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Abstract. COVID-19 has put a significant responsability on all of us around fom its detection and its
remediation. The globe suffer from lock down due to COVID-19 pandemic. The researchers are doing their
best to discover the nature of this pandemic and try to produce the possible plans to control it. One of the
most effective method to undestand and control the evolution of this pandemic is to model it via an efficient
mathematical model. In this paper, we propose to model the COVID-19 by fractional order SEIR model.
We determine the basic reproduction number. The existence of a stable solution of the fractional order
SEIR model is proved and the fractional order necessary conditions of four proposed control strategies
are produced.The sensitivity of the fractional order COVID-19 SEIR model to the fractional order and the
infection rate parameters are displayed. All studies are numerically simulated using PYTHON software
via fractional order differential equation solver.
2020 Mathematics Subject Classification. 34E05, 34D05, 65L20..
Key words and phrases. COVID-19, corona virus disease, optimal control, reported and unreported cases,
epidemic mathematical model.

1. Introduction

All the world states’ governments introduce a big effort and vital measures to eliminate the outbreak
of COVID-19 [16]. COVID-19 is a new progeny of coronavirus, SARS-CoV-2 and firstly detected in
Wuhan, China [35]. In the few months after discovering it, the number of patients were increasing
exponentially. The taken measures against COVID-19 until the day of writing these words didn’t
prevent the growth of infected cases around the globe. The World Health Organization situation report
published in 25 May 2020 informed that 5304772 cases as total cases and 342029 deaths around the
globe [33].
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Using mathematical model to predict the epidemics is very useful in order to understand the nature
of the epidemic and to design an efficient strategies to control it [4, 14]. It is common to study the
humanitarian diffusion of epidemics via SIR or SEIR models [11, 13]. Various models have been
proposed to model and study COVID-19 pandemic. Taking into account the risk understanding and
the accumulative issue of cases, COVID-19 pandemic has been modeled by Lin et al. via extending
SEIR model [23] where S signifies the susceptible, E signifies the exposed, I signifies the infected and R
signifies the removed cases.
In [3], Anastassopoulou et al. have suggested the SIR model in the discrete time mode taking into
account the dead cases. In [7] by Casella, SIR model is expanded to study the delays effect and to
compare the policies of containment. In [34] by Wu et al., the COVID-19 severity has been estimated
using the dynamics of transition. In [12], the general multi-group SEIRA model was represented and
numerically tested for modelling the diffusion of COVID-19 between a non-homogeneous population.
The basic mathematical tool used to model several epidemics is differential equations in various modes
(ordinary, fractional, with delay, randomly detected or partial) [20, 21]. Many research efforts have
been widely done to control the outbreaks of epidemics via optimal control [15,30]. The optimal control
idea is to look for the utmost powerful plan that decreases the rate of infection to a possible minimum
limit with optimal minimum cost of circulating a treatment or preventative inoculation [25, 29, 30].
These plans may include treatments, inoculation with vaccines, social distances, educational programs
[5,8]. The literature has several studies to control for example models of HIV [19], dengue fever [2],
tuberculosis [28], delayed SIR [1] and delayed SIRS [21]. The fractional order differential equations
add an extra dimensions in the study of dynamics of epidemiological models. Therefore the fractional
version of many epidemical models have been investigated as in [25], [8] and [32].
Here, a new epidemiological fractional mathematical model for the COVID-19 epidemic is proposed as
an extension of the classical SIR model, similar to that introduced by Gumel et al. for SARS in [18].
In this work, we consider the fractional order SEIR model and then we derive the fractional order
necessary conditions for existence of a stable solution. In addition, we study an optimal control plans
for the fractional order SEIR model via two control strategies that include the availability of vaccination
and existence of treatments for the infected detected three population fraction phases. Applying
the fractional order differential equations numerical solver using PYTHON software, we show the
dynamics of the state variables of the model and display the effect of changing the fractional derivative
order on the system response. Also, the effect of changing the infection rates on the fractional order
SEIR model’s state 3 variables. We also implement the optimal control strategies numerically for the
fractional order SEIR model.
The remaining parts of the paper are organized as follows. In Section 2, Preliminaries and basic
definition of the fractional derivative are introduced. Describing COVID-19 epidemic SEIR fractional
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mathematical model is introduced in Section 3. The basic reproduction number is given in section 4.
The details of the optimal control strategy and its implementation are given in Section 5. Numerical
simulations of the uncontrolled fractional order SEIR model, the effects of changing the fractional
derivative order on the system response and the effects of changing the infection rates are all given and
numerical simulations of the controlled fractional order SEIR model and the effects of applying the
proposed control strategies are represented in Section 6. The concluding remarks are put in Section 7
followed by the list of cited references.

2. Preliminaries

In this subsection, some definitions and results are introduced firstly.

Definition 2.1. [36] A gamma function Γ :]0; +∞[→ R is defined by

Γ(α) =

∫ ∞
0

xα−1e−xdx.

Definition 2.2. [36] For any t > t0, the time Caputo fractional derivative of order α (n < α < n+ 1) with the

lower limit t0 ≥ 0 for a function is defined by

∆αf(t) =
dαf(t)

dtα
=

1

Γ(n− α)

∫ t

t0

f (n)(s)

(t− s)α−n+1
ds,

where Γ(.) is the Gamma function.

Remark 2.1. When α = n,

∆αf(t) = f (n)(t).

Definition 2.3. [22] A constant x∗ is is an equilibrium point of the Caputo fractional dynamical system:

∆αx(t) = f(t, x), x(t0) ≥ 0,

if and only if f(t, x∗) = 0.

Lemma 2.1. [24] Consider the fractional-order system:

∆αx(t) = f(t, x), t0 ≥ 0,

with the initial condition x(t0) = x0, where α ∈ (0, 1] and f : [t0,∞)× Ω→ Rn, Γ ∈ Rn, if f(t, x) satisfies

the local Lipschitz condition with respect to x, there exists a unique solution of the above system.
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3. Model formulation and basic properties

The following diagram shows the dynamic of the covid-19

S E I

IR

Iu

R

γ
S

N
(I + Iu) qE

β 1
I

β
2 I

ηI
R

θI
u

Figure 1. The compartmental diagram for the SEIR model

Then, according to Figure 1, we obtain the following system of six differential equations:



∆αS = −γ S
N

(I + Iu),

∆αE = γ
S

N
(I + Iu)− qE,

∆αI = qE − βI,

∆αIR = β1I − ηIR,

∆αIu = β2I − θIu,

∆αR = ηIR + θIu,

(3.1)

where S(t) is the number of individuals susceptible to infection at time t, E(t) is the number of
individuals exposed at time t, I(t) is the number of asymptomatic infectious individuals at time t, IR(t)

is the number of reported symptomatic infectious individuals (i.e symptomatic infectious with sever
symptoms) at time t, and Iu(t) is the number of unreported symptomatic infectious individuals (i.e.,
symptomatic infectious with mild symptoms) at time t, R(t) is recovered individuals at times t. The
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initial conditions S(0), E(0), I(0), IR(0), Iu(0) and S(0) are all positive.
Since summing up all equations of (3.1) gives zero as a result then the system is compartmentalized
and shows the conservation property of mass : as can be directly proved,

∆αS + ∆αE + ∆αI + ∆αIR + ∆αIu + ∆αR = 0.

Which implies that the total population (the sum of all state variables) is constant.
The parameters are positive and defined as follows:
Parameter Definition

γ Transmission rate
q Rate that exposed individuals become infectious
β Rate that exposed individuals become unreported or reported infectuous individuals
β1 Rate that unreported individuals
β2 Rate that reported individuals
η Rate that reported individuals become Recovered
θ Rate that unreported individuals become Recovered

Proposition 3.1. The basic reproduction number for model system (3.1) is defined by

R0 =
γS0

βN

(
1 +

β2
θ

)
,

where the disease-free equilibrium for system (3.1) is given by E0 =

(
S0, 0, 0, 0, 0, 0

)
with S0 = N .

Proof. We use the method in [31] to compute the reproduction number R0.
We get

F =



F1

F2

F3

F4


=



γ
S

N
(I + Iu)

0

0

0


and V =



V1

V2

V3

V4


=



−qE

qE − βI

β1I − ηIR

β2I − θIu


, (3.2)

We have

DF =



∂F1

∂E

∂F1

∂I

∂F1

∂IR

∂F1

∂Iu
∂F2

∂E

∂F2

∂I

∂F2

∂IR

∂F2

∂Iu
∂F3

∂E

∂F3

∂I

∂F3

∂IR

∂F3

∂Iu
∂F4

∂E

∂F4

∂I

∂F4

∂IR

∂F4

∂Iu


=



0 γ
S

N
0 γ

S

N

0 0 0 0

0 0 0 0

0 0 0 0


(3.3)
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and

DV =



∂V1
∂E

∂V1
∂I

∂V1
∂IR

∂V1
∂Iu

∂V2
∂E

∂V2
∂I

∂V2
∂IR

∂V2
∂Iu

∂V3
∂E

∂V3
∂I

∂V3
∂IR

∂V3
∂Iu

∂V4
∂E

∂V4
∂I

∂V4
∂IR

∂V4
∂Iu


=



−α 0 0 0

α −β 0 0

0 β1 −η 0

0 β2 0 −θ


. (3.4)

On E0 = (S0, 0, 0, 0), we get

F =



0 γ
S0

N
0 γ

S0

N

0 0 0 0

0 0 0 0

0 0 0 0


(3.5)

and

V =



−α 0 0 0

α −β 0 0

0 β1 −η 0

0 β2 0 −θ


, (3.6)

Thus, we obtain

−FV −1 =



γS0

βN
+
γS0β2
θβN

γS0

βN
− γS0β2

θβN
0

γS0

θN

0 0 0 0

0 0 0 0

0 0 0 0


, (3.7)

The basic reproduction number is defined as the dominant egeinvalue of the matrix −FV −1.
Therefore,

R0 =
γS0

βN

(
1 +

β2
θ

)
. (3.8)

Remark 3.1. The basic reproduction number evaluate the average number of new infections generated by a single

infected individual in a completely susceptible population.
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4. Fraction order SEIR model’s optimal control strategy

In this section, the existence of the fractional order SEIR model’s optimal control is investigated and
then the Hamiltonian of the optimal control problem is constructed in order to produce the optimal
control necessary requirements.
Compute the optimal values of vaccination u1 and treatment strategies u2 that would maximize the
recovered individuals R and minimize the number of reported symptomatic infectious individuals
IR(t). In addition, the charges of utilizing the vaccination and treatment methods are minimized. Then
the optimal control problem of the following form is considered ( see for example [6])

min
(u1,u2)∈U

J(u1(t), u2(t)) = S(T ) + IR(T )−R(T ) +

∫ T

0
(c1u

2
1(t) + c2u

2
2(t) +S(t) + IR(t)−R(t))dt (4.1)

subject to the state equation 

∆αS = −γ S
N

(I + Iu)− u1S,

∆αE = γ
S

N
(I + Iu)− qE,

∆αI = qE − βI,

∆αIR = β1I − ηIR − u2IR,

∆αIu = β2I − θIu,

∆αR = (u2 + η)IR + θIu + u1S,

(4.2)

The two functions u1 and u2 represent vaccination and treatment strategies. These control functions
are assumed to be L∞(0, T ) functions belonging to a set of admissible controls

U = {(u1, u2) ∈ L∞(0, T )× L∞(0, T ) : u1min ≤ u1(t) ≤ u1max, u2min ≤ u2(t) ≤ u2max},

where 0 ≤ u1min < u1max ≤ 1 and 0 ≤ u2min < u2max ≤ 1. The two constants c1 and c2 are weighted
cost associated with the use of the controls u1(t) and u2(t), respectively.

4.1. Existence of optimal control. To show the existence of the optimal control for the problem under
consideration, we notice that the set of admissible controls U is, by definition, closed and bounded.
It is also convex because [u1min, u1max] × [u2min, u2max] is convex in R2. It is obvious that there is an
admissible pair ((u1(t), u2(t)), (S(t), E(t), I(t), IR(t), Iu(t), R(t))) for the problem. Hence, the existence
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of the optimal control comes as a direct result from the Filippove-Cesari theorem [26]. We therefore,
have the following result.

Theorem 4.1. Consider the optimal control problem (4.1) subject to (4.2). Then there exists an optimal pair

of controls (u∗1, u
∗
2) and a corresponding optimal states (S∗, E∗, I∗, I∗R, I

∗
u, R

∗) that minimizes the objective

function J over set of admissible controls U.

proof. To prove the existence of an optimal control pair, it is important to verify the following facts:

(1) The set of controls and corresponding state variables is nonempty,
(2) The admissible set U is convex and closed,
(3) The right-hand side of the state system (4.2) is bounded by a linear function in the state and

control variables,
(4) The integrand of the objective functional is convex on U,
(5) There exists constants ω1,ω2 > 0, and ρ > 1 such that the integrand L(S, IR, R, u1, u2) of the

objective functional satisfies L(S, IR, R, u1, u2) ≥ ω2 + ω1|(u1, u2)|ρ.

4.2. Characterization of optimal control. In this subsection, we derive the first order necessary con-
ditions for the existence of optimal control, by constructing the Hamiltonian H and applying the
Pontryagin’s maximum principle.
To simplify the notations, we write x(t) = [S(t), E(t), I(t), IR(t), Iu(t), R(t)]T , u(t) = [u1(t), u2(t)]

T

and λ(t) = [λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t)]. We denote by g(u(t), x(t)) the integrand part of the
objective function (4.1). With these notations and terminologies, the Hamiltonian is given by

H(u, x, λ) = g(u, x) + λT .ẋ

= c1u
2
1 + c2u

2
2 + S + IR −R+ λ1

(
− γ S

N
(I + Iu)− u1S

)
+λ2

(
γ
S

N
(I + Iu)− qE

)
+ λ3

(
qE − βI

)
+ λ4

(
β1I − ηIR − u2IR

)
+λ5

(
β2I − θIu

)
+ λ6

(
u2IR + ηIR + θIu + u1S

)
(4.3)

Let u∗ = [u∗1, u
∗
2]
T be the optimal control and x∗(t) = [S∗(t), E(t)∗, I∗(t), I∗R(t), I∗u(t), R∗]T be the corre-

sponding optimal trajectory. Then there exists λ(t) ∈ R6 such that the first order necessary conditions
for the existence of optimal control are given by the equations

∂H

∂u
(t) = 0, (4.4)

∆αx(t) =
∂H

∂λ
, (4.5)

∆αλ(t) = −∂H
∂x

(4.6)
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The optimality conditions:

[
∂H

∂u1
(t)

]
u1(t)=u∗1(t)

= 0 (4.7)

[
∂H

∂u2
(t)

]
u2(t)=u∗2(t)

= 0 (4.8)

Simplifying (4.7) and (4.8) we obtain

2c1u
∗
1 − λ1S + λ6S = 0 (4.9)

2c2u
∗
2 − λ4IR + λ6IR = 0 (4.10)

Further simplification of (4.9) and (4.10) yields

u∗1(t) = min

{
u1max; max

{
0;

(
λ1(t)− λ6(t)

)
S(t)

2c1

}}
(4.11)

and

u∗2(t) = min

{
u2max; max

{
0;

(
λ4(t)− λ6(t)

)
IR(t)

2c2

}}
(4.12)

The state equations: given by the forms (4.2)
The co-state equations which when simplified, lead to

∆αλ1(t) = −∂H
∂S

= −1 + λ1(γ
1

N
(I + Iu)− u1)− λ2(γ

1

N
(I + Iu))− λ6u1; (4.13)

∆αλ2(t) = −∂H
∂E

= q(λ2 − λ3); (4.14)

∆αλ3(t) = −∂H
∂I

= γ
S

N
(λ1 − λ2) + λ3β − λ4β1 − λ5β2 (4.15)

∆αλ4(t) = − ∂H
∂IR

= −1 + η(λ4 − λ6) + u2(λ4 − λ6); (4.16)

∆αλ5(t) = −∂H
∂Iu

= γ
S

N
(λ1 − λ2) + θ(λ5 − λ6); (4.17)

∆αλ6(t) = −∂H
∂R

= 1 (4.18)

The transversality conditions:

λ1(T ) = 1; (4.19)

λ2(T ) = 0; (4.20)

λ3(T ) = 1; (4.21)

λ4(T ) = 0; (4.22)
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λ5(T ) = 0; (4.23)

λ6(T ) = −1. (4.24)

The effect of applying the different control strategies will be simulated numerically in Section 5

5. Fraction order numerical simulation of the SEIR uncontrolled model

In this section, we solve the fractional order SEIR model numercally utlising the discretization
in [27]. The parameters’ values used for the numercal simulation was published by Guiro et al. in [17]
where: q = 0.1818 , η = θ =

1

14
, β =

1

7
, β1 = 0.1, β2 = 0.0428, γ = 0.7 and the initial values of the

different population are S(0) = 20000000, E(0) = 200, I(0) = 0, Iu(0) = 0, IR(0) = 0, R(0) = 0. In the
following, we display the results of the numerical simulation of the uncontrolled SEIRmodel.
Figure 2 shows the evolution of susceptible cases (S(t)) with different fractional derivative order (α).

Figure 2. The susceptible population S without controls for α = 0.5, 0.6, 0.7, 0.9, 1.

Figure 3 represents the evolution of Exposed cases (E(t)) with different fractional derivative order
(α).

Figure 3. The exposed population E without controls for α = 0.5, 0.6, 0.7, 0.9, 1.
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Figure 4 represents the evolution of Infected cases (I(t)) with different fractional derivative order
(α).

Figure 4. The infected population I without controls for α = 0.5, 0.6, 0.7, 0.9, 1.

Figure 5 shows the evolution of reported Infected cases (IR(t)) with different fractional derivative
order (α).

Figure 5. The reported infected population IR without controls for α = 0.5, 0.6, 0.7, 0.9, 1.
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Figure 6 represents the evolution of unreported Infected cases (Iu(t)) with different fractional
derivative order (α).

Figure 6. The unreported infected population Iu without controls for α = 0.5, 0.6, 0.7, 0.9, 1.

Figure 7 represents the evolution of recovered cases (R(t)) with different fractional derivative order
(α).

Figure 7. The recovered population R without controls for α = 0.5, 0.6, 0.7, 0.9, 1.

From the results and the figuresmentioned here, we can state that decreasing the fractional derivative
order decreases the number of each population phase (except Susceptible population fraction as
expected) and flatten the curves also delays reaching the maximum in each population phase.

6. Numerical simulation of the controlled system

In this section, we show numerically, the effect of applying the two control strategies studied in
Section 4.
Figure 8 shows the time history of Susceptible cases with control (vaccination and treatment are
available) with different fractional derivative order: α = 0.5, 0.6, 0.7, 0.9, 1.
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Figure 9 shows the time history of Exposed cases with control (vaccination and treatment are available)
with different fractional derivative order: α = 0.5, 0.6, 0.7, 0.9, 1.
Figure 10 shows the time history of infected cases with control (vaccination and treatment are available)
with different fractional derivative order: α = 0.5, 0.6, 0.7, 0.9, 1.
Figure 11 shows the time history of reported infected cases with control (vaccination and treatment are
available) with different fractional derivative order:r α = 0.5, 0.6, 0.7, 0.9, 1.
Figure 12 shows the time history of unreported infected cases with control (vaccination and treatment
are available) with different fractional derivative order: α = 0.5, 0.6, 0.7, 0.9, 1.
Figure 13 shows the time history of recovered cases with control (vaccination and treatment are
available) with different fractional derivative order: α = 0.5, 0.6, 0.7, 0.9, 1.

Figure 8. Time history of Susceptiple cases with control (vaccination and treatment are
available) with different fractional derivative order: α = 0.5, 0.6, 0.7, 0.9, 1.

Figure 9. Time history of Exposed cases with control (vaccination and treatment are
available) with different fractional derivative order: α = 0.5, 0.6, 0.7, 0.9, 1.
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Figure 10. Time history of infected cases with control (vaccination and treatment are
available) with different fractional derivative order: α = 0.5, 0.6, 0.7, 0.9, 1.

Figure 11. Time history of reported infected cases with control (vaccination and treat-
ment are available) with different fractional derivative order: α = 0.5, 0.6, 0.7, 0.9, 1.

Figure 12. Time history of unreported infected cases with control (vaccination and
treatment are available) with different fractional derivative order: α = 0.5, 0.6, 0.7, 0.9, 1.
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Figure 13. Time history of recovered cases with control (vaccination and treatment are
available) with different fractional derivative order: α = 0.5, 0.6, 0.7, 0.9, 1.

7. Conclusion

This research has been carried out to the analysis of an six dimension fractional-order SEIR COVID-19
mathematical model. In this study of COVID-19 mathematical model, the infected population fraction
is partitioned into two different population fractions: IR et Iu. The fractional-order necessary conditions
for a two optimal control strategies are implemented. In addition, the system dynamics displayed via
the fraction order numerical solver by PYTHON software with different fractional orders are presented
in this manuscript. The dynamics of the system are presented before control. From our study, we can
state that decreasing the fractional derivative order decreases the number of cases in all population
fraction phases and delays the maximum. The fractional order COVID-19 SEIR model predicts the
evolution of COVID-19 epidemic and try to help in understanding the impact of different plans to limit
the diffusion of this epidemic with different values of the fractional order.
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