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Abstract. In this work, we consider multiple criteria sorting problems in which P alternatives from a set X
have to be assigned to M predefined ordered classes. When eliciting most of the sorting models, Decision
Makers (DMs) frequently have difficulty expressing precise values for the parameters (weights, category
thresholds). Additionally, in particular contexts, the sorting model must maintain the homogeneity of
groups of criteria expressing different dimensions (e.g, economic, governance, social and environmental)
in the aggregation process. To overcome these two difficulties, this article proposes an extension to the
KEMIRA multi-criteria choice method, namely KEMIRA-sort, which can handle both multi-criteria choice
problems and multi-criteria sorting problems. This new method allows both to elicit weights and respect
the homogeneity of criteria groups when assigning alternatives to predefined categories. An illustrative
application drawn from a real case study on the sustainable management of small dams is provided to
demonstrate the effectiveness of the proposed model.
2020 Mathematics Subject Classification. 90B50; 90B90.
Key words and phrases. MCDM; sorting method; Kemeny median indicator ranks accordance (KEMIRA)
method; KEMIRA-sort method; weight elicitation.

1. Introduction

In this paper, we are interested in the multiple criteria sorting problem which aims at assigning
each alternative of a setX = {x1, x2, . . . , xP } toM predefined ordered classes or categories C1 ≺ C2 ≺

· · · ≺ CM , whre C1 is the worst category and CM is the best, taking into account the Q criteria and
the preferences of the Decision Maker (DM). An aggregation model must be constructed to allow the
assignment process to yield to a result in accordancewith the DM’s preferences. In thisMultiple Criteria
Decision Making (MCDM) context, two aggregation models are widely used: the outranking relation
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and the utility function [1, 2]. Only multiple criteria sorting models based on a utility function are
considered. More specifically, we are interested in building a sorting model using increasing functions
and thresholds. This model could be considered an extension of the simple utility model for multiple
criteria sorting presented in [2,3]. When an additive utility function is used for multiple criteria sorting,
the DM is usually asked to determine the value of one or several parameters (weights, discrimination
thresholds, etc.). These parameters are used to construct a preference model of the decision maker
(DM). Generally it is not realistic to assume that the DM would easily provide the values of these
parameters.

Therefore, methodologies for indirectly eliciting DMs’ preferences have emerged. In the case of sort-
ing problems, and precisely with respect to utility function-based models, few authors have proposed
methodologies to infer preference parameters from assignment examples provided by DMs [4,5]. The
literature is more prolific in the case of outranking relation based models for sorting problems [6–10].
These models propose to infer the preference parameters that best match the DMs’ preference informa-
tion by solving either a mathematical program [11] or by an evolutionary approach [8].

By heterogeneous criteria we mean those for which there is no natural compensation between
strengths and weaknesses of the criteria (e.g, an economic criterion and an ecological criterion, or an
economic criterion and a social criterion), in contrast to homogeneous criteria where there is a natural
compensation between them (e.g. two economic, ecological or social criteria). This situation can occur
for example when dealing with the sustainable management of resources where a strong productivity
(economic criterion) can not naturally compensate for a loss of biodiversity (environmental criterion).
In such a context, considering the criteria in homogeneous groups, during the process of aggregating the
performance of the alternatives, could avoid undesirable compensations between the criteria and would
contribute to legitimizing the results of an approach on the basis of the use of utility functions [12].

Recently, a new multiple criteria decision making method called KEmeny Median Indicator Ranks
Accordance (KEMIRA) method, was presented, which considers the choice problems [13,14]. This
approach takes into account the homogeneity of groups of criteria in their aggregation process. In this
work we present a new sorting model that we call KEMIRA-sort, which is an extension of the former
KEMIRA method, allowing us to address both multiple criteria choice problems and multiple criteria
sorting problems.

The rest of the paper is structured as follows. Section 2 presents the procedure for computing the
weights of the criteria and assigning the alternatives to predefined categories when the preferential
information provided by the decision-maker makes it possible, within each group of criteria, to rank
the criteria from the best to the worst and to set the minimum levels of performance to be met. Section
3 presents the original KEMIRA method. In section 4, we apply KEMIRA-sort method to an illustrative
example. The last section provides conclusions and identifies further research ideas to be investigated.
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2. Mathematical Formulation of the KEMIRA-Sort Model

We assume that the set of alternatives is X = {x1, x2, . . . , xP }; the Q criteria are partitioned into
G groups indexed by {1, . . . , G} and the elements of each group are indexed in turn by {1, . . . , ni}
where ∀i ∈ {1, . . . , G}, ni is the size of group i, with of course ∑G

i=1 ni = G due to the partition of
the Q criteria in G groups. Each criterion is thus indexed by a pair of natural numbers (i, j), the first
one for the group, and the second one for the criterion within the group. For each criterion (i, j),
we associate a weight wi,j . On the basis of previous notation, for k ∈ {1, . . . , P}, each alternative
xk = (Xk

1,1, . . . , X
k
1,n1

, xk2,1, . . . , X
k
2,n2

, . . . , Xk
G,1, . . . , X

k
G,nG

), is a real-valued vector of dimension Q,
where Xk

i,j represents the performance of alternative xk on a specific criterion j belonging to group i.
Our objective is to compute the weight wi,j of each criterion (i, j) and to assign each alternative xk

to one of theM predefined ordered categories C1 ≺ C2 ≺ · · · ≺ CM , by formulating and solving an
optimization problem.

2.1. Criteria priority and increasing functions. For all i ∈ {1, . . . , G}, we assume that the DM is able
to provide a ranking of criteria from the most to the least preferred so that the relations (1) and the
corresponding restrictions on the criteria weights (2) hold:

(1, 1) % (1, 2) % . . . % (1, n1),

(2, 1) % (2, 2) % . . . % (2, n2),
...

(G, 1) % (G, 2) % . . . % (G,nG);

(1)

w1,1 ≥ w1,2 ≥ . . . ≥ w1,n1 ,

w2,1 ≥ w2,2 ≥ . . . ≥ w2,n2 ,
...

wG,1 ≥ wG,2 ≥ . . . ≥ wG,nG
.

(2)

Therefore the performance Xk
i,j , k ∈ {1, 2, . . . , P}, i ∈ {1, 2, . . . , G}, j ∈ {1, 2, . . . , ni}, of alternatives

w.r.t. the Q criteria, we normalize them. Here we choose an affine type of normalization and the
normalized values are obtained by the relation

xki,j =
Xk

i,j−miniX
k
i,j

maxiXk
i,j−miniXk

i,j

. (3)

In each group we assume that the weights are normalized and we verify
ni∑
j=1

wi,j = 1, ∀i ∈ {1, 2, . . . , G}. (4)

Assuming that the lager values of variables xki,j represent better satisfaction with respect to the
considered criterion, for an alternative xk and for each group i, we compute its weighted average
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performance, denoted byWi:
Wi(x

k) =
∑ni

j=1wi,j × xki,j , (5)

where weights wi,j satisfy requirements (2) and (4).

2.2. Process of assignment to categories. For each group iwe introduceM − 1 thresholds:

0 < α1
i < α2

i . . . < αM−1i < 1, (6)

since we haveM predefined ordered categories C1 ≺ C2 ≺ · · · ≺ CM . Thus, for an alternative xk, the
assignment process is stated as follows :

Step 1 : if ∃i ∈ {1, 2, . . . , S},Wi(x
k) ≤ α1

i then xk ∈ C1.

Step 2 : if ∃i ∈ {1, 2, . . . , S},Wi(x
k) ≤ α2

i and not(xk ∈ C1)

then xk ∈ C2.

Step 3 : if ∃i ∈ {1, 2, . . . , S},Wi(x
k) ≤ α3

i and not(xk ∈ C1)

and not(xk ∈ C2) then xk ∈ C3.
...
StepM : if xk does not satisfy Step1 to Step M-1, then xk ∈ CM .

(7)

Note that this assignment process in (7) can equivalently be written as follows:
For each i ∈ 1, . . . , S, introduceM thresholds 0 < α1

i < α2
i . . . < αMi = 1. The assignment is then

defined by
xk ∈ Cmin(l∈{1,...,M}:Wi(xk)≤αl

i for some i∈{1,...,G}). (8)

Considering the heterogenous nature of the criteria groups, the assignment rule (7), when applied,
limits the compensation between poor performance on a given group of criteria and good performance
on the other groups. Thus, poor performance on a single group of criteria logically determines the
assignment. In the case where the compensation between poor performance on a given group of criteria
and good performance on the other groups of criteria is allowed, the assignment procedure can be
modified, while keeping the rest of the proposal, as follows:

xk ∈ Cl if αl−1 ≤W (xk) < αl, (9)

W (xk) is the average performance of the alternative xk on all criteria, αl, l ∈ {2, 3, ...,M} denote the
performance levels set by the DM. Note also that a similar assignment procedure is implemented in the
UTADIS method [15,16]

In this context, the partitioning of the set of criteria into groups ismotivated by the fact that each group
is supposed to contain homogeneous criteria (e.g., group of economic criteria, group of environmental
criteria, etc.) whose performance could be aggregated in the spirit of total compensation and in such
a way that their number does not matter. If the partitioning of the set of criteria is motivated by
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other considerations, then the number of criteria per group might be relevant and integrated into the
assignment rules. This aspect will be taken into account in future work.

Note that the thresholds αli are the performance levels that any alternative must meet; they are set
by the DM. Therefore the DM is asked to express his preference on these thresholds in terms of the
percentage of the best performance respectively in each group of criteria. Formally, for each group i
and for each category Cl the DM is asked to set a number p strictly between 0 and 100 such that:

αli = p%×maxPk=1Wi(x
k),

0 < α1
i < α2

i . . . < αM−1i < 1.
(10)

2.3. Objective function. Denote |Cl| the number of elements in the set Cl and fopt the function to be
optimized. We define the objective function fopt to be maximized by the formula

fopt =

M∑
l=1

l × |Cl|. (11)

Thus, the higher the value of the objective function fopt is, the better the alternatives are globally
assigned to their best categories. The motivation behind the choice of such an objective function is
to give the alternatives the opportunity to be assigned to a better category in view of their respective
performances.

2.4. Optimization problem. For a given set of weights satisfying relation (2), and associated perfor-
mance levels as stated in inequations (6) expressing the preference information of the DM, corresponds
an assignment of alternatives to categories via relation (6). Without further information from the
decision-maker, we assume that, the alternatives will be assigned to the right categories if a correspond-
ing set of weights, verifying relation (2), with the associated performance levels verifies relation (6)
allowing them to be assigned as much as possible to better categories. We formalize this assumption
through the optimization problem (12):

maxwi,j fopt =
∑M

l=1 l × |Cl|

wi,1 ≥ wi,2 ≥ . . . ≥ wi,ni ,∀i ∈ {1, 2, . . . , G},∑ni
j=1wi,j = 1, ∀i ∈ {1, 2, . . . , G},

0 < α1
i < α2

i < . . . < αM−1i < αMi = 1,

xk ∈ Cmin(l∈{1,...,M}:Wi(xk)=
∑ni

j=1 wi,j×xki,j≤αl
i for some i∈{1,...,G}) ∀ k ∈ {1, 2, . . . , P}.

(12)

Note that, since the performance of an alternative is fixed, several sets of weights verifying the pref-
erences of the DM can usually lead to the alternative being assigned to different categories. Therefore,
taking an optimistic stance, we opt to favour sets of weights with corresponding performance levels
verifying the preferences of the DM that would make it possible to globally assign the alternatives in
the best possible categories.
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Let us highlight two theoretical limit cases of our objective function. For each i ∈ {1, . . . , S}, define

βi =
P

min
k=1

(Wi(x
k) : Wi(x

k) > 0), (13)

γi =
P

max
k=1

(Wi(x
k) : Wi(x

k) > 0). (14)

If we arbitrarily choose 0 < α1
i < α2

i . . . < αM−1i < 1 strictly between 0 and βi; this guarantees that all
the alternatives will be assigned to CM , i.e., the objective function will be equal toM × P , unless an
alternative xk hasWi(x

k) = 0 for some i. In that case, the objective function is equal toM × P minus
the number of alternatives Xk so that Wi(x

k) = 0 for some i. In any case, the optimal value of the
objective function is reached.

Note that the optimum is obtained with parameters αli, which are chosen almost arbitrarily between
0 and βi, irrespective of the weights. However in practice such a case is not realistic. Given that αli are
performance levels set by the DM, such a situation, if it occurs, would be tantamount to saying that the
DM deliberately sets a very low level of performance that it is sure any alternative will pass.

Similarly, if we arbitrarily choose 0 < α1
i < α2

i . . . < αM−1i < 1 strictly between γi and 1, this
guarantees that all the alternatives will be assigned to C1, i.e, the objective function is equal to P which
is its optimal value. This optimum is also obtained irrespective of the weights. However this situation is
also not realistic because it would mean that the DM is deliberately setting a high level of performance
that it is certain no alternative will meet.

We suppose that the DM is able to set the value of αli with the constraints:

0 < βi ≤ α1
i < α2

i . . . < αM−1i < γi < 1. (15)

2.5. Algorithm to solve the optimization problem. To solve the optimization problem (12), we
propose and implement the Algorithm 1. Let us make some comments on this algorithm.

• Points 1 to 6 of Algorithm 1 refer to the random choice of an initial vector of weights w0,
satisfying conditions (2) and (4), from which the assignment process (7) is computed and the
corresponding value the objective function fopt0 is calculated. Afterward a perturbation of this
vector w0 in a randomly direction ∆w is done and we obtain the vector w1 = w0 + ε×∆w. We
call w0 the current weight and the corresponding assignment is called the current assignment.
• Points 7 to 18 ensure that thew1 vector satisfies the conditions (2) and (4) of weights decreasing
in each group and their normalization.
• Points 19 to 31 run the new assignment with the vector of weights w1 and compare the resulting
objective function fopt1 to its previous value fopt0. If one has an improvement in the value
of the objective function,i.e.,fopt1 > fopt0, then the assignment issued from w1 is better than
that issued from w0. Thus, we keep w1 and the corresponding assignment which become the
current weights vector and the current assignment andwemust back to point 5 of the algorithm.
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If not we must return to point 2 of the algorithm and initialize a new current weight vector
w0. This approach allows us to avoid any local minimums that could prevent a better solution
from being obtained. Therefore we repeat these scenarios until we reach the maximum of the
authorized iteration maxiter and the resulting current weight vector becomes the solution of
the optimization problem. The corresponding assignment is selected as the best assignment of
the alternatives to the predefined categories.
• The value of maxiter must be chosen to reach at least the limit point where the assignment
to categories no longer changes and becomes stable. Therefore, by running Algorithm 1, we
assume that for any set of input data, there exists a value of maxiter, Nmax, from which the
assignment to categories will no longer change. The proof of this assumption is one of the
perspectives of the current work. In practice, the value of the maxiter must be initialized at a
sufficiently high level to ensure that the maxiter ≥ Nmax.
• Recalling that only the ranking of criteria from the best to the worst in each group of criteria
is asked to the DM. Generally, this type of information can be provided without any great
difficulty by the DM. Owing to this weak precision of information on the DM’s preferences w.r.t.
criteria, the space of feasible weights to explore is infinite. Additional information obtained
from the decision-maker could be integrated into problem 12 and then reduce the set of feasible
solutions. This question is beyond the scope of this work and will be examined in our future
work.
• In decision-making, we know a rank reversal as a change in the rank ordering of the preferability
of alternative possible decisions when, for example, the method of choosing changes or the
set of other available alternatives changes [17, 18]. The study of a rank reversal problem in
the application of the KEMIRA-sort method consisted of observing the possible undesirable
assignment of alternatives to ordered categories when the set of available alternatives changeg.
For instance, if after a change in the set of alternatives, an alternative xi assigned to a lower
category than an alternative xj is now assigned to a better category than xj , such a change is an
undesirable assignment. This investigation is important because for a given group of criteria,
the preference thresholds which specify the desired levels of performance, are provided by the
DM in terms of the percentage of the best average performance of alternatives w.r.t. criteria
belonging to the concerned group.
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Algorithm 1 KEMIRA Sort assignment
1: Fixed algorithm parameters: 10−3 ≤ ε ≤ 10−1, maxiter the maximum number of iterations, Thresh-

olds: 0 < βi ≤ α1
i < α2

i . . . < αM−1i < γi < 1,
2: Choose an initial vector of weights satisfying conditions (2) and (4): w0 =

(w0
1,1, w

0
1,2, . . . , w

0
1,n1

;w0
2,1, w

0
2,2, . . . , w

0
2,n2

; . . . ;w0
S,1, w

0
S,2, . . . , w

0
S,nS

);

3: Run the condition (7) of the assignment process;
4: Compute the value of the objective function fopt0 as shown in relation (11);
5: Randomly selected direction vector ∆w: ∆w = (∆1,1, . . . ,∆1,n1

; ∆2,1, . . . ,∆2,n2
; . . . ; ∆G,1, . . . ,∆G,nG

),

−1 ≤ ∆i,j ≤ 1;
6: The vector w1 = w0 + ε×∆w is calculated.
7: if w1 does not satisfy restrictions (2) and (4) then
8: the corrections proposed in [14] are carried out:
9: if w1

i,j < 0 then

10: change: w1
i,j = 0;

11: end if

12: if w1
i,j < w1

i,j+1 then

13: change: w1
i,j = w1

i,j+1;

14: end if

15: if ti =
∑ni

j=1w
1
i,j 6= 1 then

16: change: w1
i,l =

w1
i,l

ti
;

17: end if

18: end if

19: the number of iterations iter is calculated
20: if iter > maxiter then

21: stop the algorithm.
22: else

23: Run the condition (7) of the assignment process with the current weight vector w1 satisfying
condition (2);

24: Compute the value of the current objective function fopt1 as shown in relation (11)
25: if fopt1 > fopt0 then

26: change: fopt0 = fopt1; w0 = w1;
27: go to point 5 of the algorithm.
28: else

29: go to point 2 of the algorithm.
30: end if

31: end if
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3. KEMIRA Method

For each group i, we introduce one threshold 0 < αi < 1 and denote B = {xk ∈ X : Wi(x
k) =∑ni

j=1wi,j × xki,j > αi ∀i ∈ {1, . . . , G}} the set of the best alternative and |B| the number of elements in
B. Using the same notations above, when running the original KEMIRA method [14], the objective
is to compute the weight wi,j of each criterion (i, j) and to choose the best alternatives by solving the
optimization problem (16).

maxwi,j fopt2 = |B|

wi,1 ≥ wi,2 ≥ . . . ≥ wi,ni ,∀i ∈ {1, 2, . . . , G},∑ni
j=1wi,j = 1, ∀i ∈ {1, 2, . . . , G},

xk ∈ B∀ k ∈ {1, 2, . . . , P}.

(16)

If we consider the KEMIRA-sort method in the case where we have only two assignment categories,
then category C2 and set B have exactly the same elements, i.e., C2 = B. Additionally, for all wi,j the
value fopt2 = |C2| is maximum if the value fopt = 2 × |C2| + |C1| is maximal and vice versa. As a
result, the solutions of the mathematical program (16) are exactly the same as those of mathematical
program (12) when considering only two categories and vice versa. The use of the KEMIRA method
means to use the KEMIRA-sort method with only two assignment categories. The newMCDMmethod
proposed, KEMIRA-sort, is therefore an extension of the KEMIRA method.

4. A real world application

4.1. Presentation of the case study. To illustrate the methodology, we consider a real case study
concerning the prioritization of the best sustainable management methods for small dams (water
reservoirs) in the city of Ouagadougou (West Africa).

The fight against the degradation of small dams (water reservoirs) in the city of Ouagadougou has
often been approached in a thematic and not holistic way, hence poor results obtained. Therefore,
we believe that the policy to fight against the degradation of water reservoirs must be the result of a
participatory approach.

We identified the target parties, which included the local populations (local residents and operators)
using the banks of the dams and the communal authorities. A group of municipal authorities and an
environmental expert acted as decision-maker (DM).

During our interviews with the local residents, operators of the banks and the municipal author-
ities, twelve (12) actions were identified as being able to slow this degradation. From these twelve
(12) identified actions, seven (7) scenarios (alternatives) or dam management methods have been
constructed. It was a grouping of the twelve (12) isolated actions identified in three major management
topics; those topics range from the rehabilitation of water reservoirs to rationalization of water uses
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and protection of water reservoirs. In addition to these scenarios, three others scenarios result from the
development of water reservoirs by the Burkinabe government. These are the prestige development,
the development of tourism and the socioecological planning of reservoirs. Finally, a last scenario
concerning the possible privatization of water reservoirs was proposed.

let us set X = {x1, x2, x3, x4, x5, x6, x7}:
• x1 : Rehabilitation of water reservoirs;
• x2 : Rationalization of water use;
• x3 : Protection;
• x4 : Prestige development;
• x5 : Tourism development;
• x6 : Socioecological planning;
• x7 : Privatization of water reservoirs.

A literature review on the dimensions of sustainable development identified a series of issues related
to the sustainable management of water reservoirs in the city of Ouagadougou. The issues identified
are grouped according to the dimensions of sustainable development (economic, ecological, social
and governance). On this basis twelve (12) criteria and their relevant measurement indicators have
been developed to evaluate the seven alternatives. The set of twelve criteria has been subdivided in
four (4) groups G4 = {(4, 1), (4, 2)}, G3 = {(3, 1), (3, 2)}, G2 = {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)},
G1 = {(1, 1), (1, 2)}:

• G1 : Economic group
– (1, 1) importance of income generating activities;
– (1, 2) financial cost.

• G2 : Social group
– (2, 1) Importance of voluntary displacement
– (2, 2) Degree of acceptability
– (2, 3) Importance of potential exposure
– (2, 4) Water withdrawal
– (2, 5) Flood risk
– (2, 6) Development of recreational activities around dams

• G3 : Ecological group
– (3, 1) Ecological function
– (3, 2) Importance of biodiversity

• G4 : Governance group
– (4, 1) Importance of conflicts of use
– (4, 2) Involvement of all stakeholders in dam management
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Ranking of the criteria in each group i as well as the performance levels αli has been provided by the
DM. Note that while it was easy for the DM to rank the criteria within each subgroup, the determination
of thresholds or performance levels αli was not obvious.

The evaluations of the different scenariosw.r.t. the criteriawere carried out through field observations
and surveys of local residents and operators of the bank.

The computed evaluation matrix is given in Table 1. This problem has been solved with a multiple
criteria choice method, namely the KEMIRA method [19] to select the best sustainable management
method for small dams. The scenarios x2, x3 and x6 are selected as the best ones. For the reader
interested, more details on this structuring phase of the application can be found in [19].

Table 1. Evaluating Matrix

(1,1) (1,2) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (4,1) (4,2)

x1 0.81 0 0.87 0 0.5 1 0 0 0 0.5 0 1

x2 1 0 0.67 1 1 0 0 0 1 1 1 1

x3 0.1 1 1 1 1 0 1 0 1 1 1 0

x4 0 1 0.16 1 0 1 1 1 0 0.5 0 0

x5 0.51 0 0.03 0.5 0 1 1 1 0 0.5 0 0

x6 0.2 1 0.1 0.5 0.5 0 1 0 0.5 0.5 0 1

x7 0.07 1 0 0 0.5 0.5 0 0 0 0.5 1 0

4.2. Application of KEMIRA-sort to the case study. To apply KEMIRA-sort in this problemwe have to
change the statement of the problem. Rather than selecting the best sustainable management methods
for small dams, we will now search to prioritize the best sustainable management methods for small
dams in terms of their level of sustainability. therefore, we decide to assign the scenarios or alternatives
to four ordered categories C1 ≺ C2 ≺ C3 ≺ C4 which represent four levels of sustainability so that the
best category C4 corresponds to the set of the best alternatives selected via the KEMIRA method. We
recall that an alternative xk is selected as the best one by the KEMIRA method if the following relation
is satisfied:

∀i ∈ {1, 2, ..., G},Wi(x
k) > αi. (17)

and the algorithm of eliciting the corresponding weights is stopped when the cardinal of the set of the
best alternatives representing the objective function is maximal.

Only one level of performance specified by the αi value must be satisfied in each of the G groups by
an alternative xk to be selected as best. Among the alternatives that do not satisfy this selection rule
(17), it could be necessary to make the differences between those that satisfy the rule on only one or
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two or three groups. The KEMIRA-sort method, with different performance levels and corresponding
assignment categories, takes this need into account.

In our sorting case, an alternative that satisfies rule (17) is equivalently assigned to the category CM ,
i.e., the best category, according to the last Step of the condition (7) which is therefore satisfied when
the number of categoriesM is equal to 4 and α3

i equal to αi.
Note that theKEMIRA-sort method offers the possibility to select the second or third best category

of alternatives that have acceptable performance. This is an interesting advantage. Indeed, in our case
study of dam management in Burkina Faso, if for some reason none of the best category alternatives
could be implemented, a survey of the second best category alternatives identified by KEMIRA-sort
method could be conducted and an alternative from this category, with fewer constraints (and of course
less efficient) than those in the first category, could be selected and implemented.

In fact, to applying KEMIRA-sort with only two categories of assignment is equivalent to using the
original KEMIRA method for the choice problem.

4.3. Results and discussion. In point 1 of our algorithm proposal, the parameters were set as follows:

ε = 10−2, maxiter = 4

α1
i = 10%×maxPk=1Wi(x

k);∀i ∈ {1, 2, 3, 4};

α2
i = 20%×maxPk=1Wi(x

k);∀i ∈ {1, 2, 3, 4};

α3
i = 30%×maxPk=1Wi(x

k);∀i ∈ {1, 2, 3, 4}.

(18)

The results of four successive iterations of our proposed algorithm applied to the problem are given
in Tables 2,3,4,5.

Table 2. First iteration of KEMIRA-sort
W1 W2 W3 W4 C1 C2 C3 C4

x1 0.81 0.87 0 0 1 0 0 0
x2 1 0.67 1 1 0 0 0 1
x3 0.1 1 1 1 1 0 0 0
x4 0 0.16 0 0 1 0 0 0
x5 0.51 0.03 0 0 1 0 0 0
x6 0.2 0.1 0.5 0 1 0 0 0
x7 0.07 0 0 1 1 0 0 0
α1
k 0.1 0.1 0.1 0.1
α2
k 0.2 0.2 0.2 0.2
α3
k 0.3 0.3 0.3 0.3
w0 = (1, 0; 1, 0, 0, 0, 0, 0; 1, 0; 1, 0);
fopt0 = 10; fopt1 = 10.
fopt1 ≤ fopt0;update the value of w0 by generating randomly a new w0:
w0 = (0.507, 0.507; 0.332, 0.204, 0.205, 0.212, 0.022, 0.027; 0.507, 0.5; 0.493, 0.494).
apply (i) to (iv) of point 6 of the algorithm to correct w0:
w0 = (0.5, 0.5; 0.325, 0.207, 0.207, 0.207, 0.027, 0.27; 0.503, 0.497; 0.5, 0.5);
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Table 3. Second iteration of KEMIRA-sort
W1 W2 W3 W4 C1 C2 C3 C4

x1 0.405 0.594 0.248 0.5 0 0 1 0
x2 0.5 0.632 1 1 0 0 0 1
x3 0.55 0.766 1 0.5 0 0 0 1
x4 0.5 0.52 0.248 0 1 0 0 0
x5 0.255 0.374 0.248 0 1 0 0 0
x6 0.6 0.266 0.5 0.5 0 0 0 1
x7 0.535 0.207 0.248 0.5 0 0 1 0

α1
k 0.06 0.076 0.1 0.1
α2
k 0.12 0.153 0.2 0.2
α3
k 0.18 0.229 0.3 0.3

fopt0 = 10; fopt1 = 20.
fopt1 > fopt0; update the value of w0:
∆ = (0.82,−0.44;−0.62,−0.14,−0.22, 0.84, 0.84, 0.3;−0.68, 0.02;−0.24, 0.44), ε = 10−2

w1 = w0 + ε∆ = (0.508, 0.496; 0.319, 0.206, 0.205, 0.216, 0.035, 0.03; 0.496, 0.497; 0.498, 0.504)

Apply (i) to (iv) of point 6 of the algorithm to correct w1:
w1 = (0.506, 0.494; 0.309, 0.209, 0.209, 0.209, 0.034, 0.029; 0.5, 0.5; 0.5, 0.5).
Change w0 = w1

Table 4. Third iteration of KEMIRA-sort
W1 W2 W3 W4 C1 C2 C3 C4

x1 0.410 0.583 0.25 0.5 0 0 1 0
x2 0.506 0.626 1 1 0 0 0 1
x3 0.544 0.762 1 0.5 0 0 0 1
x4 0.494 0.531 0.25 0 1 0 0 0
x5 0.258 0.386 0.25 0 1 0 0 0
x6 0.595 0.274 0.5 0.5 0 0 0 1
x7 0.529 0.209 0.25 0.5 0 0 1 0

α1
k 0.059 0.076 0.1 0.1
α2
k 0.119 0.152 0.2 0.2
α3
k 0.158 0.228 0.3 0.3

fopt0 = 20; fopt1 = 20.
fopt1 ≤ fopt0;update the value of w0 by randomly generating a new w0:
w0 = (0.772, 0.227; 0.172, 0.183, 0.189, 0.172, 0.179, 0.099; 0.867, 0.128; 0.498, 0.492);
Apply (i) to (iv) of point 6 of the algorithm to correct w0:
w0 = (0.773, 0.227; 0.184, 0.184, 0.184, 0.175, 0.175, 0.097; 0.871, 0.129; 0.503, 0.497)
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Table 5. Fourth iteration of KEMIRA-sort
W1 W2 W3 W4 C1 C2 C3 C4

x1 0.626 0.428 0.064 0.497 0 1 0 0
x2 0.773 0.492 1 1 0 0 0 1
x3 0.305 0.728 1 0.503 0 0 0 1
x4 0.227 0.661 0.064 0 1 0 0 0
x5 0.394 0.545 0.064 0 1 0 0 0
x6 0.382 0.378 0.5 0.497 0 0 0 1
x7 0.281 0.18 0.064 0.503 0 1 0 0

α1
i 0.077 0.072 0.1 0.1

α2
i 0.154 0.145 0.2 0.2

α3
i 0.231 0.218 0.3 0.3

fopt0 = 20; fopt1 = 18.
fopt1 ≤ fopt0;update the value of w0 by randomly generating a new w0

We carried out the proposed algorithm in the C program and solved it via Code::Block17.12 in less
than 0.58 seconds with the setting parameter. The first iteration leads to an assignment of alternatives to
categories with the objective function fopt0 = 10 (see Table 2) whereas the second and third iteration
lead to the same assignment of alternatives to categories with objective function fopt1 = 20 (see
Tables 3 and 4). The fourth iteration leads to an assignment with an objective function fopt1 = 20 (see
Table 5). At this stage of our program the weights and assignments to be considered as solutions of our
multicriteria sorting problem are those stemming from Tables 3 and 4 which have the highest objective
function value fopt1 = 20. Several sets of weights can lead to the same optimal assignment since the
weight determination is not unique.

We then iterate the algorithm a thousand times and the highest value of the objective function
obtained was fopt1 = 20. The first assignment and the corresponding weights obtained with the
highest value of the objective function fopt1 = 20 are shown in table 6. Less than 9.69 seconds were
necessary to compute the thousand iterations. Considering solution of ourmulticriteria sorting problem
as given in Tables 3, 4 or 5 we can see that the alternativesX2,X3 andX6 which were the best selected
by the KEMIRA method are the only ones belonging to the C4 category.
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Table 6. Thousandth iteration of KEMIRA-sort
W1 W2 W3 W4 C1 C2 C3 C4

x1 0.407 0.403 0.249 0.369 0 0 1 0
x2 0.503 0.498 1 1 0 0 0 1
x3 0.548 0.708 1 0.631 0 0 0 1
x4 0.497 0.661 0.249 0 1 0 0 0
x5 0.256 0.540 0.249 0 1 0 0 0
x6 0.598 0.350 0.5 0.369 0 0 0 1
x7 0.532 0.163 0.249 0.631 0 0 1 0

α1
k 0.059 0.07 0.1 0.1

α2
k 0.119 0.141 0.2 0.2

α3
k 0.179 0.212 0.3 0.3

w1 = (0.503, 0.497; 0.192, 0.192, 0.179, 0.147, 0.146, 0.146; 0.503, 0.497; 0.631, 0.369)

fopt0 = 20; fopt1 = 20.

Some remarks need to be pointed out to obtain better results when solving sorting problem with the
new algorithm KEMIRA-sort.

remark 1: The algorithm must be run for many iterations to ensure that the highest value of the objective
function foptwill be reached.

remark 2: The DM sets the values of thresholds αli while respecting the condition 0 < βi ≤ α1
i <

α2
i . . . < αM−1i < γi < 1. This operation which is not easy, and sometimes boring for the DM,

must be carried out in interaction with the DM in order to properly translate his preferential
information through the said thresholds. The operation could be carried out indirectly through
the expression of the DM’s preferential information in the form of examples of assignment to
predefined categories [20].

4.4. On rank reversal in KEMIRA-sort. On the basis of the results of applying the KEMIRA-sort
method to the case study, as shown in Table 6, we noted the following:

a) when we removed one alternative from the set of alternatives and run the KEMIRA-sort
algorithm, the six other alternatives kept their same assignment categories;

b) when we removed two or more alternatives from the set of alternatives, a stability or a shift to
a best category was noted for some alternatives when the removed alternatives belonged to the
best category;
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c) an alternative assigned to a category at least as good as another remained assigned to a category
at least as good as that other one if a category change occurred.

These partial experimental results indicate that, on the basis of a reference situation, a rank reversal
problem did not appear when we applied the KEMIRA-sort method by changing the set of alternatives.
As a matter of fact, only changes in the best alternatives (i.e., belonging to the best category) could lead
to a shift to the best or worst category; and there are intrinsic performances of alternatives w.r.t. those
of these best alternatives which could allow them to shift from one category to another. Of course,
there are more hypotheses than robust results that need to be verified empirically.

5. Conclusion

In this paper, we presented an algorithm for the multiple criteria sorting problem, namely KEMIRA-
sort, which is based on gradient-descent and increasing functions with DM’s preference thresholds
allowing both to elicit weights and respect the homogeneity of criteria groups when assigning alterna-
tives to predefined categories. The algorithm uses the preference information given by the DM on the
priorities between criteria belonging to the same group to elicit the weights of all the criteria and assign
alternatives to predefined categories by solving an optimization problem. The objective function to
be maximized is an overall measure of the quality of assignment of alternatives to the best categories.
This algorithm appears as an extension of the original KEMIRA method, for choosing problem, that
we recover when using the KEMIRA-sort method with only two categories. The algorithm is proven
to be efficient in terms of the stability of the results and computing times when it is applied to a real
case study problem. Further work can be pursued to investigate the convergence of the algorithm
by establishing an axiomatization of this new sorting method. An indirect elicitation of the DM’s
preference thresholds for increasing functions via preference information stemming from assignment
examples given by the DM should also be investigated and integrated into the algorithm. In addition
the behavior of this new algorithm for multiple criteria sorting problems should be tested empirically
by applying it to many other sorting problems and the results should be compared with those obtained
with other sorting methods such as ELECTRE TRI [1, 21] and MR-Sort [10].
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