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AsstrACT. This paper analyzes the controllability of a stochastic model of lymphatic filariasis. Like other
diseases, the spread of lymphatic filariasis is subject to a degree of randomness due to fluctuations in
the natural environment. This provides an opportunity to formulate a mathematical model of lymphatic
filariasis that accounts for as much external stochasticity as possible. First, we use stochastic optimal
control theory to formulate the control problem associated with the model. We then study the existence
of an adapted optimal control and characterize the stochastic optimal control. Finally, we present some
numerical simulations to validate our results.
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1. INTRODUCTION

Lymphatic filariasis is a neglected tropical disease that primarily affects subtropical regions, where
poverty is particularly prevalent. The main vector of this well-known disease is the mosquito. In this
context, mathematical models are valuable tools for providing a clearer understanding of the disease’s
prevalence dynamics. As a result, numerous researchers have proposed mathematical models related
to lymphatic filariasis [ 1-5]. Among these works, the study by C. P. Bhunu and S. Mushayabasa [1] is
particularly noteworthy, as it presents a model for lymphatic filariasis. They further explore the local
stability of equilibrium points using central manifold theory [6] and Theorem 4.1 from the paper by C.
Castillo-Chavez and B. Song [7]. Additionally, they consider the transition from the exposed to the
infectious state as a reinfection process, using a function \,, dependent on I,,, and a constant p.
However, while deterministic models of lymphatic filariasis are useful for analyzing certain dynamics,

they are limited in accurately predicting the disease’s future progression. This limitation can be
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addressed by stochastic models, which offer a higher degree of realism. Many authors have studied
stochastic systems and models in this context [8-20]. To our knowledge, few studies have focused
on applying stochastic control to lymphatic filariasis models. In this work, optimal control theory
is applied to the stochastic model developed by Fourtoua Victorien KONANE and Ragnimwendé
SAWADOGO in [23]. These authors have also studied in depth the persistence and extinction dynamics
of the disease.

First, the existence and uniqueness of the global positive solution will be analyzed based on the
theory of stochastic differential equations [21]. Next, the controllability of the proposed stochastic
model for lymphatic filariasis will be assessed, starting with the introduction of the stochastic optimal
control problem, followed by the formulation of the control problem, the demonstration of the existence
of an optimal control adapted to the states of lymphatic filariasis, and the characterization of the control.

Finally, numerical simulations will be presented to evaluate and validate the theoretical results.

2. STOCHASTIC MODEL

2.1. Formulation of the stochastic model. This section is dedicated to the presentation of the stochastic
model. Let N and N,, represent the population sizes of humans and mosquitoes, respectively. The
compartments S, I/, and I correspond to the susceptible, exposed, and infectious individuals during
the epidemic. The following tables provide a detailed description of these classes. As mentioned
earlier in the introduction, the study of the persistence and extinction of the disease has already been
addressed in the article by Fourtoua Victorien KONANE and Ragnimwendé SAWADOGO [23]. In the

context of our work, we focus exclusively on the control aspect of the model.

TaBLE 1. Parameters for humans hosts.

Notations Biological description

Sh, compartment of susceptible humans
Ey compartment of latent humans
I, compartment of infectious humans

TaBLE 2. Parameters for vectors hosts.

Notations Biological description

Sm compartment of susceptible mosquitoes

I, compartment of infectious mosquitoes
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The compartmental diagram describing the progression of infection in the different compartments is

given by Figure 1.
pnSh
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FiGure 1. Transfer diagram of the deterministic model

Let us now introduce the proportions

) = 2 a0 = 2,
we) = B0 = 22,
'Lm(t) = Iﬂ]z[:)

Then, we following the equalities s;,(t) + en(t) + i () = 1 and s,,(t) + i, (t) = 1.

2.2. Preliminary. We give some basic theory on the differentials stochastic equations (see [22]).
Throughout this paper, unless otherwise specified, let (2, 7, P) a complete probability space with
(Ft)e>o filtration that satisfying the usual conditions. We note

RS = {(21, %2, 23,24, 25) € R : 21 > 0,29 > 0,23 > 0,24 > 0,25 > 0} and

xT = {(z1,22,23,24,35) ERY 101 + 22+ 23 < 1,34 + 25 < 1}.

The following stochastic system is considered:
dX (t) = f(t, X (t))dt + g(t, X (£))dB(1), (1)

for t > to withX (tg) = Xo € R", B(t) denotes n dimensional standard Brownian motion defined on

the above probability space. Define the differential operator £ associated to (1) by:

LV(t,X) =

vV, X) OV X) 1 7PV, X) ] 1,2 m
pr +f = —|—2Tr g X2 Y ouV(t,X)eC*(RxR™). (2)
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The description leads to the following system of differential stochastic equations:

dsn(t) = [in — Buim (D)sn(t) — pnsn(D)] dt — i (£)sn()dB1 (1),

den(t) = [Prim(t)sn(t) — (A + pn)en(t)] dt + muim(t)sn(t)dBi(t) — naen(t)dBa(t),

dip(t) = [Aen, — pnin(t)] dt + naen(t)dBa(1), (3)

Ay () = [t — (Bain(t) + Boen(t))sm(t) — s (£)] dt — nin(£)s,n()AB3(t) — naensin(£)dBa(D),

i (t) = [(P3in(t) + Baen(t))sm(t) = prmim ()] db + 13in(t)sm (¢)dB3(t) + naensm(t)dBa(t),

where Bj,j = 1,4 are mutually independent Brownians and 7;,j = 1, 4 are their respective intensities
and 81 = B, B2 = OnBh, B3 = Br. The study of the existence and uniqueness of solutions to the system

3 has already been analyzed in [23].

2.3. Statement of the control problem and preliminaries. Let (€2, 7, P) a probability space, (F),5( a
filtration. Let B(t) = (B (t), Ba(t),0, B3(t), B4(t)) a standard Brownian motion (in particular B(t) is a

martingale of 7;) with real values. Assume that
Fi=0{B(§),0< <1} (4)

Let us consider the system of stachastic differential equations (3). The resulting controlled system is

given by
dX(t) = F (t, X (t),U(t)) dt + M (t, X (t)) dB(t), )
X(0) = Xo,
where
F(,-) : [0,7T]x(0,1)°x U= (0,1)°, (t, Xy, Up) — F(t, X;, Uy) (6)
(7)
—N1im () sp(t) 0 0 0 0
Mim(t)sn(t)  —neep(t) 0 0 0
M(t,X(t) = 0 men(t) 0 0 0 (8)
0 0 0 _773ih(t)8m(t) _n4eh(t)8m(t)
0 0 0 msin(t)sm(t)  naen(t)sm(t)
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with
sn(t)
en(t)
U = ( :EZ ) Xo= | () (9)
Sm/(t)
im(t)
and

fth — V1im (t)sh(t) — pnsn(t)

V1t (t)sn(t) — (A + pn)en(t)

F(t,X(t),U(t)) = Aen(t) — pnin(t) (10)

fim — V2in(t)Sm(t) — Baen(t)sm(t) — msm(t)
V2in (t) S (t) + Baen(t)sm(t) — pmim(t)

We assume that U C (0,1)2 and T € ]0, +oo] is fixed. The function U(.) is called the control, which

represents the action or decision. At any given moment, the controller is well informed about certain
information in the system, as specified by the information field {F},, but is not in a position to say
what will happen in the future, given the uncertainty of the system. Mathematically, this restriction to

non-anticipation can be represented by U(.) is {F:},>(-adapted.

Definition 2.1. An admissible control U (.) is a process {F:},-q-adapted with values in U such that
sup E[|U®t)|™] < c0,Vm =1,2,... (11)
0<t<T

The set of all admissible controls is denoted by U yq.

Definition 2.2. The following problem

J@() = inf J(u() (12)

is finite if the right-hand side is finite.

We denote by L% the set of real processes X (.), {F;},>-adapted such that

E [/0T|X(t) P] < 0. (13)

5
Let S(t) : [0,T] — 2R a given multifunction. State constraints can be given by
X € S(t),vt € [0,T],P — p.s. (14)
The cost function we introduce is

JU() = E [/OTf(t, X, Ut)dt} (15)



Asia Pac. J. Math. 2025 12:21 6 of 20
with
f:]0;T) x (0,1)° x U — (0,1) (16)
define by
F(t Xe, Up) = vfim()sn(8) + v3in (t)sm(8). (17)
Our problem is to find the control vector U* that minimizes the cost function (15):
JU*(.)) = inf J(U(.)). (18)

UeUgyq
Given that
i) U() € Uag;
ii) (5) has a unique solution thanks to the section 1;

iii) The constraints verify (14);

iv) f(,X(),U()) € £L(0,T,(0,1)), because f(t, X¢,Ur) = viim (t)sp(t)+03in(t)sm(t) < oo thanks

to the fact that vy, va, iy, Sp, im, Sm € (0,1) and therefore

T

/ ‘f(t7Xt7Ut) |dt<OO,
0
ie.
T
E U | £t X0 U3 | dt| < oo

0

We can say that (18) is a strong formulation.

2.4. Existence of optimal control adapted to filariasis states.

(19)

(20)

Theorem 2.1. Let X (0) € (0,1)5 be such that there exists a control U(.) satisfying (5). If the problem (18) is

finite then there exists an optimal control U* on [0, T'| such that the associated trajectory Xy~ satisfies (5) and

minimizes the cost J(.) defined by (15).

Proof. 1t is obvious that the set U C [0, 1)? is convex because

o o
Dy — 8’0% 0v10v9 . 2im(t)3h(t) 0
F=1 9%y 2f |~ .
s 0 2ip(t)sm(t)
81}28@1 61}%
. . o f .
Dy = 4ip(t)sp(t)im(t)sm(t) > 0and 902 = 2im (t)sp(t) >0
1

car iy (t),im(t), sn(t), sm(t) € (0,1).

(21)

(22)
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In addition, for any U € Ugg,
sup F|U(t) "< ooforallm=1,2,... (23)
0<t<T
That is, J(U(.)) is finite, so the problem (15) is finite. According to the theorem on the existence of

optimal control, we have the result.

2.5. Characterisation of optimal control for filariasis. To characterise the control which minimises the
cost function (15), we use the stochastic maximum principle (for more details, see [24], [25] and [27]

theorem 3.2 p.118) .

Theorem 2.2. Let U* be a control vector, solution of the optimal control problem (18). There are two
applications {Fi}o-adapted p(.) = (Do, ()spep () Pin (s Pan (Dspin () [0,T) — R et q(1) =

(qsh(')7th(')7Qih(')a QSm(')7Qim(')) : [O,T] — M5((07 1)) such as
U — Pey(t) = Psp(t) Pipm(t) — Psm(t)
2 ’ 2

Proof. Through the theorem (2.1), we have shown that the optimal control problem. If U(.) =
(v1(.),v2(.)) € Uygq is the optimal control on [0,7] and Xy the trajectory associated with the so-
lution of the equation (5), then by application of the maximum stochastic principle, there ex-
ist two {Fi{;5p-adapted p(.) = (ps,(.),Pe, (), Pi (); Ps, ()5 i () = [0,T] — R® and ¢(.) =
(gs, () e, (1) @i, ()5 @5 (), @i (1)) = [0, T] — M5((0,1)) absolutely continuous called adjoint vectors.
For all tin[0, T, the latter satisfy the first-order adjoint equations below and in this case, since the matrix
function M (t, X;) does not depend on the control vector, we do not need to introduce second-order
adjoint equations. That is, the assumption about the second-order differential of the functions F', M
and f with respect to x is not necessary. To learn more about and formulate the first-order adjoint
equation, see [28], [29] and [27].

OH

dp(t) = X (

tv Xt7 Ut7p8h7p€h7pih7p8mapim) dt + q(t)dB(t)7 (24)

where

H (t, X4, Ut, psy» Peys Pigs P> Piy)) - = P(E)-F(t, Xy, Up) — f(t, Xy, Up) e
H (t, X4, Ut, sy, Peys Pis Pss Pim) - = Dy, () [1tn — 018 (8) sk (t) — pnsn(t)]
FPey, (t) [vrim (£)sn(t) — (A + pn)en(t)]
+pi, (t) [Aen(t) — pnin(t)]
P, (£) [t — V201 (8) s (£) — B2en(t) sm(t) — pamsm (t)]
FPiy (t) V21, (8) i (t) + B2en(t)sm (t) — pmim (t)]

_U%im (t)sn(t) — Ugih (t)sm(t),
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Thus,
dps,, (1) = gi (t, Xt, Uty Dsyys Pepys Pins Psgn s Pign ) At + s, (1) d B (t)
dpe,, (t) = —gi (t, Xt, Uts Psy s Pers Pins P Pin) At + Gey, (¢)d Ba(t)
dpi, (t) = —gZ (t, Xt Uty Dsy» Des Pig» P> Pir ) At + @iy, (t)d B3(t) (25)
dps,, (t) = —gi (t, Xt, Ut, Psy,» Pes Pigs Do Di) A + G, (£)dBa(t)
i (0) = = (1 X Uty Doy Di s i 0+, (0 B5(0)
P (T) = pe, (T') = pi,(T) = ps,,, (T) = pi,, (T) = 0,

Set x¢ = (t, X¢, Uty Dsy, s Dey, » Pin > Psm > Piny ) fOr all t € [0, T7].
oOH

s, X} = P (8) [0rim(8) + pin] + vie, (8)im () — V3 ()i () (26)
geHh(Xt) = — (A4 pn)pey (t) + Api, (t) — Bosm (t)ps,, (t) + Basm (t)ps,, () (27)
gi(m = —pnpiy, (1) = v28m (D)ps,, () + V28m (E)Di,, (1) — V38m () (28)
G O0) = () oain(®) + Boen(®) i) + i 2(00() + Baen0)] = Fin(t)  (29)
gZ(Xt) = —v18,(t)psy () + Pep (V18 (t) — pmpi, () — visn(t). (30)

This results in the following adjoint system:

¢

Aps, (t) = [=Dsy () (1 + V1 (t)) + V1im (t)ps, (t) — Viim ()] dt + g, (t)dB1(t)
dpe,, (t) = [=(A + pn)pe, (t) + Apiy, () — Basm ()ps,, () + Basm (t)piy, (1)) dt + qe,, (£)dBa(t)
dpi, (t) = [=pnpiy, (£) = V28 (D)Ps, (8) + V28 (D)pi,, () = V38 (8)] dt + g, (t)dBs(t)
dps,,, (1) = [Ps, () (—v2in(t) = Baen(t) = pim) + Py, () (v2in(t) + Baen(t)) — v3in(t)] dt + gs,, (t)dBa(t)
dpi,, (t) = [=pi,, ()0181(t) + Pey, (D)v15(8) = pmpi, (8) — visn(t)] dt + +4s,, (t)dBs(t)
[ Psi (T) = pe,,(T) = pi,,(T') = ps,,,(T) = pi,,,(T) = 0.

Optimal control theory allows us to obtain the control U*(.) = (v](..),v3(..)) € U,q satisfying the

sufficient optimality condition which holds almost everywhere on [0, 7.

H t7X7U*7 ) M ] ) 9 ! = maX H t7X7U7 ) M 3 ) M ]
( ty Ut y Dsp, s Pep s Pip s Psm pzm) Us (0.1 ma] x[0,85,maz] ( ty Uty Dsy s Pep s Pip s Pspm pzm)

This means finding the maxima at the points:
(0,v2(.)), (1,v2(.)) , (v1(.),0) , (v1(.), 1) and (v1,v2(.)) where vi(.),v2(.) € (0,1) (31)

and then compare them to find the overall maximum.

Searching for local maxima
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For the point Uy = (0, v2(.)), we have:

H(xt) = ps, () [t — pnsn(t)] = pe, (1) (A + pn) en(t) + piy, (1) (Aen(t) — pnin(t)) (32)
P50 () [tm — V21 (t) S (t) — Baen(t)sm(t) — pmsm(t)] (33)
D4 () (020 ()5 (1) + Baen (t)sm(t) = pmim (t)] = v3in(t)sm(t). (34)
So

gi (Xt) = P O)in(t)sm(t) + pi, (1)in(t)sm(t) — 202ip(t)sm (t) (35)
= (Din (t) = Ps,,, (1)) in(t)5m () — 202(8)5m (t)in(t). (36)

Therefore
g-Z (Xt) — 0 vy Dip, (t> ;psm (t) (37)

pim (t) — pSm (t)
2
For the point U; = (1, v2(.)), we have:

Hence U} = (O, > is a local maximum of H.
H(xt) = ps,(t) [on = im(®)sn(t) = pnsn(B)] + pe,, (8) [im () sn(t) — (A + pn)en(t)]
+piy, () [Nen(t) — punin(t)] + ps,, (t) [tm — voin(t)sm(t) — Baen(t)sm(t) — tmsm(t)]

+pi,, (8) [v2i3 ()5 () + Baen(t)sm(t) — Hmim(8)] = im(t)sn(8) — v3in(t)sm(t).

So
gi (Xt) = —Ps (O)in ()5 (t) + Pi, ()i (8) S (t) — 20205 (t)5m (1) (38)
It follows that
O () =0 sy = D)= o) -

Hence U? = (1, > is a local maximum of H.

2
For the point Uy = (v1(.),0), we have:

H(x:t) = Psy ltn = 01im(8)sp(t) — pnsn(t)] + pey, (1) [vrim (£)sn(t) — (A + pn)en(t)] (40)
i, (1) [Aen(t) = punin(t)] + ps,, [1im — Baen(t)sm(t) — pmsm (t)] (41)
i, (8) [Baen(t)sm(t) — pimim(t)] = vim (8)sn (). (42)
So

gi (Xt) = —Psj, ()i (t) s (t) + Dey, (1) im () sh(t) — 2015, () sA(1). (43)
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Therefore

(44)

(S t) — S t : .
Hence U} = (W, O) is a local maximum of H.

For the point Uy = (v1(.), 1), we have:

H(xt) = psp(t) [nn = v1im(t)sn(t) — pnsn ()] + e, (t) [orim ()sn(t) — A+ pa)en(t)]  (45)
+Diy, [Men(t) = pnin(O)] + Psy (8) [m — in()sm (t) — Baen(t)sm(t) — prmim ()] (46)

iy (1) [in (D)5 (8) + Baen(O)sm(t) = pimim (8)] = viim(E)sn(t) = in(O)sm(t).  (47)

So
OH . . .
oy X) = =P (B)im (£)5n(t) + Pey (8)im (8) s (£) = 2010 (t)5n (1)- (48)
Therefore
37[‘[ _ Pey, (1) — ps, ()
oo (u) = 0 vy = Pt (49)
Hence U}! = peh(t);psh(t), 1> is a local maximum of H.

For the point Uy = (v1(.), v2(.)), we have:

H(xt) = ps,(t) [n —v1im(t)sn(t) — pnsn(t)] + ey, () [v1im(t)sn(t) — (A + pn)en(t)]
+pi, (8) [Nen(t) — pnin(t)] + ps,, (t) [m — v2in(8)sm () — Baen(t)sm(t) — tmsm(t)]

+Pi,, (8) [2in ()5 () + Baen(t)sm(t) = mim(t)] — vFim(t)sn(t) — v3in(t)sm(?).

So
gi (xt) = —Ds; ()im(®)sn(E) + Pep ()im(t)sn(t) — 201im (t)sn (L),
gi (Xt) = —Psu(®)in(t)sm(t) + i, (£)in(t)sm(t) — 20200 () S (2).
Therefore
gZ(Xt) =0sv = peh(t)gpsh(t)7 (50)
gg(xt) — 0w = pm(t);p(t) 51)
e 7 = (15220, 10050 s ot maima o 1

Searching for the global maximum

We look for the global maximum by comparing all the maxima. To do this, we calculate

H (t)Xta Utapshvpeh)pihvpsm7pim) (52)
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Set X} = (t, Xt, Uf, Psy> Pep s Dins Psm» Pi, ) fOr i = 1,5. We have

HOD) = po) i = 22 20, 00 = s ]+peh = - O en(t)
)

i [Aeh<t>—mh<m+psm<>[ P ()50 (8) — Baen (Ds(t) - umsmw]

i | PP s (0) + Baen ()5 (0) - umimm]

_ 2 . — 2
_(peh 4psh) i (1) sn(t) — (pi,, (1) 4psm(t))

in(t)sm(t).
Let’s compare H(x}) and H(x}).

peh (t) - psh (t)

1) = mod) - PO P gy @, 0
Pl =P O 0, 1) - PPl )50
— )+ a2y, () - Pa=Pu) )0,
— Hp) | P ;psh(t))Q  (pes —4psh)2 i () (1)
_ H(Xt)+Wim(t)sh(t).
So
H(x{) < H(x))- (53)

Let’s compare H(x}?) and H(x?).

ne) = 16 - el Pl gy, 0

2
Wim(t)sh(t)peh (t) — Wim(t)sh(t)

i ()51 (DD (E) = i (£)3(E)er () + ()35 (2)

= HOD + 1400 - 0= P20 TP 000

+

_l’_

2
) —pult), () <p—4p>] im0

= H(q)+

- _ (peh_psh)2 .
L= (pen (6) = Py () + L= P 1) (1)

= H(x{)+

B . 2
120l =P | Co = pu) ] im(t)31 (1)

2
=m0+ (P2 ) 0,
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So
H(x{) < H(x))- (54)
Let’s compare H(x}) and H(x3}).

_ Diy, (t) = s, (t) .

H(xj) = H(x) 5 in(t)sm (t)ps,, (1)

+Mih(t)sm(t)pim (t) — Mih(t)sm(t)

2 4
) _ 2 o 2
= a1+ P PO e, (1) - P =P 15,00
i 2 e
— H(X?) 4 (plm (t) 2p5m (t)) o (plm 4psm) Zh(t)Sm(t)
— 3 (pim - psm)2 .
O + =Pl 1), ),
So
H(x}) < H(x}). (55)
Let’s compare H(x}) and H(x}).
HeG) = H - 22O 4y 0, 0)

2

O =P @ )5, (0, 0) — o= Pon) g 115,

+in(8)sm (O)ps () = in(8)sm (0)piy, () + in(t)sm(t)

= HOD + |14 = i) = PO TP )05

+ 2 pi 1

Pinl) ~pon(®), () @—M] (D))

= H(xi)+

. _ (Pi, _pSm)2 :
1= (Pi, (t) = ps, (1)) + in(t)sm(t)

4
2
_ H(X?) + |1 — 2(pim(t> ;psm(t)) + (pim _4psm) ] ih(t)sm(t)
o 2
= O+ (P2 0,0,
So
H(x{) < H(xP). (56)

From (53), (54), (55) and (56) it follows that

H(xy) < H(xj) Vi€ {1,2,3,4} . (57)
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So the global maximum is
Pep, — Psp, Pim — DPs
U5 — h h ’ m m | 58
P- (23 ) (58)
O

2.6. Numeric simulation. The numerical simulations of the optimality system (5), along with the
corresponding results obtained by varying the optimal controls v1 and v, the choice of parameters, and
the interpretations of the different cases, are now discussed. The numerical solutions are illustrated

using MATLAB and the technique developed in [30]. The values of the white noise intensities are

o1 =0.3, 09 = 0.125, o3 = 0.225, 04 = 0.225.

10" 4
20 3 (10 8000
-t.l':l: - - |
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As the vy control approaches 0 and the v2 control approaches 1, Figures 2 — 6 show a significant

increase in the number of infectious individuals in the human population. Therefore, we can conclude

that control v; is more effective than control v in the eradication of Lymphatic Filariasis.

TABLES

Tables 3 give descriptions and values of the parameters used in the numerical simulation.

TaBLE 3. Model parameters and their interpretations

Parameters Biological description Values Source
Ap constant recruitment rate of human (it also includes births). 0.00242.10*  [1,31]
Bh rate of passage from susceptible humans to infectious humans ~ 0.015 Assumed

through blood transfusion
i mortality rate on human 0.8 Assumed
A rate of passage from latent human to infectious human 0.01 [1,31]
oy, modification parameter 0.25 [1]
A constant recruitment rate of mosquitoes 4.227.104 [1,31]
Bm average number of mosquito bites that cause transmission of 0.091 [1,31]
disease from infectious mosquito to susceptible human per
mosquito
tm Mosquito mortality rate 3.623 [1,31]

3. CoNCLUSION

In this article, we have presented a stochastic model of lymphatic filariasis. Lymphatic filariasis

is one of the most serious diseases in the world and still lacks adequate treatment. Therefore, using

stochastic theory, we developed a model of lymphatic filariasis that incorporates random effects. We

applied stochastic control theory to formulate the stochastic optimal control problem for the proposed

model, establish the existence of an adapted optimal control, and characterize it. The originality of

our article, compared to existing papers on lymphatic filariasis, lies in the addition of white noise and

the introduction of control into the stochastic model. Finally, we performed numerical simulations to

further illuminate our results. In the future, we plan to introduce controls to the parameters dependent

on the diffusion part in order to reduce the number of people infected with lymphatic filariasis.
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