)
)

+M2κn

Hence from (3.5) and (3.9), we have

lim
n→∞

d (xn, T nun) = 0.

Moreover, we get

d (xn, T nxn) ≤ d (xn, T nun) + d (T nun, T nxn)

≤ d (xn, T nun) + d (un, xn) + κn → 0 as n→∞.
(3.18)

Using (3.18), we have

d (xn, cn) = d (xn, (1− ρn)xn ⊕ ρnT nun)

≤ (1− ρn) d (xn, xn) + ρnd (xn, T nun)

→ 0 as n→∞.

(3.19)

Next, we get

d (xn, xn+1) = d (xn, T nan)

≤ d (xn, T nxn) + d (T nxn, T nan)

≤ d (xn, T nxn) + γnd (xn, an) + κn

≤ d (xn, T nxn) + γnd (xn, T n (T ncn)) + κn

≤ d (xn, T nxn) + γn [γnd (xn, T ncn) + κn] + κn (3.20)
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≤ d (xn, T nxn) + γn [γn (d (xn, T nxn) + d (T nxn, cn)) + κn] + κn

≤ d (xn, T nxn) + γ2
nd (xn, T nxn) + γ2

nd (T nxn, cn) + γnκn + κn

≤
(
γ2
n + 1

)
d (xn, T nxn) + γ2

n [γnd (xn, cn) + κn] + γnκn + κn

≤
(
γ2
n + 1

)
d (xn, T nxn) + γ3

nd (xn, cn) + γ2
nκn + γnκn + κn

≤
(
γ2
n + 1

)
d (xn, T nxn) + γ3

nd (xn, cn) + κn
(
γ2
n + γn + 1

)
→ 0 as n→∞.

Using the uniform continuity of T in (3.18) and the definition of nearly uniformly Υ-Lipschitzian
mapping T in (3.19), we have limn→∞ d

(
T xn, T n+1xn

)
= 0 and limn→∞ d

(
T n+1xn, T n+1xn+1

)
= 0.

d (xn, T xn) ≤d (xn, xn+1) + d
(
xn+1, T n+1xn+1

)
+ d

(
T n+1xn+1, T n+1xn

)
+ d

(
T n+1xn, T xn

)
→0 as n→∞.

(3.21)

This completes the proof. �

Now, we are in position to state the first main result of the paper

Theorem 3.2. Let C be a nonempty closed convex subset of a complete CAT (0) space (X , d). Let L,G : C →

(−∞,∞] be proper convex and lower semi-continuous functions and let T : C → C be uniformly continuous

mapping satisfying the following:

(a) T is nearly asymptotically quasi-nonexpansive mapping with sequence {(κn, )} such that
∑∞

n=1 κn <∞

and
∑∞

n=1 (−1) <∞;

(b) T is nearly uniformly Υ-Lipschitzian mapping with sequence {(θn,Υ)}. Let T satisfies the demiclosedness

principle and P = Fix(T ) ∩ argminb∈C L(b)∩ argminc∈C G(c) 6= ∅. Let {ρn} be the sequence in (0, 1) such

that 0 < ρ ≤ ρn < 1 for all n ∈ N and for some ρ and let {λn} and {ϕn} be sequences in (0,∞) such that

0 < λ ≤ λn and 0 < ϕ ≤ ϕn for all n ∈ N. For x1 ∈ C, let {xn} be a sequence in C defined by (1.1). Then the

sequence {xn}∆ - converges to an element of P .

Proof. Since 0 < λ ≤ λn, therefore from Lemma 2.7 and (3.15), we have

d (proxλL xn, xn) ≤ d (proxλL xn, un) + d (un, vn) + d (vn, xn)

= d
(
proxλL xn,proxλnL vn

)
+ d (un, vn) + d (vn, xn)

= d

(
proxλL xn, proxλLY

(
λn − λ
λn

proxλnL vn ⊕
λ

λn
vn

))
+ d (un, vn) + d (vn, xn)

≤ d
(
xn,

λn − λ
λn

proxλnL vn ⊕
λ

λn
vn

)
+ d (un, vn) + d (vn, xn) (3.22)
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=

(
1− λ

λn

)
d
(
xn,proxλnL vn

)
+

λ

λn
d (xn, vn) + d (un, vn) + d (vn, xn)

=

(
1− λ

λn

)
d (xn, un) +

λ

λn
d (xn, vn) + d (un, vn) + d (vn, xn)

=

(
1− λ

λn

)
d (xn, un) +

(
1 +

λ

λn

)
d (xn, vn) + d (un, vn)

→ 0 as n→∞.

Proceeding in the same manner as above and using (3.12), we have

d
(
proxϕG xn, xn

)
≤ d

(
proxϕG xn, vn

)
+ d (vn, xn)

= d
(
proxϕG xn, proxϕnG xn

)
+ d (vn, xn)

= d

(
proxϕG xn,proxϕG

(
ϕn − ϕ
ϕn

proxϕnG xn ⊕
ϕ

ϕn
xn

))
+ d (vn, xn)

≤ d
(
xn,

ϕn − ϕ
ϕn

proxϕnG xn ⊕
ϕ

ϕn
xn

)
+ d (vn, xn)

=

(
1− ϕ

ϕn

)
d
(
xn,proxϕnG xn

)
+

ϕ

ϕn
d (xn, xn) + d (vn, xn)

=

(
1− ϕ

ϕn

)
d (xn, vn) +

ϕ

ϕn
d (xn, xn) + d (vn, xn)

=

(
1− ϕ

ϕn

)
d (xn, vn) + d (vn, xn)

=

(
2− ϕ

ϕn

)
d (xn, vn)

→ 0 as n→∞

(3.23)

Next we show that w∆ (xn) =
⋃
{ζn}⊂{xn}A ({ζn}) ⊂ P . Let u ∈ w∆ (xn). Then there exists a

subsequence {ζn} of {xn} such that A ({ζn}) = {ζn}. Therefore, there exists a subsequence {ϑn} of
{ζn} such that ∆− limn→∞ ϑn = ϑ for some ϑ ∈ P .

In view of Theorem 3.1, we have

lim
n→∞

d (ϑn, T ϑn) = 0, lim
n→∞

d (proxλL ϑn, ϑn) = 0, lim
n→∞

d
(
proxϕnG ϑn, ϑn

)
= 0.

Since T satisfies demiclosedness conditions, we have ϑ ∈ P . Hence, by Theorem 3.1(D1),
limn→∞ d (xn, ϑ) exists and by Lemma 2.5, we have ζ = ϑ. This shows that w∆ (xn) ⊂ P .

Finally, we show that the sequence {xn} generated by (1.3) ∆-converges to a point in P . To this
end, it suffices to show that w∆ (xn) consists of exactly one point. Let {ζn} be a subsequence of {xn}
and let A ({xn}) = {a}. Since ζ ∈ w∆ (xn) ⊂ P and d (xn, ζ) converges, we have a = ζ. Hence
w∆ (xn) = {a}. �
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4. Conclusion

In this work, we presented a modified proximal point approach to approximate a shared point of the
set of fixed points of nearly asymptotically quasi-nonexpansive mapping in CAT(0) space and the set
of solutions to convex minimization problems. Assuming only mild and practical conditions, we also
offered convergence guarantees for convex optimization issues and fixed-point problems using total
asymptotically nonexpansive mappings.
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