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Abstract. This paper introduces a novel approach to the Lyapunov eventual stability of Caputo fractional
dynamic equations on time scales. By utilizing comparison principle, we develop eventual stability results
that simultaneously holds for discrete and continuous domains allowing for an in-depth study of systems
that exhibit both continuous and abrupt changes over time ensuring that the system behavior becomes
stable after a finite time, which is particularly useful in scenarios involving transient disturbances. We also
give an illustrative example to show the applicability of our method.
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1. Introduction

In many real-world situations, the stability of states that are not equilibrium states is of interest.
Traditional Lyapunov stability is not suitable in these cases, as it inherently implies that a stable state
must be an equilibrium state. A notable example arises in the study of adaptive control systems, where
the desired state may not be an equilibrium state but may eventually behave increasingly like a stable
equilibrium state over time. This concept, referred to as eventual stability, is given a precise definition,
and its basic properties are explored. For instance, in autonomous systems or when the state is an
equilibrium state, eventual stability coincides with Lyapunov stability, and the related theorems can be
viewed as generalizations of Lyapunov’s classical results. However, in non-autonomous systems or
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when the state is not an equilibrium state, eventual stability presents a new perspective. Theorems
are developed to extend Lyapunov’s direct method for studying eventual stabilities and to provide
qualitative estimates of the extent of such stability. This new concept of stability has significant
potential applications, particularly in the theory and design of adaptive control systems. By allowing
for the stability analysis of non-equilibrium states, eventual stability offers a broader framework for
understanding system behavior. An example is provided to illustrate how these ideas can be utilized in
designing an adaptive control system, highlighting the practical relevance and applicability of eventual
stability in engineering and control systems.

Eventual stability is distinct from other forms of stability in its emphasis on the system’s behavior
after an initial transient phase. Unlike uniform or asymptotic stability, which requires immediate
stabilization or convergence over time, eventual stability allows for a temporary phase of instability or
oscillation before achieving stability. This characteristic makes eventual stability highly advantageous
for systems subject to temporary disruptions or changes in operating conditions, providing a realistic
approach for analyzing complex systems in engineering and control applications.

Time scale calculus, introduced by Stefan Hilger in 1988, serves as a unifying theory that bridges the
analysis of dynamic systems in both discrete and continuous time domains. The versatility of time
scales provides an ideal framework for studying systems that exhibit both continuous behaviors and
discrete transitions, as seen in hybrid systems. When combined with fractional calculus, time scale
analysis allows for a more comprehensive examination of dynamic systems, extending the benefits of
fractional modeling to both continuous and discrete scenarios.

This paper presents a novel approach to analyzing the Lyapunov eventual stability of Caputo
fractional dynamic equations on time scales, using a new generalized derivative. The generalized
derivative, called the Caputo fractional delta derivative and the Caputo fractional delta Dini derivative
of order α ∈ (0, 1), are employed as a unified approach (capturing the behavior of dynamic systems
across various time domains, addressing both continuous and discrete models in a consistent manner),
to develop the framework for this concept, extending the traditional Caputo fractional derivative to
time scales.

Previous studies, such as those by [1–5,16, 17], have primarily focused on continuous time systems
and have not fully addressed the challenges associated with eventual stability on discrete or hybrid
domains. Other works, such as [10], have tackled stability in discrete settings; [18,19] explored stability
for hybrid domains but did not explore the full implications of fractional-order eventual stability. The
recent advancements in fractional dynamic systems on time scales have focused largely on the existence
and uniqueness of solutions, as well as asymptotic stability, without considering eventual stability in
detail [11, 13, 24, 25]. This paper aims to bridge these gaps by providing a unified eventual stability
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analysis applicable to both continuous and discrete time scales, offering new insights into how dynamic
systems can achieve stability after transient behaviors.

By establishing comparison results and eventual stability criteria for Caputo fractional dynamic
equations, this paper extends the classical Lyapunov stability analysis to fractional-order systems
and introduces new methodologies for addressing the transient behaviors unique to such systems.
The findings contribute to a unified framework for stability analysis on time scales, bridging the gap
between continuous and discrete domains.

For the purpose of this work, we consider the Caputo fractional dynamic system of order α with
0 < α < 1

CTDαx∆ = f(t, x), t ∈ T,

x(t0) = x0, t0 ≥ 0,
(1)

where f ∈ Crd[T× Rn,Rn], f(t, 0) ≡ 0 and CTDαx∆ is the Caputo fractional delta derivative of x ∈ Rn

of order α with respect to t ∈ T. Let x(t) = x(t, t0, x0) ∈ Cαrd[T,Rn] (the fractional derivative of order
alpha of x(t) exist and it is rd-continuous) be a solution of (1) and assume the solution exists and
is unique (results on existence and uniqueness of (1) are contained in [7,12,22]), this work aims to
investigate the uniform stability and uniform asymptotic stability of the system (1).

Typically, stability or asymptotic stability is interpreted in the sense of Lyapunov. Today, there is
no need to revisit the definitions or describe Lyapunov’s second or direct method in detail. However,
one key point warrants emphasis: the definition of stability or asymptotic stability generally assumes
that x = 0 is an equilibrium state, meaning that f(t, 0) = 0. This assumption is inherent to Lyapunov
stability, as without the requirement that the origin is an equilibrium state, the definition itself implies
that it must be.

Consequently, Lyapunov stability applies only to equilibrium states. However, the type of stability
treated here concerns states that are not necessarily equilibrium states but increasingly behave like
stable or asymptotically stable equilibrium states over time. In the context of adaptive control systems,
considering real-world complexities, this is the type of stability that is often desired. When a system
or plant under control is subjected to disturbances and an evolving environment, it is optimal for the
adaptive control mechanism to ensure that the desired state behaves progressively more like a stable
equilibrium state, or ideally, like an asymptotically stable state. This form of stability is known as
"eventual stability."

Eventual stability is particularly important in the theory and design of adaptive control systems, as
it provides a practical framework for managing non-equilibrium states in dynamic environments. By
enabling states to asymptotically resemble stable equilibrium behavior despite external perturbations,
eventual stability offers a robust mechanism for ensuring reliable system performance, even when faced
with continuous changes and challenges. Theorems are developed to extend Lyapunov’s direct method
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for studying eventual stabilities and to provide qualitative estimates of the extent of such stability using
the comparison system of the form:

CTDαu∆ = g(t, u), u(t0) = u0 ≥ 0, (2)

where u ∈ R+, g : T× R+ → R+ and g(t, 0) ≡ 0. (2) is called the comparison system. For this work,
we will assume that the function g ∈ [T× R+,R+], is such that for any initial data (t0, u0) ∈ T× R+,
the system (2) with u(t0) = u0 has a unique solution u(t) = u(t; t0, u0) ∈ Cαrd[T,R+] see [7, 15].

The following section (Section 2) delves into essential terminologies, and remarks that form the basis
for the subsequent developments. It also introduces definitions and significant remarks. In Section
3, we present the main results, Section 4 provides a practical example to illustrate the relevance and
application of our approach. Lastly, Section 5 offers a conclusion, summarizing the key findings and
the implications of this study.

2. Preliminaries, Definitions, and Notations

In this section, we lay the groundwork by introducing key notations and definitions that will be
instrumental in developing the main results.

Definition 2.1. [9] For t ∈ T, the forward jump operator σ : T→ T is defined as

σ(t) = inf{s ∈ T : s > t},

while the backward jump operator ρ : T→ T is defined as

ρ(t) = sup{s ∈ T : s < t}.

(i) if σ(t) > t, t is right scattered,

(ii) if ρ(t) < t, t is left scattered,

(iii) if t < maxT and σ(t) = t, then t is called right dense,

(iv) if t > minT and ρ(t) = t, then t is called left dense.

Definition 2.2. [9] The graininess function µ : T→ [0,∞) for t ∈ T is defined as

µ(t) = σ(t)− t.

Definition 2.3 (Delta Derivative). [9] and [6] Let h : T→ R and t ∈ Tk.We define the delta derivative h∆

also known as the Hilger derivative as

h∆(t) = lim
s→t

h(σ(t))− h(s)

σ(t)− s
, s 6= σ(t).

provided the limit exists.

The function h∆ : T→ R is called the (Delta) derivative of h on Tk.
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If t is right dense, the delta derivative of h : T→ R, becomes

h∆(t) = lim
s→t

h(t)− h(s)

t− s
,

and if t is right scattered, the Delta derivative becomes

h∆(t) =
hσ(t)− h(t)

µ(t)
.

For a function h : T→ R, hσ denotes h(σ(t)).

Definition 2.4. [14] A function h : T → R is right dense continuous if it is continuous at all right dense

points of T and its left sided limits exist and is finite at left dense points of T. The set of all right dense continuous

functions are denoted by

Crd = Crd(T).

Definition 2.5. [14] Assume [a, b] is a closed and bounded interval in T. Then a function H : [a, b]→ R is

called a delta antiderivative of h : [a, b] → R provided H is continuous on [a, b], delta differentiable on [a, b),

and H∆(t) = h(t) for all t ∈ [a, b). Then, we define the Delta integral by∫ b

a
h(t) = H(b)−H(a), ∀a, b ∈ T.

Remark 2.1. [14] All right dense continuous functions are delta integrable.

Definition 2.6. [14] A function φ : [0, r]→ [0,∞) is of class K if it is continuous, and strictly increasing on

[0, r] with φ(0) = 0.

Definition 2.7. [14] A continuous function V : Rn → R with V(0) = 0 is called positive definite(negative

definite) on the domainD if there exists a function φ ∈ K such that φ(|x|) ≤ V(x) (φ(|x|) ≤ −V(x)) for x ∈ D.

Definition 2.8. [14] A continuous function V : Rn → Rwith V(0) = 0 is called positive semidefinite (negative

semi-definite) on D if V(x) ≥ 0 (V(x) ≤ 0) for all x ∈ D and it can also vanish for some x 6= 0.

Definition 2.9. Let a, b ∈ T and h ∈ Crd, then we define the integration on a time scale T as follows:

(i) If T = R, then ∫ b

a
h(t)∆t =

∫ b

a
h(t)dt,

where
∫ b
a h(t)dt is the usual Riemann integral from calculus.

(ii) If [a, b] consists of only isolated points, then

∫ b

a
h(t)∆t =


∑

t∈[a,b) µ(t)h(t) if a < b

0 if a = b

−
∑

t∈[b,a) µ(t)h(t) if a > b.



Asia Pac. J. Math. 2025 12:3 6 of 19

(iii) If there exists a point σ(t) > t, then∫ σ(t)

t
h(s)∆s = µ(t)f(t).

Definition 2.10. [20] Assume V ∈ C[T×Rn,R+], h ∈ Crd[T×Rn,Rn] and µ(t) is the graininess function

then we define the dini derivative of V (t, x) as:

D−V
∆(t, x) = lim inf

µ(t)→0

V (t, x)− V (t− µ(t), x− µ(t)h(t, x))

µ(t)
(3)

D+V ∆(t, x) = lim sup
µ(t)→0

V (t+ µ(t), x+ µ(t)h(t, x))− V (t, x)

µ(t)
. (4)

If V is differentiable, then D−V ∆(t, x) = D+V ∆(t, x) = V ∆(t, x).

Definition 2.11. (Fractional Integral on Time Scales) [8]. Let α ∈ (0, 1), [a, b] be an interval on T and h

an integrable function on [a, b]. Then the fractional integral of order α of h is defined by

T
aI

α
t h

∆(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)∆s.

Definition 2.12. (Caputo Derivative on Time Scale) [7] Let T be a time scale, t ∈ T, 0 < α < 1, and

h : T→ R. The Caputo fractional derivative of order α of h is defined by

T
aD

α
t h

∆(t) =
1

Γ(1− α)

∫ t

a
(t− s)−αh∆n

(s)∆s.

Lemma 2.1. (Theorem 2.1 in [21]) Let T be a time scale with minimal element t0 ≥ 0. Assume that for any

t ∈ T, there is a statement S(t) such that the following conditions are verified:

(i) S(t0) is true;

(ii) If t is right scattered and S(t) is true, then S(σ(t)) is also true;

(iii) For each right-dense t, there exists a neighborhood U such that whenever S(t) is true, S(t∗) is also true

for all t∗ ∈ U , t∗ ≥ t;

(iv) For left dense t, S(t∗) is true for all t∗ ∈ [t0, t) implies S(t) is true.

Then the statement S(t) is true for all t ∈ T.

Remark 2.2. When T = N, then Lemma 2.1 reduces to the well-known principle of mathematical induction.

That is,

(1) S(t0) is true is equivalent to the statement is true for n = 1;

(2) S(t) is true then S(σ(t)) is true is equivalent to if the statement is true for n = k, then the statement is

true for n = k + 1.

Now, we give the following definitions and remarks.
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Definition 2.13. Let T be a time scale. A point t0 ∈ T is said to be a minimal element of T if, for any t ∈ T,

t > t0 whenever t 6= t0.

Definition 2.14. Let h ∈ Cαrd[T,Rn], the Grunwald-Letnikov fractional delta derivative is given by

GLTDα
0 h

∆(t) = lim
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)rαCr[h(σ(t)− rµ)], t ≥ t0, (5)

and the Grunwald-Letnikov fractional delta dini derivative is given by

GLTDα
0+h

∆(t) = lim sup
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)rαCr[h(σ(t)− rµ)], t ≥ t0, (6)

where 0 < α < 1, αCr = q(q−1)...(q−r+1)
r! , and [ (t−t0)

µ ] denotes the integer part of the fraction (t−t0)
µ .

Observe that if the domain is R, then (6) becomes

GLTDα
0+h

∆(t) = lim sup
d→0+

1

dα

[
(t−t0)
d

]∑
r=0

(−1)rαCr[h(t− rd)], t ≥ t0.

Remark 2.3. It is necessary to note that the relationship between the Caputo fractional delta derivative and the

Grunwald-Letnikov fractional delta derivative is given by

CTDα
0 h

∆(t) =GLT Dα
0 [h(t)− h(t0)]∆, (7)

substituting (5) into (7) we have that the Caputo fractional delta derivative becomes

CTDα
0 h

∆(t) = lim
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)rαCr[h(σ(t)− rµ)− h(t0)] t ≥ t0

CTDα
0 h

∆(t) = lim
µ→0+

1

µα

{
h(σ(t))− h(t0) +

[
(t−t0)
µ

]∑
r=1

(−1)rαCr[h(σ(t)− rµ)− h(t0)]

}
, (8)

and the Caputo fractional delta Dini derivative becomes

CTDα
0+h

∆(t) = lim sup
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)rαCr[h(σ(t)− rµ)− h(t0)] t ≥ t0. (9)

Which is equivalent to

CTDα
0+h

∆(t) = lim sup
µ→0+

1

µα

{
h(σ(t))− h(t0) +

[
(t−t0)
µ

]∑
r=1

(−1)rαCr[h(σ(t)− rµ)− h(t0)]

}
, t ≥ t0. (10)

for notation simplicity, we shall represent the Caputo fractional delta derivative of order α as CTDα

and the Caputo fractional delta dini derivative of order α as CTDα
+.

Now, we introduce the derivative of the Lyapunov function using the Caputo fractional delta Dini
derivative of h(t) given in (9).
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Definition 2.15. We define the Caputo fractional delta Dini derivative of the Lyapunov function V (t, x) ∈

C[T× Rn,R+] (which is locally Lipschitzian with respect to its second argument and V (t, 0) ≡ 0) along the

trajectories of solutions of the system (1) as:

CTDα
+V

∆(t, x) = lim sup
µ→0+

1

µα

[ [
t−t0
µ

]∑
r=0

(−1)r(αCr)[V (σ(t)− rµ, x(σ(t))− µαf(t, x(t))− V (t0, x0)]

]
,

and can be expanded as

CTDα
+V

∆(t, x) = lim sup
µ→0+

1

µα

{
V (σ(t), x(σ(t))− V (t0, x0) (11)

−
[
t−t0
µ

]∑
r=1

(−1)r+1(αCr)[V (σ(t)− rµ, x(σ(t))− µαf(t, x(t))− V (t0, x0)]

}
,

where t ∈ T, x, x0 ∈ Rn, µ = σ(t)− t and x(σ(t))− µαf(t, x) ∈ Rn.

If T is discrete and V (t, x(t)) is continuous at t, the Caputo fractional delta Dini derivative of the Lyapunov

function in discrete times, is given by:

CTDα
+V

∆(t, x) =
1

µα

[ [
t−t0
µ

]∑
r=0

(−1)r(αCr)(V (σ(t), x(σ(t)))− V (t0, x0))

]
, (12)

and if T is continuous, that is T = R, and V (t, x(t)) is continuous at t, we have that

CTDα
+V

∆(t, x) = lim sup
d→0+

1

dα

{
V (t, x(t))− V (t0, x0) (13)

−
[
t−t0
d

]∑
r=1

(−1)r+1(αCr)[V (t− rd, x(t))− dαf(t, x(t))− V (t0, x0)]

}
.

Notice that (13) is the same in [5] where d > 0

Given that lim
N→∞

∑N
r=0(−1)rαCr = 0 where α ∈ (0, 1), and lim

µ→0+
[ (t−t0)

µ ] = ∞, then it is easy to see
that

lim
µ→0+

[
(t−t0)
µ

]∑
r=1

(−1)rαCr = −1. (14)

Also from (9) and since the Caputo and Riemann-Liouville formulations coincide when h(t0) = 0,
( [5]) then we have that

lim sup
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)rαCr =RLT Dα(1) =
(t− t0)−α

Γ(1− α)
, t ≥ t0. (15)

Definition 2.16. The origin x = 0 of (1) is said to be eventually stable if given ε > 0, there exists numbers δ

and T such that the inequality ‖x0‖ < δ implies ‖x(t; t0, x
0)‖ < ε for all t ≥ t0 ≥ T .
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Definition 2.16 better explained means that as time goes on, the origin tends to act more and more
like a stable equilibrium state. That is if the origin is eventually stable, then the system has a property
that if it has operated properly for a sufficient long period of time, it can be expected to continue to
operate properly in future.

Lemma 2.2. Assume h,m ∈ Crd(T,R), suppose there exists t1 > t0, t1 ∈ T such that h(t1) = m(t1) and

h(t) < m(t) for t0 ≤ t < t1. Then if the Caputo fractional delta Dini derivatives of h andm exist at t1, then the

inequality CTDα
+h

∆(t1) >CT Dα
+m

∆(t1) holds.

Proof. Applying (9), we have

CTDα
+(h(t)−m(t))∆ = lim sup

µ→0+

1

µα

{ [
t−t0
µ

]∑
r=0

(−1)rαCr[h(σ(t)− rµ)−m(σ(t)− rµ)]

−[h(t0)−m(t0)]

}

CTDα
+h

∆(t)−CT Dα
+m

∆(t) = lim sup
µ→0+

1

µα

{ [
t−t0
µ

]∑
r=0

(−1)rqCr[h(σ(t)− rµ)−m(σ(t)− rµ)]

−[h(t0)−m(t0)]

}
,

at t1, we have that

CTDα
+h

∆(t1) = − lim sup
µ→0+

1

µα

{ [
t−t0
µ

]∑
r=0

(−1)rαCr[h(t0)−m(t0)]

}
+CT Dα

+m
∆(t1). (16)

Applying (15) to (16), we have

CTDα
+h

∆(t1) = −(t− t0)−α

Γ(1− α)
[h(t0)−m(t0)] +CT Dα

+m
∆(t1),

but from the statement of the lemma, we have that

h(t) < m(t) for t0 ≤ t < t1

=⇒ h(t)−m(t) < 0, for t0 ≤ t < t1.

And so it follows that

−(t− t0)−α

Γ(1− α)
[h(t0)−m(t0)] > 0,

implying that
CTDα

+h
∆(t1) >CT Dα

+m
∆(t1).

�

Theorem 2.1. Assume that
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(i) g ∈ Crd[T× R+,R+] and g(t, u)µ is non-decreasing in u.

(ii) V ∈ Crd[T× Rn,R+] be locally Lipschitzian in the second variable such that

CTDα
+V

∆(t, x) ≤ g(t, V (t, x)), (t, x) ∈ T× Rn. (17)

(iii) z(t) = z(t; t0, u
0) is the maximal solution of (2) existing on T.

Then

V (t, x(t)) ≤ z(t), t ≥ t0 (18)

provided that

V (t0, x
0) ≤ u0, (19)

where x(t) = x(t; t0, x
0) is any solution of (1), t ∈ T, t ≥ t0.

Proof. Apply the principle of induction as stated in Lemma 2.1 to the statement

S(t) : V (t, x(t)) ≤ z(t), t ∈ T, t ≥ t0

(i) S(t0) is true since V (t0, x
0) ≤ u0,

(ii) Let t be right-scattered and S(t) be true. We need to show that S(σ(t)) is true; that is

V (σ(t), x(σ(t))) ≤ z(σ(t)), (20)

set h(t) = V (t, x(t)) then h(σ(t)) = V (σ(t), x(σ(t))), but from (9), we have that

CTDα
+h

∆(t) = lim sup
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)rαCr[h(σ(t)− rµ)− h(t0)], t ≥ t0,

also

CTDα
+z

∆(t) = lim sup
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)rαCr[z(σ(t)− rµ)− z(t0)] t ≥ t0,

so that
CTDα

+z
∆(t)−CT Dα

+h
∆(t)

= lim sup
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)rαCr[z(σ(t)− rµ)− z(t0)]

− lim sup
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)rαCr[h(σ(t)− rµ)− h(t0)]

CTDα
+z

∆(t)−CT Dα
+h

∆(t) = lim sup
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)r αCr

[
[z(σ(t)− rµ)− z(t0)]

−[h(σ(t)− rµ)− h(t0)]

]
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(
CTDα

+z
∆(t)−CT Dα

+h
∆(t)

)
µα = lim sup

µ→0+

[
(t−t0)
µ

]∑
r=0

(−1)r αCr

[
[z(σ(t)− rµ)− z(t0)]

−[h(σ(t)− rµ)− h(t0)]

]
(
CTDα

+z
∆(t)−CT Dα

+h
∆(t)

)
µα ≤ [z(σ(t))− z(t0)]− [h(σ(t))− h(t0)](

CTDα
+z

∆(t)−CT Dα
+h

∆(t)

)
µα ≤ [z(σ(t))− h(σ(t))]− [z(t0)− h(t0)]

[z(σ(t))− h(σ(t))] ≥
(
CTDα

+z
∆(t)−CT Dα

+h
∆(t)

)
µα + [z(t0)− h(t0)]

[h(σ(t))− z(σ(t))] ≤
(
CTDα

+h
∆(t)−CT Dα

+z
∆(t)

)
µα + [h(t0)− z(t0)]

≤
(
g(t, h(t))− g(t, z(t))

)
µα + [h(t0)− z(t0)].

Since g(t, u)µ is non decreasing in u and S(t) is true, then h(σ(t))− z(σ(t)) ≤ 0 so (20) holds.
(iii) Let t be right dense and N be a right neighborhood of t ∈ T. We need to show that S(t∗) is

true for t∗ ∈ N . This follows from the comparison theorem for Caputo fractional differential
equations since at every right dense point t∗ ∈ N , σ(t∗) = t∗. See [5].

Therefore by induction principle, the statement S(t) is true, and this completes the proof �

3. Main Result

In this section, we will obtain sufficient conditions for the eventual stability of the system (11).

Theorem 3.1 (Eventual Stability). Let the function g ∈ Crd[T×R+,R+] be such that g(t, u) is non-decreasing

in u with g(t, u) ≡ 0 and V (t, x(t)) ∈ C[T×Rn,R+] be such that V is positive definite and locally Lipschitzian

in x, with V (t, 0) ≡ 0. Also, for any points t, t0 ≥ 0 and x, x0 ∈ Rn, the inequality

CTDα
+V

∆(t, x(t)) ≤ g(t, V (t, x(t))),

holds. Then if the solution at the origin of (2) is eventually stable, then the solution at the origin of the fractional

dynamic system on time scale, (1) is eventually stable.

Proof. From the assumption of the eventual stability of the origin of (2), it follows that ∃ δ(ε) > 0 and
T (ε) > 0 such that

u(t; t0, u
0) < ε, for 0 ≥ u0 < δ, t ≥ t0 ≥ T (ε), (21)

where u(t; t0, u
0) is any solution of (2). V (t, 0) = 0 and V ∈ Crd this implies there exists δ1 = δ1(δ) > 0,

such that, for x0 ∈ RN , we have that,

‖x0‖ < δ1 =⇒ V (t0, x
0) < δ. (22)
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Now, lets assume that for any solution x(t) = x(t; t0, x
0) of (1), ‖x(t)‖ < ε whenever ‖x0‖ < δ1 for

t ≥ t0 ≥ T .
If this assumption were true, it would mean that the solution at the origin of (1) will be eventually

stable, but if not, then there would exists a time t0 > t0, such that

‖x(t0)‖ ≥ ε. (23)

However, from Theorem 2.1, we have that

V (t, x(t)) ≤ z(t), (24)

whenever V (t0, x
0) ≤ u0, where z(t) = z(t; t0, u

0).
but at t = t0, from (21), (24) and the positive definite property of V (t, x), we obtain

‖x(t0)‖ ≤ V (t0, x(t0)) ≤ z(t0) < ε.

and when (23) is imputed, becomes a clear contradiction

ε ≤ V (t0, x(t0)) ≤ z(t0) < ε.

Proving that our assumption were true, and no such time t0 exists so therefore we can conclude that if
given ε > 0, we can find numbers δ and T such that the inequality ‖x0‖ < δ implies ‖x(t; t0, x

0)‖ < ε

for all t ≥ t0 ≥ T . �

4. Application

Consider the system of dynamic equations

x∆
1 (t) = x1 sec2 t− tan2 t(x2 + x1) + x2 cot2 t

x∆
2 (t) = 2(x1 − x2) + x2 cosh2 t− 2x1 cos2 t,

(25)

for t ≥ t0, with initial conditions

x1(t0) = x10 and x2(t0) = x20,

where x1, x2 ∈ R2 f = (f1, f2).
Consider V (t, x1, x2) = |x1| + |x2|, for t ∈ T and x1, x2 ∈ R2, where x ∈ S(ρ), ρ > 0. Then we

compute the dini derivative for V (t, x1, x2) = |x1|+ |x2| as follows from (4) we have that

D+V ∆(t, x) = lim sup
µ(t)→0

V (t+ µ(t), x+ µ(t)f(t, x))− V (t, x)

µ(t)

= lim sup
µ(t)→0

|x1 + µ(t)f1(t, x)|+ |x2 + µ(t)f2(t, x)| − [|x1|+ |x2|]
µ(t)

≤ lim sup
µ(t)→0

|x1|+ |µ(t)f1(t, x)|+ |x2|+ |µ(t)f2(t, x)| − |x1| − |x2|
µ(t)
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= lim sup
µ(t)→0

|µ(t)f1(t, x)|+ |µ(t)f2(t, x)|
µ(t)

= lim sup
µ(t)→0

µ(t)[|f1(t, x)|+ |f2(t, x)|]
µ(t)

≤ |f1(t, x)|+ |f2(t, x)|

= |x1 sec2 t− tan2 t(x2 + x1) + x2 cot2 t|+ |2(x1 − x2) + x2 cosh2 t− 2x1 cos2 t|

= |x1 sec2 t− x2 tan2 t− x1 tan2 t+ x2 cot2 t|+ |2x1 − 2x2 + x2 cosh2 t− 2x1 cos2 t|

= |x1(sec2 t− tan2 t)− x2(tan2 t− cot2 t)|+ |2x1(1− cos2 t)− x2(2− cosh2 t)|

=

∣∣∣∣x1

(
1

cos2 t
− sin2 t

cos2 t

)
− x2

(
sin2 t

cos2 t
− cos2 t

sin2 t

)∣∣∣∣+

∣∣∣∣2x1(sin2 t)− x2

(
2− 1

cos2 t

)∣∣∣∣
≤
∣∣∣∣x1

(
1− sin2 t

cos2 t

)
− x2

(
sin4 t− cos4 t

cos2 t sin2 t

)∣∣∣∣+ |2x1|| sin2 t|+ |x2|
(
|2|+

∣∣∣∣ 1

cos2 t

∣∣∣∣ )

≤
∣∣∣∣x1

(
cos2 t

cos2 t

)
− x2

(
sin2 t− cos2 t)(sin2 t+ cos2 t)

cos2 t sin2 t

)∣∣∣∣+ 2|x1|+ 3|x2|

≤ |x1|+ |x2|
∣∣∣∣(sin2 t− cos2 t

cos2 t sin2 t

)∣∣∣∣+ 2|x1|+ 3|x2|

= |x1|+ |x2|
∣∣∣∣( 1

cos2 t
− 1

sin2 t

)∣∣∣∣+ 2|x1|+ 3|x2|

≤ 3|x1|+ |x2|
(∣∣∣∣ 1

cos2 t

∣∣∣∣+

∣∣∣∣ 1

sin2 t

∣∣∣∣)+ 3|x2|

≤ 3|x1|+ 5|x2| ≤ 5[|x1|+ |x2|]

D+V ∆(t, x) ≤ 5V (t, x1, x2) = g(t, V ).

Now consider the consider the comparison equation

D+u∆ = 5u > 0, u(0) = u0, (26)

with solution
u(t) = u0e

5t. (27)

Even though conditions (i)-(iii) of [20] are satisfied that is V ∈ Crd[T× Rn,R+], D+V ∆(t, x1, x2) ≤

g(t, V (t, x)) and
√
x2

1 + x2
2 ≤ |x1| + |x2| ≤ 2(x2

1 + x2
2), for b(‖x‖) = r and a(‖x‖) = 2r2, it is obvious

to see that the solution (27)of the comparison system (26) is not eventually stable, so we can not
deduce the eventual stability properties of the system (25) by applying the basic definition of the
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Dini-derivative of a Lyapunov function of dynamic equation on time scale to the Lyapunov function
V (t, x1, x2) = |x1|+ |x2|.

Now, we will apply our new definition on the same system but as a Caputo fractional dynamic
system

CTDαx∆
1 (t) = x1 sec2 t− tan2 t(x2 + x1) + x2 cot2 t

CTDαx∆
2 (t) = 2(x1 − x2) + x2 cosh2 t− 2x1 cos2 t

(28)

for t ≥ t0, with initial conditions

x1(t0) = x10 and x2(t0) = x20,

where x1, x2 ∈ R2 f = (f1, f2),
Consider V (t, x1, x2) = |x1| + |x2|, for t ∈ T and x1, x2 ∈ R2, where x ∈ S(ρ), ρ > 0, so that the

associated norm ‖x‖ =
√
x2

1 + x2
2.

Since

V (t, x1, x2) = |x1|+ |x2|,

thenφ(‖x‖) ≤ V (t, x1, x2). From (11), we compute theCaputo fractionalDini derivative forV (t, x1, x2) =

|x1|+ |x2| as follows

CTDα
+V

∆(t, x)

= lim sup
µ→0+

1

µα

{
V (σ(t), x(σ(t))− V (t0, x0)

−
[
t−t0
µ

]∑
r=1

(−1)r+1(αCr)[V (σ(t)− rµ, x(σ(t))− µαf(t, x(t)))− V (t0, x0)]

}

= lim sup
µ→0+

1

µα

{
(|x1(σ(t))|+ |x2(σ(t))|)− (|x10|+ |x20|) +

[
t−t0
µ

]∑
r=1

(−1)r(αCr)

[|x1(σ(t))− µαf1(t, x1)|+ |x2(σ(t))− µαf2(t, x2)| − (|x10|+ |x10|)]
}

≤ lim sup
µ→0+

1

µα

{
(|x1(σ(t))|+ |x2(σ(t))|)− (|x10|+ |x20|) +

[
t−t0
µ

]∑
r=1

(−1)r(αCr)

[|x1(σ(t))|+ |µαf1(t;x1)|+ |x2(σ(t))|+ |µαf2(t;x2)| − (|x10|+ |x10|)]
}

≤ lim sup
µ→0+

1

µα

{
(|x1(σ(t))|+ |x2(σ(t))|)− (|x10|+ |x20|)

+

[
t−t0
µ

]∑
r=1

(−1)r(αCr)

[
|x1(σ(t))|+ |x2(σ(t))|

]
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+

[
t−t0
µ

]∑
r=1

(−1)r(αCr)|
[
|µαf1(t;x1)|+ |µαf2(t;x2)|

]

−
[
t−t0
µ

]∑
r=1

(−1)r(αCr)

[
|x10|+ |x10|

]}

= lim sup
µ→0+

1

µα

{
(|x1(σ(t))|+ |x2(σ(t))|) +

[
t−t0
µ

]∑
r=1

(−1)r(αCr)

[
|x1(σ(t))|+ |x2(σ(t))|

]

−(|x10|+ |x20|)−
[
t−t0
µ

]∑
r=1

(−1)r(αCr)

[
|x10|+ |x10|

]

+µα
[
t−t0
µ

]∑
r=1

(−1)r(αCr)|
[
|f1(t;x1)|+ |f2(t;x2)|

]}

≤ lim sup
µ→0+

1

µα

{ [
t−t0
µ

]∑
r=0

(−1)r(αCr)

[
|x1(σ(t))|+ |x2(σ(t))|

]
−

[
t−t0
µ

]∑
r=0

(−1)r(αCr)

[
|x10|+ |x10|

]}

+ lim sup
µ→0+

[
t−t0
µ

]∑
r=1

(−1)r(αCr)|
[
|f1(t;x1)|+ |f2(t;x2)|

]
.

Applying (14) and (15) we have

=
(t− t0)−α

Γ(1− α)
(|x1(σ(t))|+ |x2(σ(t))|)− (t− t0)−α

Γ(1− α)
(|x10|+ |x10|)−

[
|f1(t;x1)|+ |f2(t;x2)|

]

≤ (t− t0)−α

Γ(1− α)
(|x1(σ(t))|+ |x2(σ(t))|)−

[
|f1(t;x1)|+ |f2(t;x2)|

]
As t→∞, (t−t0)−α

Γ(1−α) (|x1(σ(t))|+ |x2(σ(t))|)→ 0, then

CTDα
+V

∆(t;x1, x2) ≤ −
[
|f1(t;x1)|+ |f2(t;x2)|

]

= −
[
|x1 sec2 t− tan2 t(x2 + x1) + x2 cot2 t|+ |2(x1 − x2) + x2 cosh2 t− 2x1 cos2 t|

]
= −

[
|x1 sec2 t− x2 tan2 t− x1 tan2 t+ x2 cot2 t|+ |2x1 − 2x2 + x2 cosh2 t− 2x1 cos2 t|

]
= −

[
|x1(sec2 t− tan2 t)− x2(tan2 t− cot2 t)|+ |2x1(1− cos2 t)− x2(2− cosh2 t)|

]
= −

[∣∣∣∣x1

(
1

cos2 t
− sin2 t

cos2 t

)
− x2

(
sin2 t

cos2 t
− cos2 t

sin2 t

)∣∣∣∣+

∣∣∣∣2x1(sin2 t)− x2

(
2− 1

cos2 t

)∣∣∣∣]

≤ −
[∣∣∣∣x1

(
1− sin2 t

cos2 t

)
− x2

(
sin4 t− cos4 t

cos2 t sin2 t

)∣∣∣∣+ |2x1|| sin2 t|+ |x2|
(
|2|+

∣∣∣∣ 1

cos2 t

∣∣∣∣ )]
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≤ −
[∣∣∣∣x1

(
cos2 t

cos2 t

)
− x2

(
sin2 t− cos2 t)(sin2 t+ cos2 t)

cos2 t sin2 t

)∣∣∣∣+ 2|x1|+ 3|x2|
]

≤ −
[
|x1|+ |x2|

∣∣∣∣(sin2 t− cos2 t

cos2 t sin2 t

)∣∣∣∣+ 2|x1|+ 3|x2|
]

= −
[
|x1|+ |x2|

∣∣∣∣( 1

cos2 t
− 1

sin2 t

)∣∣∣∣+ 2|x1|+ 3|x2|
]

≤ −
[
3|x1|+ |x2|

(∣∣∣∣ 1

cos2 t

∣∣∣∣+

∣∣∣∣ 1

sin2 t

∣∣∣∣)+ 3|x2|
]

≤ −3|x1| − 5|x2| ≤ −3[|x1|+ |x2|].

Therefore
CTDα

+V
∆(t;x1, x2) ≤ −3V (t, x1, x2). (29)

Consider the comparison system

CTDα
+u

∆ = g(t, u) ≤ −3u, (30)

using the Laplace transform method
CTDα

+3u∆ + u = 0

L{CTDα
+u

∆}+ 3L{u} = 0

=⇒ SαU(s)− Sα−1u0 + 3U(s) = 0

U(s)(sα + 3) = u0Sα−1U(s) =
u0S

α−1

Sα + 3
,

taking the inverse Laplace transform we have

u(t) = u0L−1

{
Sα−1

Sα + 3

}
. (31)

Recall that
L−1

{
Sα−β

Sα − λ

}
= tβ−1Eα,β(λtα). (32)

Comparing (32) and (31), we have q − β, =⇒ β = 1 Sα − λ = Sα + 3 =⇒ λ = −3

so we have,

u(t) = u0Eα,1(−3tα), for α ∈ (0, 1), (33)

where Eα,1 is the Mittag-Leffler function.
Since all the conditions of Theorem 3.1 are satisfied, and the solution at the origin of the comparison

system (30) is eventually stable, then we conclude that the solution at the origin of system (28) is
stable.
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5. Conclusion

In conclusion, the concept of eventual stability on time scales offers a powerful and versatile frame-
work for analyzing the stability of dynamic systems that operate across both continuous and discrete
time domains. Unlike traditional Lyapunov stability, which is restricted to equilibrium states, eventual
stability provides a broader perspective by addressing the behavior of states that may not be equilibrium
but gradually exhibit stable characteristics over time. This extension is particularly useful in adaptive
control systems and other applications where external disturbances and time-varying conditions are
prevalent. By integrating eventual stability with time scale calculus, this work unifies stability analysis
for systems that evolve in mixed time domains, whether discrete, continuous, or hybrid. This approach
significantly enhances the ability to analyze systems subjected to varying conditions, offering flexibility
and robustness in environments where traditional stability concepts fall short. The theoretical insights
gained from this study not only generalize existing stability theorems but also provide a foundation for
future research in adaptive control and time scale systems. The application of eventual stability on
time scales introduces new possibilities for system design and performance optimization in complex,
real-world environments. We have also shown the practical applicability as well as effectiveness of our
result in (25).
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