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Abstract. This paper examines monotone α-convex generalized nonexpansive mappings and explores
their relationships with other existing nonexpansive-type mappings. We establish new theorems on the
existence and convergence of these mappings in the context of ordered Banach spaces. Moreover, we
broaden the scope of results previously presented by M. R. Alfuraidan and M. A. Khamsi (Carpathian J.
Math., 36(2): 199–204, 2020) and B. A. Bin Dehaish and M. A. Khamsi (Fixed Point Theory Appl., 2015,
2015:177, 7 pp).
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1. Introduction

In a Banach space (E , ‖.‖) with U as a nonempty subset, a mapping Υ : U → U is nonexpansive
if ‖Υ(ν) − Υ(η)‖ ≤ ‖ν − η‖ for all ν, η ∈ U . A point z ∈ U is a fixed point of Υ if Υ(z) = z and
F (Υ) := {z ∈ U : Υ(z) = z}. A mapping Υ is called accretive if for each ν, η ∈ U and λ ≥ 0, the
following condition holds:

‖ν − η‖ ≤ ‖ν − η + λ(Υ(ν)−Υ(η))‖.

The investigation of fixed points of nonexpansive mappings and zero points of accretive mappings
extends the classical theory of successive approximations for strict contractions, which relies on the
Banach contraction principle. It is well-established that if Υ : U → U is a strict contraction, the Picard
sequence νn+1 = Υ(νn) converges strongly to the unique fixed point of Υ. In contrast, for nonexpansive
mappings, the Picard sequence may fail to converge, and if a fixed point exists, it may not be unique.
However, in sufficiently smooth spaces, such as Hilbert spaces, for any α ∈ (0, 1) and ν1 ∈ U , the
iterative process

νn+1 = (1− α)νn + αΥ(νn)
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converges weakly to a fixed point of the nonexpansive mapping Υ : U → U . This iterative process,
along with the more general scheme νn+1 = (1−αn)νn+αnΥ(νn), is known as the Krasnosel’skiı̌-Mann
(or Mann) iteration formula for finding fixed points of nonexpansive mappings. Despite nonexpansive
mappings being regarded as one of the most significant subjects in what is known as metric fixed point
theory, the literature contains a substantial body of research on broader classes of mappings beyond
the nonexpansive type. Noteworthy contributions and advancements in the field can be found in works
such as [8,14,15,19,23]. In 2008, Suzuki [23] introduced a class of mappings characterized by condition
(C), which belong to the broader category of nonexpansive type mappings. Suzuki’s investigation into
these mappings significantly contributed to the development of important fixed point theorems.

Definition 1.1. [23]. Let E be a Banach space and U a subset of E such that U 6= ∅. A mapping
Υ : U → U is said to satisfy condition (C) if

1

2
‖ν −Υ(ν)‖ ≤ ‖ν − η‖ implies ‖Υ(ν)−Υ(η)‖ ≤ ‖ν − η‖ ∀ ν, η ∈ U .

The author established a strong convergence theorem akin to Ishikawa’s theorem [12], and a more
nuanced weak convergence theorem aligned with the works of Edelstein and O’Brien [7].

García-Falset et al. [8] further generalized condition (C) into the following class of mappings.

Definition 1.2. [8]. Let E be a Banach space and U a subset of E such that U 6= ∅.Amapping Υ : U → U

is said to fulfill condition (E) if there exists µ ≥ 1 such that

‖ν −Υ(η)‖ ≤ µ‖ν −Υ(ν)‖+ ‖ν − η‖ ∀ ν, η ∈ U .

The category of mappings satisfying condition (E) includes various significant classes of generalized
nonexpansive mappings. Important results regarding nonexpansive mappings have been established
within this framework, as discussed in [18].

Recently, Llorens-Fuster [14] introduced the class of partially nonexpansive mappings (PNE), which
encompasses the Suzuki-nonexpansive mappings. Despite being defined on compact convex sets, PNE
mappings may not necessarily have fixed points. The presence of fixed points for a mapping is not
guaranteed by either the PNE condition or condition (E) alone. However, Llorens-Fuster demonstrated
that by combining these properties—PNE and condition (E)—fixed points can indeed be ensured in
Banach spaces possessing appropriate geometric properties in their norm structure.

Definition 1.3. Let Υ : U → U be a mapping. A mapping Υ is called as partially nonexpansive, (in
short, PNE), if ∥∥∥∥Υ

(
1

2
(ν + Υ(ν))

)
−Υ(ν)

∥∥∥∥ ≤ 1

2
‖ν −Υ(ν)‖

for all ν ∈ U .
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Recently, Shukla et al. [20] investigated a novel category of mappings known as α-convex generalized
nonexpansive mappings (α-CGNE), and derived several theorems concerning their existence and
convergence in Banach spaces possessing the Opial Property, characterized by uniform convexity in
every direction (UCED).

Interest in monotone Lipschitzian mappings has grown significantly since Ran and Reurings [16]
extended the Banach Contraction Principle to partially ordered metric spaces, a topic also explored
by Turinici [24]. This advancement fueled further research into the development of metric fixed
point theory for monotone Lipschitzian mappings, as investigated in studies such as [17, 21, 22]. In
contrast, mappings that deviate from strict Lipschitzian conditions have attracted less attention. Notable
contributions to the application of fixed point theory for monotone mappings are presented in Carl
and Heikkilä comprehensive book [5]. For those seeking a deeper understanding of metric fixed point
theory and the geometric structure of Banach spaces, Goebel and Kirk’s foundational work [9] is highly
recommended. In a related vein, Alfuraidan and Khamsi [1] expanded the study of condition (C) in
ordered Banach spaces, deriving new existence and convergence theorems.

Building upon the insights from Shukla et al. [20] and others, we extend the class of α-convex
generalized nonexpansive mappings in the context of ordered Banach spaces. This extension allows
us to establish various results concerning the existence and convergence of partially nonexpansive
mappings under specific assumptions. In doing so, we contribute to the broader framework presented
in [1, 3, 20, 23], offering new extensions, generalizations, and complementary perspectives.

2. Preliminaries

Consider E as a Banach space equipped with a partial order � that is compatible with its linear
structure, meaning:

ν � η implies ν + z � η + z,

ν � η implies λν � λη

for every ν, η ∈ E , z ∈ E , and λ ≥ 0. This ensures that all order intervals [ν,→] = {z ∈ E : ν � z} and
[←, η] = {z ∈ E : z � η} are convex. Additionally, we assume that each [ν,→] and [←, η] is closed.
Thus, we define (E , ‖ · ‖,�) as an ordered Banach space. If a monotone sequence {νn} possesses a
subsequence that converges weakly to some z, then the entire sequence {νn} converges weakly to z.
Furthermore, if {νn} is monotone increasing (resp. decreasing), then νn � z (resp. z � νn).

Definition 2.1. [9]. Let U be a nonempty subset of a Banach space E .A sequence {νn} in U is said to be
approximate fixed point sequence (in short, a.f.p.s.) for a mapping Υ : U → U if lim

n→∞
‖νn−Υ(νn)‖ = 0.
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Lemma 2.2. [9]. Let (E , ‖.‖) be a Banach space. Let {νn} and {ηn} be two bounded sequences in E and

λ ∈ (0, 1). Assume that νn+1 = ληn + (1 − λ)νn and ‖ηn+1 − ηn‖ ≤ ‖νn+1 − νn‖, for any n ∈ N. Then

lim
n→∞

‖νn − ηn‖ = 0 holds.

Definition 2.3. [2]. We say that E satisfies the monotone weak-Opial property if for any monotone
sequence {νn} in E which converges weakly to ν, we have

lim inf
n→∞

‖νn − ν‖ < lim inf
n→∞

‖νn − y‖ ,

for any y 6= ν and y is greater or less than all the elements of the sequence {νn}.

Definition 2.4. [2]. Let E be a Banach space and U a closed convex subset of E such that U 6= ∅. Let
Υ : U → U be a mapping:

• The mapping Υ is said to be compact if Υ(U) has a compact closure.
• The mapping Υ is said to be weakly compact if Υ(U) has a weakly compact closure.

3. α-Convex Generalized Nonexpansive Mapping

Shukla et al. [20] considered the following category of mappings:

Definition 3.1. Consider E as a Banach space and U as a nonempty convex subset of E . A mapping
Υ : U → U is termed α-convex generalized nonexpansive (α-CGNE) if there exists α ∈ (0, 1) such that

‖Υ ((1− α)ν + αΥ(ν))−Υ(η)‖ ≤ (1− α)‖ν − η‖+ α‖Υ(ν)− η‖ (3.1)

for all ν, η ∈ U .

Remark 3.2. Forα = 0, condition (3.1) reduces to that of a nonexpansivemapping. Forα = 1, condition
(3.1) signifies a fundamentally nonexpansive mapping [11].

Example 3.3. [20]. Consider the set U as the interval [0, 4] within the real numbers, equipped with the
standard norm. Define Υ : U → U by

Υ(ν) =

0, if ν 6= 4

36
19 , if ν = 4

Initially, we demonstrate that Υ is an α-convex generalized mapping, where α = 9
10 . On the other hand,

Υ does not satisfy condition (C). Hence Υ is not nonexpansive mapping.

Proposition 3.4. [20]. Let Υ : U → U be an α-CGNE mapping with F (Υ) 6= ∅. Then Υ is a quasinonexpan-

sive.

We prove the following important Lemma:
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Lemma 3.5. Suppose E is a Banach space and U represents a non-empty convex subset of E . Let Υ : U → U be

an α-CGNE mapping. Then

‖ν −Υ(η)‖ ≤ (1 + 2α)‖ν −Υ(ν)‖+ ‖ν − η‖

holds for all ν, η ∈ U . That is, mapping Υ satisfies condition (E).

Proof. By the triangle inequality, we have

‖ν −Υ(η)‖ ≤ ‖ν −Υ((1− α)ν + αΥ(ν))‖+ ‖Υ((1− α)ν + αΥ(ν))−Υ(η)‖

≤ ‖ν − (1− α)ν + αΥ(ν)‖+ ‖(1− α)ν + αΥ(ν)−Υ((1− α)ν + αΥ(ν))‖

+‖Υ((1− α)ν + αΥ(ν))−Υ(η)‖

= α‖ν −Υ(ν)‖+ ‖(1− α)ν + αΥ(ν)−Υ((1− α)ν + αΥ(ν))‖

+‖Υ((1− α)ν + αΥ(ν))−Υ(η)‖.

By the condition on the mapping Υ, we have

‖ν −Υ(η)‖ ≤ α‖ν −Υ(ν)‖+ ‖(1− α)ν + αΥ(ν)−Υ((1− α)ν + αΥ(ν))‖

+(1− α)‖ν − η‖+ α‖Υ(ν)− η‖

≤ α‖ν −Υ(ν)‖+ ‖(1− α)ν + αΥ(ν)−Υ((1− α)ν + αΥ(ν))‖

+(1− α)‖ν − η‖+ α‖ν − η‖+ α‖ν −Υ(ν)‖

≤ 2α‖ν −Υ(ν)‖+ ‖(1− α)ν + αΥ(ν)−Υ((1− α)ν + αΥ(ν))‖+ ‖ν − η‖

= 2α‖ν −Υ(ν)‖+ ‖ν − η‖

+‖(1− α)ν + αΥ(ν) + (1− α)Υ(ν)− (1− α)Υ(ν)−Υ((1− α)ν + αΥ(ν))‖

≤ 2α‖ν −Υ(ν)‖+ ‖ν − η‖+ (1− α)‖ν −Υ(ν)‖+ ‖Υ((1− α)ν + αΥ(ν))−Υ(ν)‖.

By the condition on the mapping Υ, we obtain

‖ν −Υ(η)‖ ≤ (1 + α)‖ν −Υ(ν)‖+ ‖ν − η‖+ α‖ν −Υ(ν)‖

≤ (1 + 2α)‖ν −Υ(ν)‖+ ‖ν − η‖.

By taking µ = (1 + 2α), we can conclude the proof. �

Example 3.6. Consider the mapping Υ defined on the interval [0, 4], where

Υ(ν) =

0 if ν 6= 4

3 if ν = 4.

Initially, we demonstrate that Υ fulfills condition (E). We examine three distinct nontrivial cases:
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Case (1) ν ≤ 3 and η = 4. Then

‖ν − T (η)‖ = ‖3− ν‖ ≤ ‖ν‖+ ‖4− ν‖

= ‖ν − T (ν)‖+ ‖η − ν‖.

Case (2) ν > 3 and η = 4. Then

‖ν − T (η)‖ = ‖ν − 3‖ ≤ 1 + ‖4− ν‖

≤ ‖ν‖+ ‖4− ν‖

≤ ‖ν − T (ν)‖+ ‖η − ν‖.

Case (3) If ν = 4, η 6= 4, then

‖ν − T (η)‖ = ‖4‖ ≤ 4‖1‖+ ‖4− η‖

≤ 4‖ν − T (ν)‖+ ‖ν − η‖.

Indeed at ν = 4 and η = 4

‖Υ ((1− α)ν + αΥ(ν))−Υ(η)‖ = ‖Υ ((1− α)4 + αΥ(4))−Υ(4)‖

= ‖Υ (4− α)− 3‖

= ‖0− 3‖ = 3 > α = (1− α)‖4− 4‖+ α‖Υ(4)− 4‖

= (1− α)‖ν − η‖+ α‖Υ(ν)− η‖

hold. Thus, the mapping Υ is not an α-CGNE.

4. Monotone α-CGNE

In this section we extend the class of α-CGNE in the setting of ordered Banach spaces.

Definition 4.1. Let (E , ‖.‖,�) be an ordered Banach space and U be a nonempty subset of E . A mapping
Υ : U → U is said to be monotone if

ν � η implies Υ(ν) � Υ(η)

for all ν, η ∈ U .

Definition 4.2. Let (E , ‖.‖,�) be an ordered Banach space and U be a nonempty convex subset of E . A
mapping Υ : U → U is said to be monotone α-CGNE if Υ is monotone and there exists α ∈ (0, 1) such
that

‖Υ ((1− α)ν + αΥ(ν))−Υ(η)‖ ≤ (1− α)‖ν − η‖+ α‖Υ(ν)− η‖ (4.1)

for all ν, η ∈ U with ν � Υ(ν) � η.
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Lemma 4.3. Suppose E is a Banach space and U represents a non-empty convex subset of E . Let Υ : U → U be

a monotone α-CGNE mapping. Then

‖ν −Υ(η)‖ ≤ (1 + 2α)‖ν −Υ(ν)‖+ ‖ν − η‖

holds for all ν, η ∈ U with ν � Υ(ν) � η

The class of α-CGNE mappings enjoy an approximate fixed point property. We have a similar
conclusion for monotone α-CGNE.

Lemma 4.4. Consider an ordered Banach space (E , ‖.‖,�). Let U be a nonempty bounded convex subset of E ,

and let Υ : U → U be a monotone α-CGNE mapping. Suppose ν0 ∈ U such that ν0 and Υ(ν0) are comparable.

Define the sequence {νn} as follows:

νn+1 = (1− α)νn + αΥ(νn) ∀n ∈ N ∪ {0}.

Then lim
n→∞

‖νn −Υ(νn)‖ = 0, i.e., {νn} is an a.f.p.s. of Υ.

Proof. Since order intervals are convex, if ν0 � Υ(ν0) (or equivalently, Υ(ν0) � ν0), the sequence
{νn} exhibits monotonic behavior: it is monotone increasing if ν0 � Υ(ν0), and monotone decreasing
if Υ(ν0) � ν0. Furthermore, it can be straightforwardly demonstrated by induction that under the
assumption ν0 � Υ(ν0), for every n ∈ N, the following inequalities hold:

νn � νn+1 � Υ(νn) � Υ(νn+1).

Again,

α (νn −Υ (νn)) = (νn − νn+1), (4.2)

and νn is comparable to Υ(νn). Using the fact that, Υ is monotone α-CGNE mapping implies that

‖Υ (νn+1)−Υ (νn)‖ = ‖Υ ((1− α)νn + αΥ(νn))−Υ (νn)‖

≤ (1− α)‖νn − νn‖+ α ‖νn −Υ (νn)‖

= α ‖νn −Υ (νn)‖ .

From (4.2)

‖Υ (νn+1)−Υ (νn)‖ ≤ ‖νn+1 − νn‖ .

for any n ∈ N. Using Lemma 2.2, we conclude that lim
n→∞

‖νn −Υ (νn)‖ = 0. �

By incorporating compactness into the assumptions of Lemma 4.4, we achieve the initial convergence
outcome for an iteration linked to an α-CGNE mapping.
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Theorem 4.5. Consider an ordered Banach space (E , ‖ · ‖,�). Let U be a nonempty bounded closed convex

subset of E . Assume that Υ : U → U is a compact monotone α-CGNE mapping. Suppose ν0 ∈ U such that ν0
and Υ(ν0) are comparable. Define the sequence {νn} as follows:

νn+1 = (1− α)νn + αΥ(νn) ∀n ∈ N ∪ {0}.

Then {νn} converges to a point z ∈ F (Υ).

Proof. Without loss of generality, let us assume ν0 � Υ(ν0). According to Lemma 4.4, we know
that lim

n→∞
‖νn − Υ(νn)‖ = 0, given that Υ is compact. Consequently, there exists a point z ∈ U and

a subsequence {Υ(νφ(n))} converging to z. Note that U being closed implies z ∈ U . Clearly, the
subsequence {νφ(n)} also converges to z. Since

νn � νn+1 � Υ (νn) � Υ (νn+1) ,

and order intervals are closed, we conclude that νn � Υ (νn) � z, for any n ∈ N. Since Υ is monotone
α-CGNE mapping, from Lemma 4.3 we have∥∥νφ(n) −Υ(z)

∥∥ ≤ (1 + 2α)
∥∥Υ
(
νφ(n)

)
− νφ(n)

∥∥+
∥∥νφ(n) − z∥∥

for any n ∈ N. Therefore {νφ(n)} also converges to Υ(z). Hence Υ(z) = z. The quasi-nonexpansiveness
of Υ and νn � z for all n ∈ N, we have

‖νn+1 − z‖ ≤ (1− α) ‖Υ (νn)− z‖+ α ‖νn − z‖

≤ (1− α) ‖νn − z‖+ α ‖νn − z‖

= ‖νn − z‖ ,

for any n ∈ N. The sequence {‖νn − z‖} is a decreasing sequence of positive numbers of which a
subsequence goes to 0. Thus, lim

n→∞
‖νn − z‖ = 0 and {νn} converges to z. �

Theorem 4.6. Consider an ordered Banach space (E , ‖.‖,�) that satisfies the monotone weak-Opial property.

Let U be a nonempty bounded closed convex subset of E , and let Υ : U → U be a weakly compact monotone

α-CGNE mapping. Suppose ν0 ∈ U such that ν0 and Υ(ν0) are comparable. Define the sequence {νn} as follows:

νn+1 = (1− α)νn + αΥ(νn) ∀ n ∈ N ∪ {0}.

Then {νn} converges weakly to a point z ∈ F (Υ).

Proof. We suppose ν0 � Υ(ν0). From Lemma 4.4, it follows that lim
n→∞

‖νn − Υ(νn)‖ = 0. Since Υ is
weakly compact, there exists a point z and a subsequence {Υ(νφ(n))} that converges weakly to z. Given
that U is closed and convex, we have z ∈ U . Additionally, the sequence {νφ(n)} also weakly converges
to z. Because {νn} is monotone increasing, {νn}weakly converges to z, as does {Υ(νn)}. Since

νn � Υ(νn) � z
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the monotonicity of Υ implies
νn � Υ(z) for any n ∈ N.

Assuming Υ(z) 6= z, the monotone weak-Opial property yields:

lim inf
n→∞

‖νn − z‖ < lim inf
n→∞

‖νn −Υ(z)‖.

Given that Υ is an α-CGNE mapping, we have:

‖νn −Υ(z)‖ ≤ (1 + 2α)‖Υ(νn)− νn‖+ ‖νn − z‖

for any n ∈ N. Consequently,

lim inf
n→∞

‖νn −Υ(z)‖ ≤ lim inf
n→∞

‖νn − z‖.

This contradiction forces Υ(z) = z and z ∈ F (Υ). �

Building primarily on the foundations established in the two preceding theorems, we get an existence
fixed point theorem for monotone α-CGNE mapping.

Theorem 4.7. Consider an ordered Banach space (E , ‖.‖,�). Let U be a nonempty convex subset of E , and let

Υ : U → U be a monotone α-CGNE mapping. Suppose ν0 ∈ U such that ν0 and Υ(ν0) are comparable. Assume

one of the following conditions holds:

(a) U is compact;

(b) U is weakly compact and E satisfies the monotone weak-Opial property.

Then Υ has a fixed point.
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