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Abstract. This paper studies a class of multivalued anisotropic elliptic problems in variable exponent
spaces, subject to Neumann boundary conditions, with data in L∞ or L1 data. Using approximation
techniques, the theory of monotonicity in Banach spaces, and compactness arguments, we establish the
existence of renormalized and entropy solutions. Additionally, by employing a comparison principle, we
demonstrate the uniqueness of the entropy solution.
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1. Introduction

Over the last ten years, the study of partial differential equations and variational problems with
the assumption of p(.)-growth has received significant attention within the mathematical community.
The motivation for studying such equations stems from their ability to provide accurate mathematical
models for describing the behavior of phenomena that can change state over time. In the literature,
Chen et al. have demonstrated the importance of Sobolev spaces with variable exponents in the process
of image restoration (see [9]). In a recent paper [14], Jean-Luc Henri et al. employed the p(.)-Laplacian
operator to perform smoothing on digital images. They proved that its smoothing power plays a crucial
role in the restoration process.
The variable exponent space appear also in themodeling of electro-rheological fluids (see [3], [11], [28])
thermorheological fluids.
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In general the so-called isotropic p(.)-Leray-Lions operator is used tomodel non-homogeneousmaterials
in single direction. However, for materials that spread in several directions, the anisotropic −→p (.)-Leray-
Lions operator is used. For example, the anisotropic operator is used to describe the spread of an
epidemic disease (see [4]).
In this paper, we study the existence anduniqueness of solutions for the following nonlinearmultivalued
elliptic anisotropic problem

(P)



−
N∑
j=1

∂

∂xj
aj(x,

∂u

∂xj
) + β(u) 3 f in Ω

N∑
j=1

aj(x,
∂u

∂xj
).ηj = 0 on ∂Ω,

(1.1)

where Ω is a bounded open domain of RN (N ≥ 3) with a smooth boundary ∂Ω and η = (η1, ..., ηN ) is
the unit outward normal vector on ∂Ω. For j = 1, ..., N , aj : Ω× R −→ R is a Carathéodory function
satisfying classical hypotheses in the study of nonlinear problems.
The function β : R→ 2R is a maximal monotone mapping with 0 ∈ β(0) and f belongs to L∞(Ω) or
L1(Ω).
We emphasize that for the Neumann boundary condition, we must seek the solution in Sobolev spaces
with variable exponent,W 1,−→p (.)(Ω). Unfortunately, in this space, we lose the Poincaré inequality, which
is an important tool for obtaining coercivity in the Dirichlet case. Therefore, we must face with a non-
coercive operator during the approximation process of the problem (P). To overcome this difficulty, we
add a strongly monotone perturbation term to the approximate problem (Pr), which allows us to obtain
the coercivity of the associated operator. When the right-hand side data is an L∞-function, we establish
an L∞-estimate on the approximation βr of β, which ensures its weak convergence star in L∞(Ω).
However, when the right-hand side data is an L1-function, one can only establish an L1-estimate on the
sequence (wm)m∈N derived from the graph β. The convergence of this sequence in L1(Ω) is a crucial
step in the proof of the existence of a solution. But it is not easy to establish. To bypass this difficulty,
we use a relatively compactness argument and obtain weak convergence of (wm)m∈N in L1(Ω).
Note that there is a large literature on problem related to (P). However, only particular cases of the
data β have been considered.
The first attempts to tackle a problem like (P) were made by Boureanu and Rǎdulescu in [7] (see
also [25]), where they studied a non-homogeneous anisotropic Neumann problem with an obstacle.
They established the existence and multiplicity of weak solutions and also identified conditions under
which the uniqueness of the solution can be achieved. Given β(u) = |u|pM (x)−2u (pM to be define later),
the authors in [6] used the techniques of minimization to obtain the existence of a weak solution to
problem (P). Furthermore, they also obtained the existence and uniqueness of an entropy solution
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using approximation methods.
In the case where β is a continuous and non-decreasing function such that β(0) = 0, Ouaro et al. [15,18]
used the technique of maximal monotone operators in Banach spaces (see [29]) to prove the existence
and uniqueness of entropy solutions of (P) when the data f is an L1−function or diffuse measure data.
Furthermore, in collaboration with the second author (see [19]), they used the same techniques to
prove the existence and uniqueness of a solution to the problem (P) in the framework of maximal
monotone graph β with bounded domain, i.e., Dom(β) = [a, b] with a, b ∈ R such that a ≤ 0 ≤ b.
We stress that the well-posedness of (P) depends on how the domain of β is defined (for example,
dom(β) = R, dom(β) 6= R and closed, dom(β) 6= R and open).
A natural question that arising from our previous work [19] is: what happens when Dom(β) 6= [a, b]?
This paper aims to extend our main results in [19]. Roughly speaking, we establish the existence and
uniqueness of a renormalized or entropy solution to the problem (P) when the domain of β is the
whole of R (i.e. Dom(β) = R) instead of a bounded domain of R. By this work, we also extend the
work [10] from Dirichlet case to Neumann boundary condition.
In the framework of isotopic p(.)-Leray-Lions type operator, the authors in [27]) analyzed the existence
and uniqueness of solution of the following

−∇.a(x,∇u) + β(u) 3 µ in Ω

a(x,∇u).η = 0 on ∂Ω,

(1.2)

It is important to mention that β was assumed to have a bounded domain. Recently, in [31], the problem
(1.2) was reconsidered under the assumption that Dom(β) = R. The problem (P) can be viewed as the
anisotropic version of the nonlinear isotropic problem (1.2). As far as problems like (P) are concerned,
we refer to [20–23].
Since this work is an extension of existing research, we will refer to [10, 19, 31] for certain proofs to
avoid unnecessary repetition.
The rest of the paper is organized as follows. Section 2 presents some preliminaries on variable exponent
spaces. In Section 3, we outline our key assumptions and introduce the concept of solutions. Section 4
establishes the existence of a renormalized solution to the problem (P) for f ∈ L∞(Ω). In Section 5,
we prove the existence of both a renormalized and entropy solution when f belongs to L1(Ω). Finally,
Section 6 demonstrates the uniqueness of the entropy solution.

2. Preliminary

In this section, we review some definitions and fundamental properties of anisotropic Lebesgue and
Sobolev spaces.
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Let Ω be a bounded domain in RN (N ≥ 3), with smooth boundary ∂Ω. We define the set

C+(Ω) =

{
p(.) : Ω −→ (1,∞) continuous such that 1 < p− ≤ p+ <∞

}
,

where p− := min
x∈Ω

p(x) and p+ := max
x∈Ω

p(x).
For any p ∈ C+(Ω), the variable exponent Lebesgue space is defined by

Lp(.)(Ω) :=

{
u : u is a measurable real valued function such that

∫
Ω
|u|p(x)dx <∞

}
,

endowed with the so-called Luxembourg norm

|u|p(.) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Moreover, (Lp(.)(Ω), ‖.‖p(.)) is a separable, reflexive and uniformly convex Banach space. Hence its dual
space is isomorphic to Lp′(.)(Ω) where 1

p(x)
+

1

p′(x)
= 1 in Ω.

The p(.)-modular of the space Lp(.)(Ω) is the mapping ρp(.) : Lp(.)(Ω) −→ R defined by

ρp(.)(u) :=

∫
Ω
|u|p(x)dx.

For any u ∈ Lp(.)(Ω), the following inequalities (see [12], [13]) holds true.

min
{
|u|p

−

p(.); |u|
p+

p(.)

}
≤ ρp(.)(u) ≤ max

{
|u|p

−

p(.); |u|
p+

p(.)

}
. (2.1)

For any u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω), we have the Hölder type inequality∣∣∣∣ ∫
Ω
uvdx

∣∣∣∣ ≤ ( 1

p−
+

1

(p′)−

)
|u|p(.)|v|p′(.). (2.2)

Let p1, p2 ∈ C+(Ω) such that p1(x) ≤ p2(x) for any x ∈ Ω, then the embedding Lp2(.)(Ω) ↪→ Lp1(.)(Ω) is
continuous (see [24], Theorem 2.8).
Next, we introduce the variable exponent Sobolev space

W 1,p(.)(Ω) :=

{
u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω)

}
,

with the norm

||u||1,p(.) = ‖u‖p(.) + ‖∇u‖p(.).

The space (W 1,p(.)(Ω), ‖.‖1,p(.)) is a separable and reflexive Banach space.
We denote by W 1,p(.)

0 (Ω) the closure of C∞0 (Ω) in W 1,p(.)(Ω), and its dual space will be denoted by
W−1,p′(.)(Ω).
Let p1(.), ..., pN (.)) be N variable exponents in C+(Ω), We denote by

pM (x) := max(p1(x), ..., pN (x)) and pm(x) := min (p1(x), ..., pN (x)) .
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The anisotropic Sobolev space (see [25]) is defined by

W 1,−→p (.)(Ω) :=

{
u ∈ LpM (.)(Ω) :

∂u

∂xj
∈ Lpj(.)(Ω), j = 1, ..., N

}
,

which are separable and reflexive Banach spaces under the norm

||u||−→p (.) =
N∑
j=1

∣∣∣∣ ∂u∂xj
∣∣∣∣
pj(.)

. (2.3)

We also defined byW 1,−→p (.)
0 (Ω), the closure of C∞0 (Ω) with respect to the norm (2.3).

We introduce the numbers

q =
N(p− 1)

N − 1
; q∗ =

N(p− 1)

N − p
=

Nq

N − q

and define P ∗−, P+
− , P−,∞ ∈ R+ by

P ∗− =
N

N∑
j=1

1

p−j
− 1

, P+
− = max

{
p−1 , ..., p

−
N

} and P−,∞ = max
{
P+
− , P

∗
−
}
,

where N
p

=

N∑
j=1

1

p−j
.

Theorem 2.1. [24] Let Ω ⊂ RN (N ≥ 3) be a bounded open set and for all i = 1, ..., N , pj ∈ L∞(Ω),

pj(x) ≥ 1 a.e. in Ω. Then, for any q ∈ L∞(Ω) with q(x) ≥ 1 a.e. in Ω such that

ess inf
x∈Ω

(pM (x)− q(x)) > 0,

we have the compact embedding

W 1,−→p (.)(Ω) ↪→ Lq(.)(Ω).

Theorem 2.2. [30] Let p1, ..., pN ∈ [1,+∞); g ∈W 1,(p1,...,pN )(Ω) and

q =


(p)∗ if (p)∗ < N

∈ [1,+∞) if (p)∗ ≥ N.

Then, there exists a constant C4 > 0 depending on N, p1, ..., pN if p < N and also on q andmeas(Ω) if p ≥ N

such that

||g||Lq(Ω) ≤ C4

N∏
j=1

∥∥∥∥ ∂g∂xj
∥∥∥∥ 1

N

Lpj (Ω)

. (2.4)

We define the Marcinkiewicz spaceMq(Ω)(1 < q < +∞) as the set of measurable function g : Ω −→ R

for which the distribution

λg(k) = meas({x ∈ Ω : |g(x)| > k}), k ≥ 0 (2.5)
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satisfies an estimate of the form

λg(k) ≤ Ck−q, for some finite constant C > 0. (2.6)

We will use the following pseudo norm inMq(Ω)

||g||Mq(Ω) := inf{C > 0 : λg(k) ≤ Ck−q, ∀k > 0}. (2.7)

Throughout the paper, the truncation function Tk, of level k > 0 by

Tk(s) = max{−k,min{k; s}}. (2.8)

It is obvious that lim
k→∞

Tk(s) = s and |Tk(s)| = min{|s|; k}.
Set T 1,−→p (.)(Ω) as the set of measurable functions u : Ω −→ R such that Tk(u) ∈ W 1,−→p (.)(Ω). We
define the space T 1,−→p (.)

H (Ω) as the set of functions u ∈ T 1,−→p (.)(Ω) such that there exists a sequence
(un)n∈N ⊂W 1,−→p (.)(Ω) satisfying

un −→ u a.e. in Ω

and
∂Tk(un)

∂xj
−→ ∂Tk(u)

∂xj
in L1(Ω), ∀ k > 0.

Proposition 1. [5] Let u ∈ T 1,p(.)(Ω) and γ > 0. For any j = 1, ..., N , there exists a unique measurable

function ϑj : Ω −→ RN such that

∀ γ > 0
∂Tγ(u)

∂xj
= ϑjχ{|u|<γ}, for a.e.x ∈ Ω,

where A denotes the characteristic function of a measurable set A.

The function ϑj are called the weak gradient of u and is still denoted by ∂u

∂xj
. Moreover, if u ∈W 1,p(.)(Ω), then

ϑ ∈ (Lp(.)(Ω))N and ϑj =
∂u

∂xj
in the usual sense.

For any r ∈ R and any measurable function u on Ω, [u = r], [u ≤ r] and [u ≥ r] denote, respectively
the set
{x ∈ Ω : u(x) = r}, {x ∈ Ω : u(x) ≤ r}, {x ∈ Ω : u(x) ≥ r}.
For any given l, k > 0, we define the function hl by hl = min{(l + 1− |r|)+, 1}.
Let sign+

0 be a function that assigns values as follows

sign+
0 (s) =

 1 if s > 0,

0 if s ≤ 0.
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For δ > 0, we define the function H+
δ : R→ R by

H+
δ (r) =



1 if r > δ

r

δ
if 0 ≤ r ≤ δ

0 if r < 0.

It is evident that H+
δ is an approximation of sign+

0 .
Let β be a maximal monotone operator defined on R, we denote by β0 the main section of β; i.e.,

β0(s) =


minimal absolute value of β(s) if β(s) 6= ∅

+∞ if [s,+∞) ∩D(β) = ∅

−∞ if (−∞, s] ∩D(β) = ∅.

For a maximal monotone graph β in R × R, for any r ∈ (0, 1], the Yosida approximation βr of β
(see [1, 2, 8]) is given by βr =

1

r
(I − (I + rβ)−1).

If s ∈ Dom(β), |βr(s)| ≤ |β0(s)| and βr(s) −→ β0(s), as r → 0, and if s /∈ Dom(β), |βr(s)| −→ ∞, as
r → 0.

Lemma 2.1. [26] Let (βn)n≥1 be a sequence of maximal monotone graphs such that βn → β in the sense of the

graph (for (x, y) ∈ β, there exists (xn, yn) ∈ βn such that xn → x and yn → y). We consider two sequences

(zn)n≥1 ⊂ L1(Ω) and (wn)n≥1 ⊂ L1(Ω). We suppose that: ∀n ≥ 1, wn ∈ βn(zn), (wn)n≥1 is bounded in

L1(Ω) and zn → z in L1(Ω). Then, z ∈ dom(β).

3. Assumptions and Notions of Solution

In this paper, we consider problem (P) under the following assumptions on the data.
Let Ω be a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω and let −→p (.) = (p1(.), ..., pN (.))

be a vector such that for any j = 1, ..., N, pj(.) ∈ C+(Ω).
For any j = 1, ..., N , let aj : Ω× R −→ R be a Carathéodory function satisfying :
• there exists a positive constant C1 such that

|aj(x, ξ)| ≤ C1

(
ki(x) + |ξ|pj(x)−1

)
, (3.1)

for almost every x ∈ Ω and for every ξ ∈ R, where ki is a non-negative function in Lp′i(.)(Ω), with
1

pj(x)
+

1

p′i(x)
= 1;
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• for ξ, η ∈ R with ξ 6= η and for every x ∈ Ω, there exists a positive constant C2 such that

(aj(x, ξ)− aj(x, η))(ξ − η) ≥


C2|ξ − η|pj(x) if |ξ − η| ≥ 1

C2|ξ − η|p
−
j if |ξ − η| < 1

(3.2)

and
• there exists a positive constant C3 such that

aj(x, ξ).ξ ≥ C3|ξ|pj(x), (3.3)

for every ξ ∈ R and almost every x ∈ Ω.
Throughout this paper, we assume that

p(N − 1)

N(p− 1)
< p−j <

p(N − 1)

N − p
,
p+
i − p

−
j − 1

p−j
<

p−N
p(N − 1)

(3.4)

and
N∑
j=1

1

p−j
> 1, (3.5)

where N
p

=
N∑
j=1

1

p−j
.

Definition 3.1. A renormalized solution of problem (P) is a couple of functions (u,w) ∈ T 1,−→p (.)
H (Ω)× L1(Ω)

satisfying the following conditions.

(i): u : Ω −→ R is measurable, u(x) ∈ dom(β(x)), w(x) ∈ β(u(x)) for a.e. x in Ω,

(ii): For all k > 0, S ∈ C1
c (R) and ϕ ∈W 1,−→p (.)(Ω) ∩ L∞(Ω),

N∑
j=1

∫
Ω
aj

(
x,

∂u

∂xj

)
∂

∂xj
[S(u)ϕ]dx+

∫
Ω
wS(u)ϕdx =

∫
Ω
fS(u)ϕdx, (3.6)

(iii):

lim
k→∞

∫
{l<|u|<l+1}

aj

(
x,

∂u

∂xj

)
∂u

∂xj
dx = 0. (3.7)

We also introduce the notion of an entropy solution for the problem (P), which will be useful in the
proof of uniqueness.

Definition 3.2. An entropy solution of problem (P) is a pair of functions (u,w) ∈ T 1,−→p (.)
H (Ω)× L1(Ω) such

that u(x) ∈ dom(β(x)), w(x) ∈ β(u(x)) and for a.e x ∈ Ω,

N∑
j=1

∫
Ω
aj

(
x,

∂u

∂xj

)
∂

∂xj
Tk(u− ϕ)dx+

∫
Ω
wTk(u− ϕ)dx ≤

∫
Ω
fTk(u− ϕ)dx, (3.8)

for all ϕ ∈W 1,−→p (.)(Ω) ∩ L∞(Ω) such that ϕ(x) ∈ β(u(x)) for a.e x in Ω.
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4. Existence of Solution for L∞ Data

Theorem 4.1. Let f ∈ L∞(Ω). Then, there exists at least one renormalized solution (u,w) of the problem (P).

Proof. To prove this theorem we proceed by steps.
Step 1: Approximate problem

For every r > 0, we consider the Yosida regularization βr =
1

r
(I − (I + rβ)−1) of β (see [8]).

Now, we consider the sequence of approximate problem

P (βr, f)



−
N∑
j=1

∂

∂xj
aj(x,

∂ur
∂xj

) + βr(T 1
r
(ur)) + r|ur|PM (x)−2ur = f in Ω

N∑
j=1

aj(x,
∂ur
∂xj

).ηj = 0 on ∂Ω.

Proposition 2. (see [19] Theorem 3.1) Let f ∈ L∞(Ω). Then, the problem P (βr, f) has at least one weak

solution ur ∈W 1,−→p (.)(Ω) in the sense that, βr(T 1
r
(ur)) ∈ L1(Ω) and for all ϕ ∈ W 1,−→p (.)(Ω) ∩ L∞(Ω),

N∑
j=1

∫
Ω
aj

(
x,
∂ur
∂xj

)
∂ϕ

∂xj
dx+

∫
Ω
βr(T 1

r
(ur))ϕdx+ r

∫
Ω
|ur|PM (x)−2urϕdx =

∫
Ω
fϕdx. (4.1)

Step 2 : A priori estimates

Lemma 4.1. Let f ∈ L∞(Ω) and k > 0. If ur is a weak solution of problem (Pr), then,

N∑
j=1

∫
{|ur|≤k}

∣∣∣∣∂ur∂xj

∣∣∣∣pj(x)

dx ≤ k(C7 + 1), (4.2)

||βr(T 1
r
(ur))||∞ ≤ ‖f‖∞, (4.3)

N∑
j=1

∫
{l<|ur|<l+k}

aj

(
x,
∂ur
∂xj

)
∂ur
∂xj

dx ≤ k
∫
{|ur|>l}

|f |dx, (4.4)

∫
Ω
|∇Tk(ur)|p

−
mdx ≤ C6, (4.5)

N∑
j=1

∫
Ω

∣∣∣∣ ∂u∂xj
∣∣∣∣pj(x)

dx ≥ C6||∇u||p
−
m

Lp−m (Ω)
−Nmeas(Ω) (4.6)

and
N∑
j=1

∫
{l<|ur|<l+k}

aj

(
x,
∂ur
∂xj

)
∂ur
∂xj

dx ≤ k||f ||∞|{|ur| ≥ l}|. (4.7)
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Proof. By choosing ϕ = Tk(ur) as a test function in (4.1), one obtains
N∑
j=1

∫
Ω
aj

(
x,
∂ur
∂xj

)
∂Tk(ur)

∂xj
+

∫
Ω
βr(T 1

r
(ur))Tk(ur)dx

+r

∫
Ω
|ur|PM (x)−2urTk(ur)dx =

∫
Ω
fTk(ur)dx. (4.8)

Due to the coercivity of aj , the nondecreasing of βr ◦ T 1
r
and the fact that ur and Tk(ur) have the same

sing, one can conclude that all terms in right hand side of (4.8) are positive.
By neglecting some positive terms and taking into account (3.3), one obtains

C5

N∑
j=1

∫
{|ur|≤k}

∣∣∣∣∂ur∂xj

∣∣∣∣pj(x)

dx ≤
∫

Ω
fTk(ur)dx ≤

∣∣∣∣ ∫
Ω
fTk(ur)dx

∣∣∣∣ ≤ k||f ||∞.
On the other hand, one has

N∑
j=1

∫
{|ur|≤k}

∣∣∣∣∂ur∂xj

∣∣∣∣p−j dx =
N∑
j=1

∫
{|ur|≤k,| ∂ur∂xj

|>1}

∣∣∣∣∂ur∂xj

∣∣∣∣p−j dx+
N∑
j=1

∫
{|ur|≤k,| ∂ur∂xj

|≤1}

∣∣∣∣∂ur∂xj

∣∣∣∣p−j dx
≤

N∑
j=1

∫
{|ur|≤k,| ∂ur∂xj

|>1}

∣∣∣∣∂ur∂xj

∣∣∣∣pj(x)

dx+Nmeas(Ω).

Combining the two last inequalities and setting C7 = max{Nmeas(Ω),
k‖f‖∞
C5

}, one obtains (4.2).

Now, we focus on the proof of (4.3). For that, one uses ϕr,δ =
1

δ
[Tk+δ(βr(T 1

r
(ur)))− Tk(βr(T 1

r
(ur)))] as

a function test in (4.1) to get
N∑
j=1

∫
Ω
aj

(
x,
∂ur
∂xj

)
∂ϕr,δ
∂xj

dx+

∫
Ω
βr(T 1

r
(ur))ϕr,δdx+ r

∫
Ω
|ur|PM (x)−2urϕr,δdx =

∫
Ω
fϕr,δdx. (4.9)

Having in mind that ∂ϕr,δ
∂xj

=


1

δ
β′r(T 1

r
(ur))

∂ur
∂xj

if k ≤ |βr(T 1
r
(ur))| ≤ k + δ,

0 elsewhere,
and the fact that βr is nondecreasing, one deduce from (3.3) that the first term of (4.9) is positive. the
third term is also positive due to the fact that ur and ϕr,δ have the same sign.
Hence, neglecting some positive terms, one obtains∫

Ω
βr(T 1

r
(ur))ϕr,δdx ≤

∫
Ω
fϕr,δdx.

Then, arguing exactly as in [17], one obtains

meas{k ≤ |βr(T 1
r
(ur))|} = 0, for any k > ‖f‖L∞(Ω).

So, we conclude that
‖βr(T 1

r
(ur))‖L∞(Ω) ≤ ‖f‖L∞(Ω).
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For the proofs of (4.4)-(4.7) we refer to [21]. �

Proposition 3. [15, 20, 26, 31]

Let k > 0 large enough and suppose ur a weak solution to problem (Pr). Then

meas{|ur| > k} ≤ ‖f‖∞
min{βr(k), |βr(−k)|}

, (4.10)

meas

{∣∣∣∣∂ur∂xj

∣∣∣∣ > k

}
≤ C6

k
1

(pM )′
(4.11)

and

meas

{
|∇ur| > k

}
≤ C7

kp
−
m

+
‖f‖∞

min{βr(k), |βr(−k)|}
, (4.12)

where C6, C7 are positive constants.

Lemma 4.2. [6, 15] For any k > 0, there exists some constants C1, C2 > 0 such that:

(i) ||ur||Mq∗ (Ω) ≤ C1;

(ii) ‖∂ur
∂xj
‖
Mp−

j
q
p (Ω)
≤ C2, ∀j = 1, ..., N.

Proposition 4. [6, 15, 19] Let k > 0, and suppose ur a weak solution to problem (Pr). Then, the sequence

(Tk(ur))r>0 is bounded inW 1,p−m(Ω).

Lemma 4.3. Let suppose ur a solution of the (Pr), then∫
Ω

(|βr(T 1
r
(ur)| − k)+dx ≤

∫
Ω

(|f | − k)+dx. (4.13)

Proof. Taking ϕ = H+
δ (βr(T 1

r
(ur))− k) as a test function in (4.1), one obtains∫

Ω
βr(T 1

r
(ur))H

+
δ (βr(T 1

r
(ur))− k)dx+

N∑
j=1

∫
Ω
aj

(
x,
∂ur
∂xj

)∂H+
δ (βr(T 1

r
(ur))− k)

∂xj
dx

+r

∫
Ω
|ur|PM (x)−2urH

+
δ (βr(T 1

r
(ur))− k)dx =

∫
Ω
fH+

δ (βr(T 1
r
(ur))− k)dx.

Since ur and H+
δ (βr(T 1

r
(ur))− k) have the same sign, the third term is positive.

Due to the nondecreasing of βr, one has
N∑
j=1

∫
Ω
aj

(
x,
∂ur
∂xj

)∂H+
δ (βr(T 1

r
(ur))− k)

∂xj
dx

=

N∑
j=1

∫
Ω
aj

(
x,
∂ur
∂xj

)
(H+

δ )′(βr(T 1
r
(ur))− k)β′r(T 1

r
(ur))

∂ur
∂xj

dx ≥ 0.

Therefore, ∫
Ω

(βr(T 1
r
(ur)− k)H+

δ (βr(T 1
r
(ur))− k)dx ≤

∫
Ω

(f − k)H+
δ (βr(T 1

r
(ur))− k)dx.
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Letting δ → 0 we obtain ∫
Ω

(βr(T 1
r
(ur)− k)+dx ≤

∫
Ω

(f − k)+dx. (4.14)

In the same way, we have ∫
Ω

(βr(T 1
r
(ur) + k)−dx ≤

∫
Ω

(f + k)−dx. (4.15)

By combining (4.14) and (4.15) follows (4.13). �

We establish a L∞(Ω)-comparison principle of weak solutions.

Proposition 5. Let r > 0 be fixed. If u1
r and u2

r are two solutions of (Pr) associated with f1, f2 ∈ L∞(Ω)

respectively, then, the following inequality holds true,

r

∫
Ω

(|ur|PM (x)−2u1
r − |u2

r |PM (x)−2u2
r)

+dx ≤
∫

Ω
(f1 − f2) sign+

0 (u1
r − u2

r)dx. (4.16)

Moreover, if f1 ≤ f2 a.e. in Ω, then

u1
r ≤ u2

r and βr(T 1
r
(u1
r)) ≤ βr(T 1

r
(u2
r)) a.e. in Ω. (4.17)

Proof. By taking ϕ =
1

k
Tk(u

1
r − u2

r)
+ as a test function in (4.1) for f1 and f2 respectively. Then,

subtracting the resulting equalities, one obtains
N∑
j=1

∫
Ar

(
aj(x,

∂u1
r

∂xj
)− aj(x,

∂u2
r

∂xj
)

)
∂

∂xj
(u1
r − u2

r)dx+

∫
Ω

(βr(T 1
r
(u1
r))− βr(T 1

r
(u2
r))

1

k
Tk(u

1
r − u2

r)
+dx

+r

∫
Ω

(|u1
r |PM (x)−2ur − |u2

r |PM (x)−2u2
r)

1

k
Tk(u

1
r − u2

r)
+dx =

∫
Ω

(f1 − f2)
1

k
Tk(u

1
r − u2

r)
+dx (4.18)

where Ar = {0 < u1
r − u2

r) < k}.
By the monotonicity of βr and aj the two first terms are positive. Then, neglecting some positive terms,
one gets

r

∫
Ω

(|u1
r |PM (x)−2ur − |u2

r |PM (x)−2u2
r)

1

k
Tk(u

1
r − u2

r)
+dx =

∫
Ω

(f1 − f2)
1

k
Tk(u

1
r − u2

r)
+dx.

Therefore, passing to the limit as k tends to zero, one deduces that

r

∫
Ω

(|u1
r |PM (x)−2u1

r − |u2
r |PM (x)−2u2

r)
+dx ≤

∫
Ω

(f1 − f2) sign+
0 (u1

r − u2
r)dx.

(4.17) is an immediate consequence of (4.18). �

Step 3 : Basic convergence results

We stress that it is well-known (see [6, 15, 19]) that Lemma 4.2 implies the following convergence
results.
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Lemma 4.4. Let ur be a solution of problem (Pr). Then, for j = 1, ..., N , as n→∞, one has

aj

(
x,
∂ur
∂xj

)
−→ aj

(
x,

∂u

∂xj

)
in L1(Ω) a.e. x ∈ Ω. (4.19)

aj

(
x,

∂

∂xj
Tk(ur)

)
−→ aj

(
x,

∂

∂xj
Tk(u)

)
strongly in L1(Ω) and weakly in Lp′i(.)(Ω). (4.20)

Moreover (see [19]),

aj

(
x,
∂ur
∂xj

)
∂ur
∂xj
−→ aj

(
x,

∂u

∂xj

)
∂u

∂xj
in L1(Ω) and a.e. in Ω. (4.21)

Proposition 6. Let j = 1, ..., N , and suppose ur a weak solution to (Pr). Then,

(i) there exists u ∈W 1,−→p (.)(Ω) ⊂ T 1,−→p (.)
H (Ω) such that u ∈ dom(β) a.e. in Ω and

ur −→ u in measure and a.e. in Ω as r −→ 0. (4.22)

(ii) ∂ur
∂xj

converges in measure to the weak partial gradient of u.

Lemma 4.5. [19] Let S ∈ C1
c (R) and ϕ ∈W 1,−→p (.)(Ω) ∩ L∞(Ω).

For any j = 1, ..., N , one has

∂

∂xj
(S(ur)ϕ) −→ ∂

∂xj
(S(u)ϕ) strongly in L1(Ω) as r → 0

and

lim
r→0

r

∫
Ω
|ur|pM (x)−2urS(ur)ϕdx = 0. (4.23)

Lemma 4.6. ( [21,22])

βr(T 1
r
(ur)) ⇀ w weakly-* in L∞(Ω). (4.24)

Step 3 : Passing to the limit

Let S ∈ C1
c (R) and ϕ ∈ W−→p (.)(Ω) ∩ L∞(Ω) be arbitrary. Plugging Sl(ur)h(u)ϕ as a test function in

(4.1), one obtains
N∑
j=1

∫
Ω
aj

(
x,
∂ur
∂xj

)
∂

∂xj
[Sl(ur)S(u)ϕ]dx+

∫
Ω
βr(T 1

r
(ur))Sl(ur)S(u)ϕdx

+r

∫
Ω
|ur|pM (x)−2urSl(ur)S(u)ϕdx =

∫
Ω
fSl(ur)S(u)ϕdx.

Since ∂

∂xj
[Sl(ur)S(u)ϕ] = Sl(ur)

∂

∂xj
[S(u)ϕ] + S(u)ϕS′l(ur)

∂ur
∂xj

, one obtain

N∑
j=1

∫
Ω
Sl(ur)aj

(
x,
∂ur
∂xj

)
∂

∂xj
[S(u)ϕ]dx+

N∑
j=1

∫
Ω
S(u)ϕS′l(ur)aj

(
x,
∂ur
∂xj

)
∂ur
∂xj

dx

+

∫
Ω
βr(T 1

r
(ur))Sl(ur)S(u)ϕdx+ r

∫
Ω
|ur|pM (x)−2urSl(ur)S(u)ϕdx
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=

∫
Ω
fSl(ur)S(u)ϕdx. (4.25)

By using the generalized Lebesgue dominated convergence theorem, one obtains

lim
r→0

r

∫
Ω
|ur|pM (x)−2urSl(ur)S(u)ϕdx = 0. (4.26)

According to [21] and (4.26), one pass to the limit as r ↓ 0 in (4.25) to obtain.

N∑
j=1

∫
Ω
Sl(u)aj

(
x,
∂Tl+1(u)

∂xj

)
∂

∂xj
[S(u)ϕ]dx+ lim

r→0

N∑
j=1

∫
Ω
S(u)ϕS′l(ur)aj

(
x,
∂ur
∂xj

)
∂ur
∂xj

dx

∫
Ω
wSl(u)S(u)ϕdx =

∫
Ω
fSl(u)S(u)ϕdx. (4.27)

Since for any k0 > 0 such that suppS ⊂ [−k0, k0], one can replace u by Tk0(u) in the equality above.
This also implies that, S′l(u) = S′l(Tk0(u)) = 0 if l + 1 > k0 and Sl(u) = Sl(Tk0(u)) = 1 if l > k0.

Remark 4.1. According to [21], one has∣∣∣∣ N∑
j=1

∫
Ω
S(u)ϕS′l(ur)aj

(
x,
∂ur
∂xj

)
∂ur
∂xj

dx

∣∣∣∣ =

∣∣∣∣ N∑
j=1

∫
{l<|ur|<l+k}

S(u)ϕaj

(
x,
∂ur
∂xj

)
∂ur
∂xj

dx

∣∣∣∣
≤ const(S, ‖ϕ‖∞)

N∑
j=1

∫
Ω
aj

(
x,
∂ur
∂xj

)
∂ur
∂xj

dx

≤ const(k, S, ‖ϕ‖∞)
N∑
j=1

∫
{|ur|>l}

fdx

≤ const(||f‖∞, k, S, ‖ϕ‖∞)

N∑
j=1

meas{|ur| > l}

≤ const(N, ||f‖∞, k, S, ‖ϕ‖∞)meas{|ur| > l}.

According to (4.10) in Proposition 3, meas{|ur| > l} −→ 0 as l→∞. Then, we deduce from above inequality

that

lim
l→∞

lim
r→0

N∑
j=1

∫
Ω
S(u)ϕS′l(ur)aj

(
x,
∂ur
∂xj

)
∂ur
∂xj

dx = 0.

Therefore, passing to the limit as l→∞, one obtains∫
Ω

N∑
j=1

aj

(
x,

∂u

∂xj

)
∂

∂xj
[S(u)ϕ]dx+

∫
Ω
wS(u)ϕdx =

∫
Ω
fS(u)ϕdx.

Now, we focus on the proof (3.7).
From (4.10), one has (see [16,19])

meas({|ur| > l})→ 0 uniformly as l→∞.
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Hence, passing to the limit in (4.4) as l→∞ and using (3.3), one obtains

lim
l→∞

∫
{l<|u|<l+1}

aj

(
x,

∂u

∂xj

)
∂u

∂xj
dx = 0.

We end the proof of Theorem 4.1 by using the same argument as in [10] to prove the subdifferential
argument : u(x) ∈ dom(β(x)), w(x) ∈ β(u(x)) for a.e. x in Ω. �

5. Existence of Solution for L1 Data

Theorem 5.1. Let f ∈ L1(Ω) and assume that (3.1)-(3.5) hold true. Then, the problem (P) has at least one

renormalized solution.

Step 1: Approximate problem and a priori estimates

Let us consider, for anym > 0, the approximated problem

(Pm)



−
N∑
j=1

∂

∂xj
aj(x,

∂um
∂xj

) + β 1
m

(um) = fm in Ω

N∑
j=1

aj(x,
∂um
∂xj

).ηj = 0 on ∂Ω,

where fm = Tm(f). Note that (fm) is a sequence of L∞-functions which converges strongly to f in
L1(Ω) and verify |fm| ≤ |f |.
β 1

m
(.) : R→ R is the Yosida approximation of β(.) such that: for any u ∈W 1,p(.)(Ω)

〈β 1
m

(u), u〉 ≥ 0, |β 1
m

(u)| ≤ m|u| and lim
m→∞

β 1
m

(u) = β(u).

By Theorem 4.1, the problem (Pm) has at least one solution (um, wm) ∈W 1,−→p (.)(Ω)× L∞(Ω). Namely,
um ∈ Dom(β 1

m
), wm ∈ β 1

m
(um) a.e. in Ω and

∫
Ω

N∑
j=1

aj

(
x,
∂um
∂xj

)
∂

∂xj
[S(um)ϕ]dx+

∫
Ω
wmS(um)ϕdx =

∫
Ω
fmS(um)ϕdx, (5.1)

for every S ∈ C1
c (R) and ϕ ∈W 1,−→p (.)(Ω) ∩ L∞(Ω).

Remark 5.1. According to [10] (see the proof of Theorem 4.2), the sequences (um)m>1 and (wm)m>1 are

increasing.

Remark 5.2. Setting S = Sl, ϕ = Tk(um) in the above equality, then, arguing analogously as in [22] (see

Lemma 6) one obtains
N∑
j=1

∫
Ω

∣∣∣∣∂um∂xj

∣∣∣∣pj(x)

dx ≤ k‖f‖1
C5

, (5.2)

‖wm‖1 ≤ ‖f‖1. (5.3)
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Let us also stress that it follows from (5.2) that
N∑
j=1

∫
Ω

∣∣∣∣∂um∂xj

∣∣∣∣pjdx ≤ const(k, f, C5,Ω, N). (5.4)

As consequences to inequality (5.4), the estimates (i) and (ii) in Lemma 4.2 are satisfied by the sequence
(um)m>0. Therefore, as in the previous section, the convergence results in Lemmas 4.4 and 4.5, and
Proposition 6 hold true for the the sequence (um)m>0.

Lemma 5.1. The sequence (wm)m>0 satisfies

wm ⇀ w in L1(Ω), asm→∞. (5.5)

Proof. Let (urn, b
r
n) be a solution of the following problem

βr(T 1
r
(urm))−

N∑
j=1

∂

∂xj
aj(x,

∂urm
∂xj

) = fm in Ω

N∑
j=1

aj(x,
∂urm
∂xj

).ηj = 0 on ∂Ω.

According to Lemma 4.3, the following estimate holds true.∫
Ω

(|βr(T 1
r
(urm)| − k)+dx ≤

∫
Ω

(|fm| − k)+dx. (5.6)

Since βr(T 1
r
(urm) ⇀ wm in L∞(Ω) as r goes to 0, we get∫

Ω
(|wm| − k)+dx ≤

∫
Ω

(|fm| − k)+dx. (5.7)

From the inequality (5.7), one deduces that the sequence (wm)m∈N is relatively weakly compact in
L1(Ω) (see [17]). Therefore, up to a subsequence, one obtains

wm ⇀ w weakly in L1(Ω) asm→∞.

Since S(um)ϕ
∗
⇀ S(u)ϕ in L∞(Ω) as n→∞, and fm → f , one has∫

Ω
fnS(un)vdx→

∫
Ω
fS(u)vdx. (5.8)

From Lemma 5.1, we deduce that ∫
Ω
wnS(un)vdx→

∫
Ω
wS(u)ϕdx. (5.9)

According to [19], one has

lim
m→∞

∫
Ω

N∑
j=1

aj

(
x,
∂um
∂xj

)
∂

∂xj
[S(u)ϕ]dx =

∫
Ω

N∑
j=1

aj

(
x,

∂u

∂xj

)
∂

∂xj
[S(u)ϕ]dx. (5.10)

Combining (5.8), (5.9) and (5.10), we pass to the limit in (5.1), as ,m→∞ and obtain (3.6). �
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6. Existence of Entropy Solution

Theorem 6.1. Let f ∈ L1(Ω). Then, the problem (P) has at least one entropy solution.

Proof. Let (um, wm) a sequence of solutions to the problem (Pm) and t > 0. Then, for any v ∈
W

1,p(.)
0 (Ω) ∩ L∞(Ω), taking Tt(un − v) as test function in (5.1) and setting L = t+ ‖v‖∞, we obtain∫

Ω
wmTt(um − v)dx+

∫
Ω

N∑
j=1

aj

(
x,
∂um
∂xj

)
∂

∂xj
Tt(um − v)dx

=

∫
Ω
fmTt(um − v)dx. (6.1)

Notice that if |um| ≥ L, then |um − v| ≥ |um| − ‖v‖∞ > t. Therefore, {|um − v| ≤ t} ⊆ {|um| ≤ L},
which gives

∫
Ω

N∑
j=1

aj

(
x,
∂um
∂xj

)
∂

∂xj
Tt(um − v)dx

=

∫
Ω

N∑
j=1

aj

(
x,
∂TL(um)

∂xj

)(
∂TL(um)

∂xj
− ∂v

∂xj

)
χ{um−v|≤t}dx

∫
Ω

N∑
j=1

[
aj

(
x,
∂TL(um)

∂xj

)
− aj

(
x,

∂v

∂xj

)](
∂TL(um)

∂xj
− ∂v

∂xj

)
χ{um−v|≤t}dx

+

∫
Ω

N∑
j=1

aj

(
x,

∂v

∂xj

)(
∂TL(um)

∂xj
− ∂v

∂xj

)
χ{um−v|≤t}dx.

Using Fatou’s Lemma, we obtain

lim inf
m→∞

∫
Ω

N∑
j=1

aj

(
x,
∂um
∂xj

)
∂

∂xj
Tt(um − v)dx

≥
∫

Ω

N∑
j=1

aj

(
x,
∂TL(um)

∂xj

)(
∂TL(um)

∂xj
− ∂v

∂xj

)
χ{um−v|≤t}dx

+ lim
m→∞

∫
Ω

N∑
j=1

aj

(
x,

∂v

∂xj

)(
∂TL(um)

∂xj
− ∂v

∂xj

)
χ{um−v|≤t}dx.

(6.2)

Since 

lim
m→∞

∫
Ω

N∑
j=1

aj

(
x,

∂v

∂xj

)(
∂TL(um)

∂xj
− ∂v

∂xj

)
χ{um−v|≤t}dx

=

∫
Ω

N∑
j=1

aj

(
x,

∂v

∂xj

)(
∂TL(u)

∂xj
− ∂v

∂xj

)
χ{u−v|≤t}dx,



Asia Pac. J. Math. 2025 12:29 18 of 21

we deduce from (6.2), that

lim inf
n→∞

∫
Ω

N∑
j=1

aj

(
x,
∂um
∂xj

)
∂

∂xj
Tt(um − v)dx

≥
∫

Ω

N∑
j=1

aj

(
x,

∂v

∂xj

)(
∂TL(u)

∂xj
− ∂v

∂xj

)
χ{u−v|≤t}dx

=

∫
Ω
a(x, TL(u),∇v)(∇TL(u)−∇v)χ{u−v|≤t}dx

=

∫
Ω

N∑
j=1

aj

(
x,

∂v

∂xj

)
∂

∂xj
Tt(u− v)dx.

Since Tt(um − v)
∗
⇀ Tt(u− v) in L∞(Ω) and fm → f in L1(Ω) asm→∞, one deduces that∫

Ω
fmTt(um − v)dx→

∫
Ω
fTt(u− v)dx. (6.3)

Since wm ⇀ w weakly in L1(Ω) and Tt(um − v)
∗
⇀ Tt(u− v) in L∞(Ω) asm→∞, we obtain∫

Ω
wmTt(um − v)dx→

∫
Ω
wTt(u− v)dx. (6.4)

Passing to the limit in (6.1), we obtain the entropy inequality (3.8).
�

7. Uniqueness of Solution

Here we analyze the uniqueness of the solution of the problem (P).

Theorem 7.1. Let (u,w) and (v, d) be two entropy solutions of the problem (P) and let f be in L1(Ω). Then,

we have

u− v = c and w = d a.e. in Ω,

where c is a constant.

Proof. Let f be in L1(Ω). By writing the entropy inequality corresponding to (u,w) with test function
v and (v, d) with test function u. Adding up the both results, we obtain∫

Ω
wTk(u− v)dx+

N∑
j=1

∫
Ω

(
aj(x,

∂u

∂xj
)− aj(x,

∂v

∂xj
)

)
∂

∂xj
Tk(u− v)dx ≤

∫
Ω
fTk(u− v)dx (7.1)

Reasonning as in [19] (see also [31]), we obtain

u− v = c and w = d a.e. in Ω.

�
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Corollary 1. Let f ∈ L1(Ω) and let (u,w) and (v, d) be two entropy solutions of the problem (P). If the graph

β(.) is a strictly increasing and continuous function, then, we have

u = v and w = d a.e. in Ω.

proof. It follows the same as in [10]. �

8. Conclusion

In this paper, we have addressed the nonlinear multivalued −→p (.)-anisotropic problem under Neu-
mann boundary conditions with L∞(Ω) or L1(Ω) data. By leveraging the approximation techniques
and the theory of maximal monotone operators in Banach spaces, we established the existence of a
renormalized and an entropy solution of the problem. Additionally, by the comparison principle,
we prove the uniqueness of the entropy solution. The main results broaden the understanding of
numerous recent works in the literature [10,18, 19, 31].

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication
of this paper.
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