

# EXPLORING $\triangle$ -CONTINUOUS AND $\triangle$ -IRRESOLUTE MAPPINGS IN TOPOLOGICAL SPACES

# MOHAMMAD A. A. MARABEH

Department of Applied Mathematics, Palestine Technical University-Kadoorie, Palestine mohammad.marabeh@ptuk.edu.ps

Received Feb. 9, 2025

ABSTRACT. In this study, we investigate the concepts of  $\Delta$ -continuous,  $\Delta$ -irresolute,  $\Delta$ -open, and  $\Delta$ -closed mappings. We establish that every continuous mapping is inherently  $\Delta$ -irresolute and that every  $\Delta$ -irresolute mapping is  $\Delta$ -continuous. However, the converse implications do not necessarily hold. This distinction sets  $\Delta$ -continuous mappings apart from traditional continuous mappings, particularly since the composition of two  $\Delta$ -continuous mappings may not always preserve  $\Delta$ -continuity. We propose several methods for constructing new  $\Delta$ -continuous (or  $\Delta$ -irresolute) mappings from existing ones, including pasting-type lemmas specifically tailored for these mappings. Additionally, we present counterexamples to illustrate and clarify these concepts.

2020 Mathematics Subject Classification. 54A05; 54C08; 54C10.

Key words and phrases. open set; closed set; symmetric difference;  $\Delta$ -open set;  $\Delta$ -closed set; continuous mapping;  $\Delta$ -continuous mapping;  $\Delta$ -irresolute mapping;  $\Delta$ -open mapping;  $\Delta$ -closed mapping.

# 1. INTRODUCTION

The study of open-like and closed-like sets in topological spaces has garnered significant attention from researchers over the past few decades. Likewise, numerous variations of continuous-like mappings have been introduced and explored within this framework. A foundational contribution in this area was made by N. Levine, who introduced the concepts of *semi-open sets* and *semi-continuous mappings* in topological spaces [13]. A set S in a topological space  $\mathfrak{X}$  is defined as semi-open if

$$\mathbb{S} \subseteq Cl(Int(\mathbb{S}))$$

[13], where Cl(A) and Int(A) denote the closure and interior of a set A in  $\mathfrak{X}$ , respectively. A mapping is semi-continuous if the inverse image of any open set is semi-open [13].

DOI: 10.28924/APJM/12-38

Building upon this foundation, S. Crossley and S. Hildebrand introduced *irresolute mappings*, which are characterized by the property that the inverse image of any semi-open set is also semi-open [7].

In 1965, Olav Njåstad introduced  $\alpha$ -sets [21], where a set S in a topological space  $\mathfrak{X}$  is an  $\alpha$ -set if

$$S \subseteq Int(Cl(Int(S)))$$

[21]. This led to the definition of  $\alpha$ -irresolute mappings, in which the inverse image of each  $\alpha$ -set is also an  $\alpha$ -set [15], followed by the development of  $\alpha$ -continuous mappings [18].

Further generalizations introduced notions such as  $\theta$ -open and  $\delta$ -open sets [30], as well as *pre-open* sets and *pre-continuous mappings* [17]. A set \$ in a topological space  $\mathfrak{X}$  is pre-open if

$$S \subseteq Int(Cl(S))$$

[17] and is classified as semi-preopen if

$$S \subseteq Cl(Int(Cl(S))))$$

[2]. These advancements prompted the exploration of various types of mappings in topological spaces, including semi-precontinuous, semi-preopen, semi-preclosed, semi-preirresolute, pre-semi-preopen, and pre-semi-preclosed mappings, along with their fundamental properties and characterizations [20]. Additionally, M. Veera Kumar contributed to this field by introducing  $\psi$ -continuous and  $\psi$ -irresolute mappings, based on a novel class of closed-like sets known as  $\psi$ -closed sets [29].

The pursuit of new classes of continuous-like mappings based on open-like and closed-like sets remains an active area of research. Recent notable contributions include [1], [3], [5], [6], [9], [10], [11], [12], [24], [25], and [26].

A set in a topological space is termed  $\Delta$ -open if it is the symmetric difference of two open sets. This concept, first appearing in [22] and [8], is attributed to a preprint by M. Veera Kumar. Correspondingly, the complement of a  $\Delta$ -open set is defined as  $\Delta$ -closed. These notions, along with related concepts, have been extensively studied by the author in [16].

This paper is structured as follows:

- **Section 2** provides a consolidation of fundamental notions and preliminary results necessary for the subsequent discussions.

- Section 3 introduces the concept of a  $\Delta$ -continuous mapping (Definition 3.1) and examines its properties (Theorem 3.4). Necessary conditions for  $\Delta$ -continuity are explored in Propositions 3.6, 3.7, and 3.8. Example 3.10 demonstrates that the composition of two  $\Delta$ -continuous mappings may fail to be  $\Delta$ -continuous, although Proposition 3.11 establishes that composing a continuous mapping with a  $\Delta$ -continuous mapping results in a  $\Delta$ -continuous mapping. Additionally, Proposition 3.12 presents techniques for constructing  $\Delta$ -continuous mappings, while Theorem 3.15 provides a pasting-type lemma. The section concludes with Proposition 3.17, which states that a  $\Delta$ -continuous mapping into a

product space  $\mathfrak{X} \times \mathfrak{Y}$  ensures the  $\Delta$ -continuity of its coordinate mappings.

- Section 4 defines  $\Delta$ -irresolute mappings (Definition 4.1) and establishes that every  $\Delta$ -irresolute mapping is necessarily  $\Delta$ -continuous. However, as demonstrated by Example 4.2, the converse does not always hold. This section mirrors Section 3 in its analysis of results related to  $\Delta$ -irresolute mappings. - Section 5 introduces the notions of  $\Delta$ -open and  $\Delta$ -closed mappings, illustrating through various examples that these concepts are independent of each other and distinct from  $\Delta$ -continuous mappings. The section further presents several results concerning  $\Delta$ -open and  $\Delta$ -closed mappings.

#### 2. Preliminaries

In this section, we provide basic notions and results related to  $\Delta$ -open and  $\Delta$ -closed sets. These results will be used and applied in the subsequent sections.

Recall that for two sets A and B, their *symmetric difference* is given as

$$\mathcal{A}\Delta\mathcal{B} := (\mathcal{A} - \mathcal{B}) \cup (\mathcal{B} - \mathcal{A}) = (\mathcal{A} \cup \mathcal{B}) - (\mathcal{A} \cap \mathcal{B}).$$

**Definition 2.1.** ([22] and [8]) A set A in a topological space  $(\mathfrak{X}, \sigma)$  is called  $\Delta$ -open if there exist open sets  $\mathfrak{O}_1$  and  $\mathfrak{O}_2$  such that

$$\mathcal{A} = \mathcal{O}_1 \Delta \mathcal{O}_2.$$

In a topological space  $(\mathfrak{X}, \sigma)$ , any open set  $\mathfrak{O}$  satisfies  $\mathfrak{O} = \mathfrak{O}\Delta \varnothing$ , which directly implies that every open set is also  $\Delta$ -open. However, there exist  $\Delta$ -open sets that are not necessarily open in the standard topology on  $\mathbb{R}$ . For instance, the set  $(0, 1] \cup [2, 3)$  can be expressed as  $(0, 2)\Delta(1, 3)$ , demonstrating that it is  $\Delta$ -open while not being an open set in the usual topology of  $\mathbb{R}$ .

The complement of a  $\Delta$ -open set is called  $\Delta$ -*closed*. We recall a characterization of  $\Delta$ -open sets.

**Theorem 2.2.** ([16]) A set A in a topological space  $(\mathfrak{X}, \sigma)$  is  $\Delta$ -open if and only if there is an open set  $\mathfrak{O}$  and a closed set  $\mathfrak{C}$  such that  $A = \mathfrak{O} \cap \mathfrak{C}$ .

**Corollary 2.3.** ([16]) A set  $\mathcal{B}$  in a topological space  $(\mathfrak{X}, \sigma)$  is  $\Delta$ -closed if and only if there is an open set  $\mathcal{O}$  and a closed set  $\mathcal{C}$  such that  $\mathcal{B} = \mathcal{O} \cup \mathcal{C}$ .

From Theorem 2.2, it follows that every open and closed set is  $\Delta$ -open. Furthermore, the finite intersection of  $\Delta$ -open sets remains  $\Delta$ -open. However, the union of two  $\Delta$ -open sets is not necessarily  $\Delta$ -open, nor is the arbitrary intersection of  $\Delta$ -open sets.

Similarly, Corollary 2.3 implies that every open and closed set is  $\Delta$ -closed. Additionally, a finite union of  $\Delta$ -closed sets is also  $\Delta$ -closed. However, the intersection of two  $\Delta$ -closed sets is not necessarily  $\Delta$ -closed, and an arbitrary union of  $\Delta$ -closed sets does not always retain the  $\Delta$ -closed property.

**Example 2.4.** ([16]) Let  $\mathfrak{X} = \{a, b, c, d, e\}$  with a topology

$$\sigma = \{\phi, \mathfrak{X}, \{a, b, c\}, \{a, b, c, d\}\}.$$

*The collection of all*  $\Delta$ *-open sets in*  $\mathfrak{X}$  *is* 

$$\sigma_{\Delta o} = \{\phi, \mathfrak{X}, \{a, b, c\}, \{a, b, c, d\}, \{d, e\}, \{d\}, \{e\}\}.$$

*Clearly, the sets*  $\{a, b, c\}$  *and*  $\{e\}$  *are*  $\Delta$ *-open, whereas their union is not.* 

It is important to observe from the previous example that the collection of all  $\Delta$ -open sets does not necessarily form a topology in general.

**Example 2.5.** ([16]) Let  $\mathbb{Q} = \bigcup_{n=1}^{\infty} \{r_n\}$  be an enumeration of the rationals. For each  $n \in \mathbb{N}$ , let  $S_n = \mathbb{R} - \{r_1, r_2, ..., r_n\}$ , then considering  $\mathbb{R}$  under the standard topology, each  $S_n$  is an open set, so it is  $\Delta$ -open. However,  $\bigcap_{n=1}^{\infty} S_n = \mathbb{R} - \mathbb{Q}$  is not  $\Delta$ -open.

It should be noted that the open set 0 and the closed set C in Corollary 2.3 can be chosen to be disjoint. In fact, if  $\mathcal{B} = 0 \cup C$ , with 0 is open and C is closed, then  $\mathcal{B} = 0 \cup (C - 0)$  where C - 0 is closed.

**Definition 2.6.** ([16]) Let  $(\mathfrak{X}, \sigma)$  be a topological space, and  $x \in \mathfrak{X}$ . A  $\Delta$ -open set containing x is called  $\Delta$ -neighborhood. We write  $\Delta N(x)$ .

**Definition 2.7.** ([16]) Let  $(\mathfrak{X}, \sigma)$  be a topological space, and  $\mathcal{A} \subseteq \mathfrak{X}$ .

- (1) The union of all  $\Delta$ -open sets contained in A is said to be the  $\Delta$ -interior of A and is denoted by  $\Delta Int(A)$ .
- (2) The intersection of all  $\Delta$ -closed sets containing A is said to be the  $\Delta$ -closure of A and is denoted by  $\Delta Cl(A)$ .

Clearly,  $\Delta Int(\mathcal{A})$  need not be  $\Delta$ -open and  $\Delta Cl(\mathcal{A})$  need not be  $\Delta$ -closed. It should be also noted that if  $\mathcal{A}$  is  $\Delta$ -open, then  $\Delta Int(\mathcal{A}) = \mathcal{A}$ , and if  $\mathcal{A}$  is  $\Delta$ -closed, then  $\Delta Cl(\mathcal{A}) = \mathcal{A}$ . In either case the converse is not true.

**Example 2.8.** ([16]) Let  $\mathbb{Q} = \bigcup_{n=1}^{\infty} \{r_n\}$  be an enumeration of the rationals. For each  $n \in \mathbb{N}$ , let  $\mathfrak{O}_n = (-n, n)$  and  $\mathfrak{C}_n = \{r_1, r_2, ..., r_n\}$ . Then  $\mathcal{A}_n = \mathfrak{O}_n \cap \mathfrak{C}_n$  is  $\Delta$ -open set in  $\mathbb{R}$  under the standard topology. Let  $\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{A}_n$  then  $Int(\mathcal{A}) = \mathcal{A}$ , nevertheless  $\mathcal{A} = \mathbb{Q}$  is not  $\Delta$ -open.

It is crucial to note that in the proof of [22, Theorem 3], the authors assumed that the  $\Delta$ -interior of a set is  $\Delta$ -open. However, the preceding example demonstrates that this assumption does not always hold.

Because each open set is  $\Delta$ -open and each closed set is  $\Delta$ -closed, the following result follows directly.

- (1)  $\Delta Int(\mathcal{A}) \subseteq \Delta Cl(\mathcal{A}).$ (2)  $Int(\mathcal{A}) \subseteq \Delta Int(\mathcal{A}) \subseteq \mathcal{A}.$
- (3)  $\mathcal{A} \subseteq \Delta Cl(\mathcal{A}) \subseteq Cl(\mathcal{A}).$

**Proposition 2.10.** ([16]) Let  $(\mathfrak{X}, \sigma)$  be a topological space and  $\mathcal{A} \subseteq \mathfrak{X}$ . Then  $x \in \Delta Int(\mathcal{A})$ , if and only if, there is a  $\Delta N(x)$ , such that  $\Delta N(x) \subseteq \mathcal{A}$ .

Basic properties of  $\Delta$ -interior are summarized in the next proposition.

**Proposition 2.11.** ([16]) Let  $(\mathfrak{X}, \sigma)$  be a topological space and  $\mathcal{A}, \mathcal{B} \subseteq \mathfrak{X}$ . Then

- (1) If  $\mathcal{A} \subseteq \mathcal{B}$ , then  $\Delta Int(\mathcal{A}) \subseteq \Delta Int(\mathcal{B})$ .
- (2)  $\Delta Int(\mathcal{A}) \cup \Delta Int(\mathcal{B}) \subseteq \Delta Int(\mathcal{A} \cup \mathcal{B}).$
- (3)  $\Delta Int(\mathcal{A} \cap \mathcal{B}) = \Delta Int(\mathcal{A}) \cap \Delta Int(\mathcal{B}).$

**Proposition 2.12.** ([16]) Let  $(\mathfrak{X}, \sigma)$  be a topological space and  $\mathfrak{Y} \subseteq \mathfrak{X}$ . Then,  $\mathfrak{S}$  is  $\Delta$ -open in  $\mathfrak{Y}$  if and only if there is a  $\Delta$ -open set  $\mathcal{A}$  in  $\mathfrak{X}$  such that  $\mathfrak{S} = \mathfrak{Y} \cap \mathcal{A}$ .

**Proposition 2.13.** ([16]) Let  $(\mathfrak{X}, \sigma)$  be a topological space and  $\mathfrak{Y} \subseteq \mathfrak{X}$ . Then,  $\mathfrak{S}$  is  $\Delta$ -closed in  $\mathfrak{Y}$  if and only if there is a  $\Delta$ -closed set  $\mathfrak{B}$  in  $\mathfrak{X}$  such that  $\mathfrak{S} = \mathfrak{Y} \cap \mathfrak{B}$ .

**Proposition 2.14.** ([16]) Let  $(\mathfrak{X}, \sigma)$  be a topological space and  $\mathfrak{Y} \subseteq \mathfrak{X}$ . If S is  $\Delta$ -open in  $\mathfrak{Y}$  and  $\mathfrak{Y}$  is  $\Delta$ -open in  $\mathfrak{X}$ , then S is  $\Delta$ -open in  $\mathfrak{X}$ .

## 3. $\Delta$ -continuous mappings

Given topological spaces  $\mathfrak{X}$  and  $\mathfrak{Y}$ , recall that a mapping  $f : \mathfrak{X} \to \mathfrak{Y}$  is called *continuous* if for every open set  $\mathfrak{O}$  in  $\mathfrak{Y}$ , the preimage  $f^{-1}(\mathfrak{O})$  is open in  $\mathfrak{X}$ . Similarly, a mapping  $f : \mathfrak{X} \to \mathfrak{Y}$  is termed *semi-continuous* if for every open set  $\mathfrak{O}$  in  $\mathfrak{Y}$ , the preimage  $f^{-1}(\mathfrak{O})$  is semi-open in  $\mathfrak{X}$  [13]. Following this pattern, we introduce the following concept.

**Definition 3.1.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces. A mapping  $f : \mathfrak{X} \to \mathfrak{Y}$  is said to be  $\Delta$ -continuous if for every open set  $\mathfrak{O}$  in  $\mathfrak{Y}$ , the preimage  $f^{-1}(\mathfrak{O})$  is  $\Delta$ -open in  $\mathfrak{X}$ .

It is evident that every continuous mapping is  $\Delta$ -continuous. However, the converse does not necessarily hold.

**Example 3.2.** Let  $\mathfrak{X} = \{a, b, c\}$ . Consider two topologies on  $\mathfrak{X}$ :

$$\sigma_1 = \{ \varnothing, \mathfrak{X}, \{a\} \}, \quad \sigma_2 = \{ \varnothing, \mathfrak{X}, \{a, b\} \}.$$

*Define a mapping*  $f : (\mathfrak{X}, \sigma_1) \to (\mathfrak{X}, \sigma_2)$  *by* 

$$f(a) = c, \quad f(b) = b, \quad f(c) = a.$$

*The collection of all*  $\Delta$ *-open sets in*  $(\mathfrak{X}, \sigma_1)$  *is given by* 

$$\sigma_{1\Delta o} = \{ \varnothing, \mathfrak{X}, \{a\}, \{b, c\} \}.$$

It is clear that f is  $\Delta$ -continuous. However, the preimage of the set  $\{a, b\}$  under f is

$$f^{-1}(\{a,b\}) = \{b,c\},\$$

which is not open in  $(\mathfrak{X}, \sigma_1)$ . Therefore, f is not continuous.

We provide the following characterization for  $\Delta$ -continuous mappings.

**Theorem 3.3.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$ . Then f is  $\Delta$ -continuous if and only if for every closed set  $\mathfrak{C}$  in  $\mathfrak{Y}$ , the preimage  $f^{-1}(\mathfrak{C})$  is  $\Delta$ -closed in  $\mathfrak{X}$ .

*Proof.* ( $\Longrightarrow$ ) Assume that  $f : \mathfrak{X} \to \mathfrak{Y}$  is  $\Delta$ -continuous. Let  $\mathcal{C}$  be a closed set in  $\mathfrak{Y}$ . Since  $\mathfrak{Y} \setminus \mathcal{C}$  is open in  $\mathfrak{Y}$ , applying the definition of  $\Delta$ -continuity gives

$$f^{-1}(\mathfrak{Y} \setminus \mathfrak{C}) = \mathfrak{X} \setminus f^{-1}(\mathfrak{C}),$$

which must be  $\Delta$ -open in  $\mathfrak{X}$ . Consequently,  $f^{-1}(\mathfrak{C})$  is  $\Delta$ -closed in  $\mathfrak{X}$ .

( $\Leftarrow$ ) Conversely, suppose that for every closed set  $\mathcal{C}$  in  $\mathfrak{Y}$ , the preimage  $f^{-1}(\mathcal{C})$  is  $\Delta$ -closed in  $\mathfrak{X}$ . Let  $\mathfrak{O}$  be an open set in  $\mathfrak{Y}$ . Then  $\mathfrak{Y} \setminus \mathfrak{O}$  is closed in  $\mathfrak{Y}$ , and by assumption, its preimage

$$f^{-1}(\mathfrak{Y}\setminus \mathfrak{O}) = \mathfrak{X}\setminus f^{-1}(\mathfrak{O})$$

must be  $\Delta$ -closed in  $\mathfrak{X}$ . This implies that  $f^{-1}(\mathfrak{O})$  is  $\Delta$ -open in  $\mathfrak{X}$ , proving that f is  $\Delta$ -continuous.  $\Box$ 

**Theorem 3.4.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$ . The  $\Delta$ -continuity of f implies each of the following statements:

- (1) For each  $x \in \mathfrak{X}$  and for every neighborhood N(f(x)) of f(x) in  $\mathfrak{Y}$ , there exists a  $\Delta$ -neighborhood  $\Delta N(x)$  of x in  $\mathfrak{X}$  such that  $f(\Delta N(x)) \subseteq N(f(x))$ .
- (2) For every subset  $A \subseteq \mathfrak{X}$ , we have

$$f(\Delta Cl(\mathcal{A})) \subseteq Cl(f(\mathcal{A})).$$

(3) For every subset  $\mathbb{B} \subseteq \mathfrak{Y}$ , we have

$$f^{-1}(Int(\mathcal{B})) \subseteq \Delta Int(f^{-1}(\mathcal{B})).$$

*Proof.* (1) Let  $x \in \mathfrak{X}$  and let N(f(x)) be a neighborhood of f(x) in  $\mathfrak{Y}$ . Since f is  $\Delta$ -continuous, the preimage  $f^{-1}(N(f(x)))$  is  $\Delta$ -open in  $\mathfrak{X}$ , and since  $x \in f^{-1}(N(f(x)))$ , we take  $\Delta N(x) = f^{-1}(N(f(x)))$ . Thus,

$$f(\Delta N(x)) = f(f^{-1}(N(f(x)))) \subseteq N(f(x)).$$

(2) Let  $\mathcal{A} \subseteq \mathfrak{X}$ . Since  $Cl(f(\mathcal{A}))$  is closed in  $\mathfrak{Y}$ , Theorem 3.3 ensures that  $f^{-1}(Cl(f(\mathcal{A})))$  is  $\Delta$ -closed in  $\mathfrak{X}$ . Moreover, since  $\mathcal{A} \subseteq f^{-1}(Cl(f(\mathcal{A})))$ , we conclude that

$$\Delta Cl(\mathcal{A}) \subseteq f^{-1}\Big(Cl\big(f(\mathcal{A})\big)\Big).$$

Therefore, applying f yields

$$f(\Delta Cl(\mathcal{A})) \subseteq Cl(f(\mathcal{A})).$$

(3) Let  $\mathcal{B} \subseteq \mathfrak{Y}$ . Since  $Int(\mathcal{B})$  is open in  $\mathfrak{Y}$ , its preimage  $f^{-1}(Int(\mathcal{B}))$  is  $\Delta$ -open in  $\mathfrak{X}$  by the  $\Delta$ continuity of f. Moreover, since  $f^{-1}(Int(\mathcal{B})) \subseteq f^{-1}(\mathcal{B})$ , it follows that

$$f^{-1}(Int(\mathcal{B})) \subseteq \Delta Int(f^{-1}(\mathcal{B}))$$

None of the statements in Theorem 3.4 assures  $\Delta$ -continuity.

**Example 3.5.** Let  $\mathfrak{X} = \{a, b, c\}$  with the topologies

$$\sigma_1 = \{ \varnothing, \mathfrak{X}, \{a\}, \{a, b\} \}, \quad \sigma_2 = \{ \varnothing, \mathfrak{X}, \{a\} \}.$$

Define a mapping  $f : (\mathfrak{X}, \sigma_1) \to (\mathfrak{X}, \sigma_2)$  by

$$f(a) = a, \quad f(b) = b, \quad f(c) = a$$

*The collection of all*  $\Delta$ *-open sets in*  $(\mathfrak{X}, \sigma_1)$  *is given by* 

$$\sigma_{1\Delta o} = \{ \varnothing, \mathfrak{X}, \{a\}, \{a, b\}, \{b, c\}, \{c\}, \{b\} \}.$$

*The set*  $\{a\}$  *is open in*  $(\mathfrak{X}, \sigma_2)$ *, but its preimage under f is* 

$$f^{-1}(\{a\}) = \{a, c\},\$$

which is not  $\Delta$ -open in  $(\mathfrak{X}, \sigma_1)$ . Thus, f is not  $\Delta$ -continuous.

However, it is easy to verify that statement (1) in Theorem 3.4 is satisfied. Furthermore, in  $(\mathfrak{X}, \sigma_1)$ , we observe that

$$\Delta Cl(\mathcal{A}) = \Delta Int(\mathcal{A}) = \mathcal{A}$$

for any subset  $A \subseteq \mathfrak{X}$ . Hence, statements (2) and (3) in Theorem 3.4 are also trivially satisfied.

An extra condition is needed for each statement in Theorem 3.4 to guarantee the  $\Delta$ -continuity.

**Proposition 3.6.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$ . Suppose that for each  $x \in \mathfrak{X}$  and every neighborhood N(f(x)) of f(x) in  $\mathfrak{Y}$ , there exists a  $\Delta$ -neighborhood  $\Delta N(x)$  of x in  $\mathfrak{X}$  such that  $f(\Delta N(x)) \subseteq N(f(x))$ . Further, assume that for any subset  $\mathcal{A} \subseteq \mathfrak{X}$ , the  $\Delta$ -interior  $\Delta Int(\mathcal{A})$  is  $\Delta$ -open in  $\mathfrak{X}$ . Then f is  $\Delta$ -continuous.

*Proof.* Let 0 be an open set in  $\mathfrak{Y}$ , and let  $x \in f^{-1}(0)$ . Since 0 is a neighborhood of f(x), there exists a  $\Delta$ -neighborhood  $\Delta N(x)$  of x in  $\mathfrak{X}$  such that  $f(\Delta N(x)) \subseteq 0$ . This implies that  $\Delta N(x) \subseteq f^{-1}(0)$ . Consequently, we obtain

$$f^{-1}(\mathfrak{O}) = \bigcup_{x \in f^{-1}(\mathfrak{O})} \Delta N(x) = \Delta Int(f^{-1}(\mathfrak{O})).$$

Since  $\Delta Int(f^{-1}(0))$  is assumed to be  $\Delta$ -open in  $\mathfrak{X}$ , it follows that  $f^{-1}(0)$  is  $\Delta$ -open in  $\mathfrak{X}$ . Hence, f is  $\Delta$ -continuous.

**Proposition 3.7.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$ . Suppose that for every subset  $\mathcal{A} \subseteq \mathfrak{X}$ , we have

$$f(\Delta Cl(\mathcal{A})) \subseteq Cl(f(\mathcal{A})).$$

*Further, assume that for any subset*  $A \subseteq \mathfrak{X}$ *, the*  $\Delta$ *-closure*  $\Delta Cl(A)$  *is*  $\Delta$ *-closed in*  $\mathfrak{X}$ *. Then* f *is*  $\Delta$ *-continuous.* 

*Proof.* Let  $\mathcal{C}$  be a closed set in  $\mathfrak{Y}$  and set  $\mathcal{A} = f^{-1}(\mathcal{C})$ . Then,  $\mathcal{A} \subseteq \mathfrak{X}$  and by assumption, we have

$$f(\Delta Cl(\mathcal{A})) \subseteq Cl(f(\mathcal{A})).$$

That is,

$$f\left(\Delta Cl(f^{-1}(\mathcal{C}))\right) \subseteq Cl\left(f(f^{-1}(\mathcal{C}))\right) \subseteq Cl(\mathcal{C}) = \mathcal{C}.$$

Thus, applying the preimage under f, we obtain

$$\Delta Cl(f^{-1}(\mathfrak{C})) \subseteq f^{-1}\left(f(\Delta Cl(f^{-1}(\mathfrak{C})))\right) \subseteq f^{-1}(\mathfrak{C}).$$

This implies that

$$f^{-1}(\mathfrak{C}) = \Delta Cl(f^{-1}(\mathfrak{C})),$$

which is  $\Delta$ -closed in  $\mathfrak{X}$ . By Theorem 3.3, it follows that f is  $\Delta$ -continuous.

**Proposition 3.8.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$ . Suppose that for every subset  $\mathcal{B} \subseteq \mathfrak{Y}$ , we have

$$f^{-1}(Int(\mathcal{B})) \subseteq \Delta Int(f^{-1}(\mathcal{B})).$$

*Further, assume that for any subset*  $A \subseteq \mathfrak{X}$ *, the*  $\Delta$ *-interior*  $\Delta Int(A)$  *is*  $\Delta$ *-open in*  $\mathfrak{X}$ *. Then* f *is*  $\Delta$ *-continuous.* 

*Proof.* Let 0 be an open subset of  $\mathfrak{Y}$ . Since the interior of an open set is itself, we have Int(0) = 0, and thus

$$f^{-1}(\mathfrak{O}) = f^{-1}(Int(\mathfrak{O})).$$

By assumption, it follows that

$$f^{-1}\big(Int(\mathfrak{O})\big) \subseteq \Delta Int\big(f^{-1}(\mathfrak{O})\big)$$

Consequently, we obtain

$$f^{-1}(\mathfrak{O}) = \Delta Int(f^{-1}(\mathfrak{O})).$$

Since  $\Delta Int(f^{-1}(0))$  is assumed to be  $\Delta$ -open in  $\mathfrak{X}$ , it follows that  $f^{-1}(0)$  is  $\Delta$ -open in  $\mathfrak{X}$ . Therefore, f is  $\Delta$ -continuous.

Next we consider some methods of constructing  $\Delta$ -continuous mappings, but first we recall the following result on continuous mappings in topological spaces.

**Proposition 3.9.** ([19]) Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces. Then

(1) If  $f : \mathfrak{X} \longrightarrow \mathfrak{Y}$  is given by  $f(x) = y_0$  where  $y_0 \in \mathfrak{Y}$  is a fixed element, then f is continuous.

(2) If A is a subspace of  $\mathfrak{X}$ , the inclusion mapping  $i_A : A \longrightarrow \mathfrak{X}$  is continuous.

(3) Let  $\pi_1 : \mathfrak{X} \times \mathfrak{Y} \to \mathfrak{X}$  and  $\pi_2 : \mathfrak{X} \times \mathfrak{Y} \to \mathfrak{Y}$  be projections onto the first and second factors, respectively. Then  $\pi_1$  and  $\pi_2$  are continuous.

The composition of two  $\Delta$ -continuous mappings need not be  $\Delta$ -continuous as illustrated in the following example.

**Example 3.10.** Let  $\mathfrak{X} = \{a, b, c, d\}$  with the topology

$$\sigma = \{ \varnothing, \mathfrak{X}, \{a\}, \{a, b\}, \{a, b, c\} \}$$

*The collection of all*  $\Delta$ *-open sets in*  $\mathfrak{X}$  *is* 

 $\sigma_{\Delta o} = \{ \varnothing, \mathfrak{X}, \{a\}, \{a, b\}, \{a, b, c\}, \{b, c, d\}, \{c, d\}, \{d\}, \{b\}, \{c\}, \{b, c\} \}.$ 

*Define a mapping*  $f : \mathfrak{X} \to \mathfrak{X}$  *by* 

$$f(a) = d$$
,  $f(b) = b$ ,  $f(c) = a$ ,  $f(d) = c$ .

It is easy to check that f is  $\Delta$ -continuous. Nevertheless, the composition  $f \circ f$  is not  $\Delta$ -continuous. Indeed, we compute:

$$(f \circ f)^{-1}(\{a, b, c\}) = f^{-1}(f^{-1}(\{a, b, c\})) = f^{-1}(\{b, c, d\}) = \{a, b, d\},$$

which is not  $\Delta$ -open in  $\mathfrak{X}$ . Thus,  $f \circ f$  fails to be  $\Delta$ -continuous.

Next, we demonstrate that the composition of a  $\Delta$ -continuous mapping and a continuous mapping results in a  $\Delta$ -continuous mapping.

**Proposition 3.11.** Let  $\mathfrak{X}, \mathfrak{Y}, \mathfrak{Z}$ , and  $\mathfrak{W}$  be topological spaces. Consider the mappings  $f : \mathfrak{X} \to \mathfrak{Y}, g : \mathfrak{Y} \to \mathfrak{Z}$ , and  $h : \mathfrak{Z} \to \mathfrak{W}$ .

- (1) If f is continuous and g is  $\Delta$ -continuous, then  $g \circ f$  is  $\Delta$ -continuous.
- (2) If g is  $\Delta$ -continuous and h is continuous, then  $h \circ g$  is  $\Delta$ -continuous.

*Proof.* (1) Assume that f is continuous and g is  $\Delta$ -continuous. Let  $\mathcal{G}$  be an open set in  $\mathfrak{Z}$ . Since g is  $\Delta$ -continuous, it follows that  $g^{-1}(\mathcal{G})$  is  $\Delta$ -open in  $\mathfrak{Y}$ . By Theorem 2.2, we can express  $g^{-1}(\mathcal{G})$  as the intersection of an open set  $\mathcal{O}$  and a closed set  $\mathcal{C}$  in  $\mathfrak{Y}$ , i.e.,

$$g^{-1}(\mathfrak{G}) = \mathfrak{O} \cap \mathfrak{C}.$$

Since *f* is continuous, its preimage preserves openness and closedness, meaning that  $f^{-1}(0)$  is open in  $\mathfrak{X}$  and  $f^{-1}(\mathfrak{C})$  is closed in  $\mathfrak{X}$ . Consequently, we obtain

$$(g \circ f)^{-1}(\mathfrak{G}) = f^{-1}(g^{-1}(\mathfrak{G})) = f^{-1}(\mathfrak{O} \cap \mathfrak{C}) = f^{-1}(\mathfrak{O}) \cap f^{-1}(\mathfrak{C}).$$

By Theorem 2.2, this intersection is  $\Delta$ -open in  $\mathfrak{X}$ , proving that  $g \circ f$  is  $\Delta$ -continuous.

(2) Suppose that g is  $\Delta$ -continuous and h is continuous. Let  $\mathcal{G}$  be an open set in  $\mathfrak{W}$ . Since h is continuous, we know that  $h^{-1}(\mathcal{G})$  is open in  $\mathfrak{Z}$ . The  $\Delta$ -continuity of g then ensures that

$$g^{-1}(h^{-1}(\mathfrak{G}))$$

is  $\Delta$ -open in  $\mathfrak{Y}$ . Hence, we obtain

$$(h \circ g)^{-1}(\mathfrak{G}) = g^{-1}(h^{-1}(\mathfrak{G})),$$

which is  $\Delta$ -open in  $\mathfrak{Y}$ . Therefore,  $h \circ g$  is  $\Delta$ -continuous.

**Proposition 3.12.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces.

- (1) If  $f : \mathfrak{X} \to \mathfrak{Y}$  is  $\Delta$ -continuous and A is a subspace of  $\mathfrak{X}$ , then the restriction of f to A, denoted by  $f|_{\mathcal{A}} : \mathcal{A} \to \mathfrak{Y}$ , is  $\Delta$ -continuous.
- (2) Let  $f : \mathfrak{X} \to \mathfrak{Y}$  be  $\Delta$ -continuous. If  $\mathcal{B}$  is a subspace of  $\mathfrak{Y}$  such that  $f(\mathfrak{X}) \subseteq \mathcal{B}$ , then the mapping  $f : \mathfrak{X} \to \mathcal{B}$  is  $\Delta$ -continuous.
- (3) Let  $f : \mathfrak{X} \to \mathfrak{Y}$  be  $\Delta$ -continuous. If  $\mathfrak{Z}$  is a topological space containing  $\mathfrak{Y}$  as a subspace, then the mapping  $h : \mathfrak{X} \to \mathfrak{Z}$  obtained by extending the codomain of f is  $\Delta$ -continuous.
- *Proof.* (1) The mapping  $f|_{\mathcal{A}}$  can be expressed as the composition  $f|_{\mathcal{A}} = f \circ i_{\mathcal{A}}$ , where  $i_{\mathcal{A}}$  is the inclusion mapping  $i_{\mathcal{A}} : \mathcal{A} \to \mathfrak{X}$ . By Proposition 3.9(2) and Proposition 3.11(1), it follows that  $f|_{\mathcal{A}}$  is  $\Delta$ -continuous.
  - (2) Suppose that  $f : \mathfrak{X} \to \mathfrak{Y}$  is  $\Delta$ -continuous and that  $\mathcal{B}$  is a subspace of  $\mathfrak{Y}$  such that  $f(\mathfrak{X}) \subseteq \mathcal{B}$ . Let  $\mathcal{G}$  be an open set in  $\mathcal{B}$ . Then, by the definition of the subspace topology, there exists an open set  $\mathcal{O}$  in  $\mathfrak{Y}$  such that  $\mathcal{G} = \mathcal{B} \cap \mathcal{O}$ . The preimage under f satisfies:

$$f^{-1}(\mathfrak{G}) = f^{-1}(\mathfrak{B} \cap \mathfrak{O}) = f^{-1}(\mathfrak{B}) \cap f^{-1}(\mathfrak{O}).$$

Since  $f(\mathfrak{X}) \subseteq \mathcal{B}$ , we have  $f^{-1}(\mathcal{B}) = \mathfrak{X}$ , so that

$$f^{-1}(\mathfrak{G}) = \mathfrak{X} \cap f^{-1}(\mathfrak{O}) = f^{-1}(\mathfrak{O}).$$

Since *f* is  $\Delta$ -continuous,  $f^{-1}(0)$  is  $\Delta$ -open in  $\mathfrak{X}$ , and hence  $f : \mathfrak{X} \to \mathcal{B}$  is  $\Delta$ -continuous.

(3) Assume that f : X → 𝔅 is Δ-continuous and that 𝔅 is a topological space containing 𝔅 as a subspace. Define the mapping h : X → 𝔅 by extending the codomain of f. This mapping can be expressed as the composition

$$h = i_{\mathfrak{Y}} \circ f,$$

where  $i_{\mathfrak{Y}} : \mathfrak{Y} \to \mathfrak{Z}$  is the inclusion mapping. By Proposition 3.9(2) and Proposition 3.11(2), it follows that h is  $\Delta$ -continuous.

We recall the usual *pasting lemma* for continuous mappings in topological spaces

**Theorem 3.13.** ([19]) Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces. Let  $\mathfrak{X} = \mathcal{A} \cup \mathcal{B}$ , where  $\mathcal{A}$  and  $\mathcal{B}$  are closed in  $\mathfrak{X}$ . Let  $f : \mathcal{A} \to \mathfrak{Y}$  and  $g : \mathcal{B} \to \mathfrak{Y}$  be continuous. Assume f(x) = g(x) for each  $x \in \mathcal{A} \cap \mathcal{B}$  and let  $h : \mathfrak{X} \to \mathfrak{Y}$  be a mapping defined by h(x) = f(x) for  $x \in \mathcal{A}$ , and h(x) = g(x) for  $x \in \mathcal{B}$ . Then, h is continuous.

*Proof.* Let  $\mathcal{C}$  be a closed subset of  $\mathfrak{Y}$ . Then  $h^{-1}(\mathcal{C}) = f^{-1}(\mathcal{C}) \cup g^{-1}(\mathcal{C})$ . Since f is continuous,  $f^{-1}(\mathcal{C})$  is closed in  $\mathcal{A}$ , and so it is closed in  $\mathfrak{X}$ . Similarly,  $g^{-1}(\mathcal{C})$  is closed in  $\mathcal{B}$ , and so in  $\mathfrak{X}$ . Hence,  $h^{-1}(\mathcal{C}) = f^{-1}(\mathcal{C}) \cup g^{-1}(\mathcal{C})$  is closed in  $\mathfrak{X}$ . Therefore, h is continuous.

The proof of Theorem 3.13 relies on the following classical result: Let  $\mathfrak{Y}$  be a subspace of  $\mathfrak{X}$ . If  $\mathfrak{C}$  is closed in  $\mathfrak{Y}$  and  $\mathfrak{Y}$  is closed in  $\mathfrak{X}$ , then  $\mathfrak{C}$  is closed in  $\mathfrak{X}$ . However, this conclusion does not necessarily hold in the context of  $\Delta$ -closedness.

**Example 3.14.** Let  $\mathfrak{X} = \{a, b, c, d, e\}$  be a topological space with topology

$$\sigma = \{ \varnothing, \mathfrak{X}, \{a, b, c\}, \{a, b, c, d\} \}.$$

*The collection of all*  $\Delta$ *-open sets in*  $\mathfrak{X}$  *is* 

$$\sigma_{\Delta o} = \{ \emptyset, \mathfrak{X}, \{a, b, c\}, \{a, b, c, d\}, \{d, e\}, \{d\}, \{e\} \}.$$

*The collection of all*  $\Delta$ *-closed sets in*  $\mathfrak{X}$  *is* 

$$\sigma_{\Delta c} = \{ \varnothing, \mathfrak{X}, \{a, b, c\}, \{a, b, c, d\}, \{a, b, c, e\}, \{d, e\}, \{e\} \}.$$

Consider the subspace  $\mathfrak{Y} = \{a, b, c, d\}$  and the set  $\mathfrak{C} = \{d\}$ . Clearly,  $\mathfrak{Y}$  is  $\Delta$ -closed in  $\mathfrak{X}$ . Additionally, since

$$\mathcal{C} = \mathfrak{Y} \cap \{d, e\},\$$

*Proposition* 2.13 *ensures that* C *is*  $\Delta$ *-closed in*  $\mathfrak{Y}$ *. However,* C *is not*  $\Delta$ *-closed in*  $\mathfrak{X}$ *, demonstrating that*  $\Delta$ *-closedness is not necessarily transitive in this setting.* 

Motivated by Theorem 3.13 and Example 3.14 we propose the following pasting-type lemma for  $\Delta$ -continuous mappings.

**Theorem 3.15.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces. Suppose that  $\mathfrak{X} = \mathcal{A} \cup \mathcal{B}$ , where  $\mathcal{A}$  and  $\mathcal{B}$  are  $\Delta$ -open in  $\mathfrak{X}$ . Let  $f : \mathcal{A} \to \mathfrak{Y}$  and  $g : \mathcal{B} \to \mathfrak{Y}$  be  $\Delta$ -continuous mappings such that f(x) = g(x) for all  $x \in \mathcal{A} \cap \mathcal{B}$ . Define a mapping  $h : \mathfrak{X} \to \mathfrak{Y}$  by

$$h(x) = \begin{cases} f(x), & \text{if } x \in \mathcal{A}, \\ g(x), & \text{if } x \in \mathcal{B}. \end{cases}$$

Assume further that the union of any two  $\Delta$ -open sets in  $\mathfrak{X}$  is again  $\Delta$ -open. Then, h is  $\Delta$ -continuous.

*Proof.* Let  $\emptyset$  be an open subset of  $\mathfrak{Y}$ . Then, by the definition of *h*, we have

$$h^{-1}(\mathcal{O}) = f^{-1}(\mathcal{O}) \cup g^{-1}(\mathcal{O}).$$

Since f is  $\Delta$ -continuous,  $f^{-1}(0)$  is  $\Delta$ -open in  $\mathcal{A}$ . By Proposition 2.14, this implies that  $f^{-1}(0)$  is  $\Delta$ -open in  $\mathfrak{X}$ . Similarly, since g is  $\Delta$ -continuous,  $g^{-1}(0)$  is  $\Delta$ -open in  $\mathcal{B}$ , and thus it is also  $\Delta$ -open in  $\mathfrak{X}$ .

By assumption, the union of any two  $\Delta$ -open sets in  $\mathfrak{X}$  is  $\Delta$ -open. Therefore,

$$h^{-1}(\mathfrak{O}) = f^{-1}(\mathfrak{O}) \cup g^{-1}(\mathfrak{O})$$

is  $\Delta$ -open in  $\mathfrak{X}$ . Consequently, *h* is  $\Delta$ -continuous.

The condition in Theorem 3.15 that the union of any two  $\Delta$ -open sets is again  $\Delta$ -open cannot be omitted.

**Example 3.16.** Let  $\mathfrak{X} = \{a, b, c, d, e\}$  be a topological space with topology

$$\sigma = \{ \varnothing, \mathfrak{X}, \{a, b, c\}, \{a, b, c, d\} \}.$$

*The collection of all*  $\Delta$ *-open sets in*  $\mathfrak{X}$  *is* 

$$\sigma_{\Delta o} = \{ \varnothing, \mathfrak{X}, \{a, b, c\}, \{a, b, c, d\}, \{d, e\}, \{d\}, \{e\} \}.$$

*Clearly, the sets*  $\{a, b, c\}$  *and*  $\{e\}$  *are*  $\Delta$ *-open, but their union*  $\{a, b, c, e\}$  *is not*  $\Delta$ *-open.* 

Consider the subspaces  $\mathcal{A} = \{a, b, c\}$  and  $\mathcal{B} = \{d, e\}$ . Let  $\sigma_{\mathcal{A}}$  and  $\sigma_{\mathcal{B}}$  be the induced topologies on  $\mathcal{A}$  and  $\mathcal{B}$ , respectively.

*Define a mapping*  $f : (\mathcal{A}, \sigma_{\mathcal{A}}) \to (\mathfrak{X}, \sigma)$  *by* 

$$f(a) = a, \quad f(b) = b, \quad f(c) = c.$$

*Clearly, f is continuous, so it is also*  $\Delta$ *-continuous.* 

*Next, define a mapping*  $g : (\mathfrak{B}, \sigma_{\mathfrak{B}}) \to (\mathfrak{X}, \sigma)$  *by* 

$$g(d) = e, \quad g(e) = d.$$

#### Then, g is $\Delta$ -continuous.

*Now, consider the mapping*  $h : (\mathfrak{X}, \sigma) \to (\mathfrak{X}, \sigma)$  *as defined in Theorem* 3.15*. For the open set*  $\mathfrak{O} = \{a, b, c, d\}$ *, we compute* 

$$h^{-1}(\mathfrak{O}) = f^{-1}(\mathfrak{O}) \cup g^{-1}(\mathfrak{O}).$$

Since  $f^{-1}(0) = \{a, b, c\}$  and  $g^{-1}(0) = \{e\}$ , we obtain

$$h^{-1}(0) = \{a, b, c\} \cup \{e\} = \{a, b, c, e\}.$$

However,  $\{a, b, c, e\}$  is not  $\Delta$ -open in  $\mathfrak{X}$ . Thus, h is not  $\Delta$ -continuous, demonstrating that the assumption on the union of  $\Delta$ -open sets in Theorem 3.15 is necessary.

**Proposition 3.17.** Let  $\mathfrak{X}, \mathfrak{Y}$ , and  $\mathfrak{Z}$  be topological spaces. Suppose  $f_1 : \mathfrak{X} \to \mathfrak{Y}$  and  $f_2 : \mathfrak{X} \to \mathfrak{Z}$  are mappings, and define  $f : \mathfrak{X} \to \mathfrak{Y} \times \mathfrak{Z}$  by

$$f(x) = (f_1(x), f_2(x)).$$

If f is  $\Delta$ -continuous on  $\mathfrak{X}$ , then both  $f_1$  and  $f_2$  are  $\Delta$ -continuous on  $\mathfrak{X}$ .

*Proof.* Let  $\pi_1 : \mathfrak{Y} \times \mathfrak{Z} \to \mathfrak{Y}$  and  $\pi_2 : \mathfrak{Y} \times \mathfrak{Z} \to \mathfrak{Z}$  be the natural projection mappings onto the first and second coordinates, respectively. Then, we can express  $f_1$  and  $f_2$  as compositions:

$$f_1(x) = \pi_1(f(x)) = (\pi_1 \circ f)(x), \quad f_2(x) = \pi_2(f(x)) = (\pi_2 \circ f)(x).$$

By Proposition 3.9(3), the projection maps  $\pi_1$  and  $\pi_2$  are continuous. Since f is  $\Delta$ -continuous, applying Proposition 3.11(2) ensures that the compositions  $\pi_1 \circ f$  and  $\pi_2 \circ f$  are  $\Delta$ -continuous. Hence, both  $f_1$  and  $f_2$  are  $\Delta$ -continuous.

It is well known that open and closed sets are preserved under homoeomorphisms. Similar conclusion holds for  $\Delta$ -open and  $\Delta$ -closed sets.

**Proposition 3.18.** Let  $f : \mathfrak{X} \to \mathfrak{Y}$  be a homeomorphism. Then:

- (1) The image of a  $\Delta$ -open set under f is  $\Delta$ -open in  $\mathfrak{Y}$ .
- (2) The inverse image of a  $\Delta$ -open set under f is  $\Delta$ -open in  $\mathfrak{X}$ .
- (3) The image of a  $\Delta$ -closed set under f is  $\Delta$ -closed in  $\mathfrak{Y}$ .
- (4) The inverse image of a  $\Delta$ -closed set under f is  $\Delta$ -closed in  $\mathfrak{X}$ .
- *Proof.* (1) Let A be a  $\Delta$ -open set in  $\mathfrak{X}$ . By Theorem 2.2, there exist an open set  $\mathfrak{O}$  and a closed set  $\mathfrak{C}$  in  $\mathfrak{X}$  such that

$$\mathcal{A} = \mathcal{O} \cap \mathcal{C}.$$

Since f is a bijection, we obtain

$$f(\mathcal{A}) = f(\mathcal{O} \cap \mathcal{C}) = f(\mathcal{O}) \cap f(\mathcal{C}).$$

As f is a homeomorphism, the image of  $\mathcal{O}$  under f is open in  $\mathfrak{Y}$ , and the image of  $\mathcal{C}$  is closed in  $\mathfrak{Y}$ . By Theorem 2.2, it follows that  $f(\mathcal{A})$  is  $\Delta$ -open in  $\mathfrak{Y}$ .

(2) Let  $\mathcal{B}$  be a  $\Delta$ -open set in  $\mathfrak{Y}$ . By Theorem 2.2, there exist an open set  $\mathcal{G}$  and a closed set  $\mathcal{F}$  in  $\mathfrak{Y}$  such that

$$\mathcal{B} = \mathcal{G} \cap \mathcal{F}.$$

Taking the preimage under f, we obtain

$$f^{-1}(\mathcal{B}) = f^{-1}(\mathcal{G} \cap \mathcal{F}) = f^{-1}(\mathcal{G}) \cap f^{-1}(\mathcal{F}).$$

Since f is a homeomorphism,  $f^{-1}(\mathfrak{G})$  is open in  $\mathfrak{X}$  and  $f^{-1}(\mathfrak{F})$  is closed in  $\mathfrak{X}$ . By Theorem 2.2, it follows that  $f^{-1}(\mathfrak{B})$  is  $\Delta$ -open in  $\mathfrak{X}$ .

- (3) The proof for the image of a  $\Delta$ -closed set follows similarly by applying Corollary 2.3.
- (4) The proof for the inverse image of a  $\Delta$ -closed set follows analogously using Corollary 2.3.

### 4. $\Delta$ -irresolute mappings

Given topological spaces  $\mathfrak{X}$  and  $\mathfrak{Y}$ , a mapping  $f : \mathfrak{X} \to \mathfrak{Y}$  is called *irresolute* if for every semi-open set  $\mathfrak{O}$  in  $\mathfrak{Y}$ , the preimage  $f^{-1}(\mathfrak{O})$  is semi-open in  $\mathfrak{X}$  [7]. Following this concept, we introduce the following notion in terms of  $\Delta$ -open sets.

**Definition 4.1.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces. A mapping  $f : \mathfrak{X} \to \mathfrak{Y}$  is said to be  $\Delta$ -irresolute if for every  $\Delta$ -open set S in  $\mathfrak{Y}$ , the preimage  $f^{-1}(S)$  is  $\Delta$ -open in  $\mathfrak{X}$ .

Combining Definition 4.1 and Proposition 3.18, we get that each homeomorphism is  $\Delta$ -irresolute. Evidently each  $\Delta$ -irresolute mapping is  $\Delta$ -continuous. The converse need not be true.

**Example 4.2.** Let  $\mathfrak{X} = \{a, b, c\}$  be a finite set equipped with the topologies

$$\sigma_1 = \{ \emptyset, \mathfrak{X}, \{a\}, \{a, b\} \}$$
 and  $\sigma_2 = \{ \emptyset, \mathfrak{X}, \{b\}, \{b, c\} \}.$ 

Define a mapping  $f : (\mathfrak{X}, \sigma_1) \to (\mathfrak{X}, \sigma_2)$  by

$$f(a) = c, \quad f(b) = b, \quad f(c) = a.$$

*The collection of all*  $\Delta$ *-open sets in*  $(\mathfrak{X}, \sigma_1)$  *is given by* 

$$\sigma_{1\Delta o} = \{ \varnothing, \mathfrak{X}, \{a\}, \{a, b\}, \{b, c\}, \{c\}, \{b\} \}.$$

Similarly, the collection of all  $\Delta$ -open sets in  $(\mathfrak{X}, \sigma_2)$  is

$$\sigma_{2\Delta o} = \{ \varnothing, \mathfrak{X}, \{b\}, \{b, c\}, \{a, c\}, \{a\}, \{c\} \}.$$

It is evident that f is  $\Delta$ -continuous. However, the set  $\{a, c\}$  is  $\Delta$ -open in  $(\mathfrak{X}, \sigma_2)$ , but its preimage under f is

$$f^{-1}(\{a,c\}) = \{a,c\},\$$

which is not  $\Delta$ -open in  $(\mathfrak{X}, \sigma_1)$ . Thus, f is not  $\Delta$ -irresolute.

We show that each continuous mapping is  $\Delta$ -irresolute.

**Proposition 4.3.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces. If  $f : \mathfrak{X} \to \mathfrak{Y}$  is continuous, then it is  $\Delta$ -irresolute.

*Proof.* Let S be a  $\Delta$ -open set in  $\mathfrak{Y}$ . By Theorem 2.2, there exist an open set  $\mathfrak{O}$  and a closed set  $\mathfrak{C}$  in  $\mathfrak{Y}$  such that

$$S = O \cap C.$$

Taking the preimage under f, we obtain

$$f^{-1}(\mathfrak{S}) = f^{-1}(\mathfrak{O} \cap \mathfrak{C}) = f^{-1}(\mathfrak{O}) \cap f^{-1}(\mathfrak{C}).$$

Since *f* is continuous, it follows that  $f^{-1}(\mathbb{O})$  is open in  $\mathfrak{X}$  and  $f^{-1}(\mathbb{O})$  is closed in  $\mathfrak{X}$ . By Theorem 2.2, their intersection is  $\Delta$ -open in  $\mathfrak{X}$ . Therefore,  $f^{-1}(\mathfrak{S})$  is  $\Delta$ -open in  $\mathfrak{X}$ , proving that *f* is  $\Delta$ -irresolute.  $\Box$ 

Example 3.2 provides an instance of a  $\Delta$ -irresolute mapping that is not continuous. We have previously established that  $\Delta$ -continuity can be characterized in terms of closed and  $\Delta$ -closed sets; see Theorem 3.3. In a similar fashion, we present the following result for  $\Delta$ -irresolute mappings.

**Theorem 4.4.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$ . Then f is  $\Delta$ -irresolute if and only if for every  $\Delta$ -closed set  $\mathfrak{C}$  in  $\mathfrak{Y}$ , the preimage  $f^{-1}(\mathfrak{C})$  is  $\Delta$ -closed in  $\mathfrak{X}$ .

*Proof.* ( $\Longrightarrow$ ) Assume that  $f : \mathfrak{X} \to \mathfrak{Y}$  is  $\Delta$ -irresolute. Let  $\mathfrak{C}$  be a  $\Delta$ -closed set in  $\mathfrak{Y}$ . By definition,  $\mathfrak{Y} \setminus \mathfrak{C}$  is  $\Delta$ -open in  $\mathfrak{Y}$ . Since f is  $\Delta$ -irresolute, it follows that

$$f^{-1}(\mathfrak{Y} \setminus \mathfrak{C}) = \mathfrak{X} \setminus f^{-1}(\mathfrak{C})$$

is  $\Delta$ -open in  $\mathfrak{X}$ . Consequently,  $f^{-1}(\mathfrak{C})$  is  $\Delta$ -closed in  $\mathfrak{X}$ .

( $\Leftarrow$ ) Conversely, suppose that for every  $\Delta$ -closed set  $\mathcal{C}$  in  $\mathfrak{Y}$ , the preimage  $f^{-1}(\mathcal{C})$  is  $\Delta$ -closed in  $\mathfrak{X}$ . Let  $\mathcal{O}$  be a  $\Delta$ -open set in  $\mathfrak{Y}$ . Then,  $\mathfrak{Y} \setminus \mathcal{O}$  is  $\Delta$ -closed in  $\mathfrak{Y}$ , and by assumption, its preimage satisfies

$$f^{-1}(\mathfrak{Y}\setminus \mathfrak{O}) = \mathfrak{X}\setminus f^{-1}(\mathfrak{O}),$$

which is  $\Delta$ -closed in  $\mathfrak{X}$ . This implies that  $f^{-1}(\mathfrak{O})$  is  $\Delta$ -open in  $\mathfrak{X}$ , proving that f is  $\Delta$ -irresolute.

By similar arguments as Theorem 3.4, Proposition 3.6, Proposition 3.7, and Proposition 3.8, one can prove the next results on  $\Delta$ -irresolute mappings.

**Proposition 4.5.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$ . If f is  $\Delta$ -irresolute, then for each  $x \in \mathfrak{X}$  and for every  $\Delta$ -neighborhood  $\Delta N(f(x))$  of f(x) in  $\mathfrak{Y}$ , there exists a  $\Delta$ -neighborhood  $\Delta N(x)$  of x in  $\mathfrak{X}$  such that

$$f(\Delta N(x)) \subseteq \Delta N(f(x)).$$

**Proposition 4.6.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$ . If f is  $\Delta$ -irresolute and for every subset  $\mathcal{B} \subseteq \mathfrak{Y}$ , the  $\Delta$ -closure  $\Delta Cl(\mathcal{B})$  is  $\Delta$ -closed in  $\mathfrak{Y}$ , then for every subset  $\mathcal{A} \subseteq \mathfrak{X}$ , we have

$$f(\Delta Cl(\mathcal{A})) \subseteq \Delta Cl(f(\mathcal{A})).$$

**Proposition 4.7.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$ . If f is  $\Delta$ -irresolute and for every subset  $\mathcal{B} \subseteq \mathfrak{Y}$ , the  $\Delta$ -interior  $\Delta Int(\mathfrak{B})$  is  $\Delta$ -open in  $\mathfrak{Y}$ , then for every subset  $\mathcal{B} \subseteq \mathfrak{Y}$ , we have

$$f^{-1}(\Delta Int(\mathcal{B})) \subseteq \Delta Int(f^{-1}(\mathcal{B})).$$

**Proposition 4.8.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$ . Suppose that for every  $x \in \mathfrak{X}$  and every  $\Delta$ -neighborhood  $\Delta N(f(x))$  of f(x) in  $\mathfrak{Y}$ , there exists a  $\Delta$ -neighborhood  $\Delta N(x)$  of x in  $\mathfrak{X}$  such that

$$f(\Delta N(x)) \subseteq \Delta N(f(x)).$$

*Further, assume that for any subset*  $A \subseteq \mathfrak{X}$ *, the*  $\Delta$ *-interior*  $\Delta Int(A)$  *is*  $\Delta$ *-open in*  $\mathfrak{X}$ *. Then* f *is*  $\Delta$ *-irresolute.* 

**Proposition 4.9.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$ . Suppose that for every subset  $\mathcal{A} \subseteq \mathfrak{X}$ , we have

$$f(\Delta Cl(\mathcal{A})) \subseteq \Delta Cl(f(\mathcal{A})).$$

*Further, assume that for any subset*  $A \subseteq \mathfrak{X}$ *, the*  $\Delta$ *-closure*  $\Delta Cl(A)$  *is*  $\Delta$ *-closed in*  $\mathfrak{X}$ *. Then* f *is*  $\Delta$ *-irresolute.* 

**Proposition 4.10.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$ . Suppose that for every subset  $\mathcal{B} \subseteq \mathfrak{Y}$ , we have

$$f^{-1}(\Delta Int(\mathcal{B})) \subseteq \Delta Int(f^{-1}(\mathcal{B})).$$

*Further, assume that for any subset*  $A \subseteq \mathfrak{X}$ *, the*  $\Delta$ *-interior*  $\Delta Int(A)$  *is*  $\Delta$ *-open in*  $\mathfrak{X}$ *. Then* f *is*  $\Delta$ *-irresolute.* 

The proof of the following theorem is straightforward and is therefore omitted.

**Theorem 4.11.** Let  $\mathfrak{X}, \mathfrak{Y}$ , and  $\mathfrak{Z}$  be topological spaces.

- (1) If  $f : \mathfrak{X} \to \mathfrak{Y}$  is a homeomorphism, then f is  $\Delta$ -irresolute.
- (2) If  $f : \mathfrak{X} \to \mathfrak{Y}$  is  $\Delta$ -irresolute and  $g : \mathfrak{Y} \to \mathfrak{Z}$  is  $\Delta$ -irresolute, then the composition  $g \circ f : \mathfrak{X} \to \mathfrak{Z}$  is  $\Delta$ -irresolute.
- (3) If  $f : \mathfrak{X} \to \mathfrak{Y}$  is  $\Delta$ -irresolute and A is a subspace of  $\mathfrak{X}$ , then the restriction  $f|_{\mathcal{A}} : \mathcal{A} \to \mathfrak{Y}$  is  $\Delta$ -irresolute.
- (4) Let  $f : \mathfrak{X} \to \mathfrak{Y}$  be  $\Delta$ -irresolute. If  $\mathbb{B}$  is a subspace of  $\mathfrak{Y}$  such that  $f(\mathfrak{X}) \subseteq \mathbb{B}$ , then the mapping  $f : \mathfrak{X} \to \mathbb{B}$  is  $\Delta$ -irresolute.

- (5) Let  $f : \mathfrak{X} \to \mathfrak{Y}$  be  $\Delta$ -irresolute. If  $\mathfrak{Z}$  is a topological space containing  $\mathfrak{Y}$  as a subspace, then the mapping  $h : \mathfrak{X} \to \mathfrak{Z}$  obtained by extending the codomain of f is  $\Delta$ -irresolute.
- (6) Let  $f_1 : \mathfrak{X} \to \mathfrak{Y}$  and  $f_2 : \mathfrak{X} \to \mathfrak{Z}$  be mappings. Define  $f : \mathfrak{X} \to \mathfrak{Y} \times \mathfrak{Z}$  by

$$f(x) = (f_1(x), f_2(x)).$$

If f is  $\Delta$ -irresolute, then both  $f_1$  and  $f_2$  are  $\Delta$ -irresolute.

In connection with Theorem 3.15 the coming result is easily proved.

**Theorem 4.12.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces. Suppose that  $\mathfrak{X} = \mathcal{A} \cup \mathcal{B}$ , where  $\mathcal{A}$  and  $\mathcal{B}$  are  $\Delta$ -open in  $\mathfrak{X}$ . Let  $f : \mathcal{A} \to \mathfrak{Y}$  and  $g : \mathcal{B} \to \mathfrak{Y}$  be  $\Delta$ -irresolute mappings such that f(x) = g(x) for all  $x \in \mathcal{A} \cap \mathcal{B}$ . Define a mapping  $h : \mathfrak{X} \to \mathfrak{Y}$  by

$$h(x) = \begin{cases} f(x), & \text{if } x \in \mathcal{A}, \\ g(x), & \text{if } x \in \mathcal{B}. \end{cases}$$

Assume further that the union of any two  $\Delta$ -open sets in  $\mathfrak{X}$  is again  $\Delta$ -open. Then, h is  $\Delta$ -irresolute.

## 5. $\Delta$ -open and $\Delta$ -closed mappings

Recall that a mapping is called *open* (*closed*) if the image of each open (closed) set is again an open (a closed) set. Similar notions can be defined in terms of  $\Delta$ -open and  $\Delta$ -closed sets.

**Definition 5.1.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces. A mapping  $f : \mathfrak{X} \to \mathfrak{Y}$  is said to be  $\Delta$ -open if for every  $\Delta$ -open set S in  $\mathfrak{X}$ , the image f(S) is  $\Delta$ -open in  $\mathfrak{Y}$ .

**Definition 5.2.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces. A mapping  $f : \mathfrak{X} \to \mathfrak{Y}$  is said to be  $\Delta$ -closed if for every  $\Delta$ -closed set S in  $\mathfrak{X}$ , the image f(S) is  $\Delta$ -closed in  $\mathfrak{Y}$ .

In connection with Proposition 3.18, it is evident that a homeomorphism is both a  $\Delta$ -open and a  $\Delta$ -closed mapping. However, for the mapping f in Example 3.10, the set  $S = \{c, d\}$  is both  $\Delta$ -open and  $\Delta$ -closed, but its image under f, given by  $f(S) = \{a, c\}$ , is neither  $\Delta$ -open nor  $\Delta$ -closed. This provides an example of a mapping that is  $\Delta$ -continuous but neither  $\Delta$ -open nor  $\Delta$ -closed.

**Example 5.3.** Let  $\mathfrak{X} = \{a, b, c\}$  be a topological space with topology

$$\sigma_1 = \{ \emptyset, \mathfrak{X}, \{a, b\} \}.$$

Let  $\mathfrak{Y} = \{a, b, c, d\}$  be a topological space with topology

 $\sigma_2 = \{ \varnothing, \mathfrak{Y}, \{b, d\}, \{c, d\}, \{d\}, \{b, c, d\} \}.$ 

Define a mapping  $f : (\mathfrak{X}, \sigma_1) \to (\mathfrak{Y}, \sigma_2)$  by

$$f(a) = b, \quad f(b) = a, \quad f(c) = d.$$

*The collection of all*  $\Delta$ *-open sets in*  $(\mathfrak{X}, \sigma_1)$  *coincides with the collection of all*  $\Delta$ *-closed sets in*  $(\mathfrak{X}, \sigma_1)$ *, which is* 

$$\sigma_{1\Delta o} = \{ \varnothing, \mathfrak{X}, \{a, b\}, \{c\} \}.$$

It is straightforward to verify that f is both a  $\Delta$ -open and a  $\Delta$ -closed mapping. However, the set  $\{b, d\}$  is open in  $(\mathfrak{Y}, \sigma_2)$ , but its preimage under f,

$$f^{-1}(\{b,d\}) = \{a,c\},\$$

*is not*  $\Delta$ *-open in*  $(\mathfrak{X}, \sigma_1)$ *. Thus, f is not*  $\Delta$ *-continuous. Consequently, f is neither*  $\Delta$ *-irresolute nor continuous.* 

Next we give an example of a  $\Delta$ -open mapping that is not  $\Delta$ -closed and vice versa.

**Example 5.4.** Let  $\mathfrak{X} = \{a, b, c, d\}$  be a topological space with topology

$$\sigma = \{ \varnothing, \mathfrak{X}, \{a, c, d\}, \{c, d\} \}.$$

*The collection of all*  $\Delta$ *-open sets in*  $(\mathfrak{X}, \sigma)$  *is given by* 

$$\sigma_{\Delta o} = \{ \emptyset, \mathfrak{X}, \{a, c, d\}, \{c, d\}, \{b\}, \{a, b\}, \{a\} \}.$$

*On one hand, define a mapping*  $f : \mathfrak{X} \to \mathfrak{X}$  *by* 

$$f(a) = f(b) = f(c) = f(d) = a.$$

It is easy to verify that f is  $\Delta$ -open but not  $\Delta$ -closed.

*On the other hand, define a mapping*  $g : \mathfrak{X} \to \mathfrak{X}$  *by* 

$$g(a) = g(b) = b$$
,  $g(c) = c$ ,  $g(d) = d$ .

Then, g is  $\Delta$ -closed. However, the set  $\{a, c, d\}$  is  $\Delta$ -open, yet its image under g,

$$g(\{a, c, d\}) = \{b, c, d\},\$$

is not  $\Delta$ -open. Thus, g is not  $\Delta$ -open.

It is evident that the composition of two  $\Delta$ -open (respectively,  $\Delta$ -closed) mappings is again a  $\Delta$ -open (respectively,  $\Delta$ -closed) mapping.

**Theorem 5.5.** Let  $f : \mathfrak{X} \to \mathfrak{Y}$  and  $g : \mathfrak{Y} \to \mathfrak{Z}$  be mappings. Assume that the composition  $g \circ f : \mathfrak{X} \to \mathfrak{Z}$  is  $\Delta$ -open (respectively,  $\Delta$ -closed).

- (1) If g is a  $\Delta$ -irresolute injection, then f is  $\Delta$ -open (respectively,  $\Delta$ -closed).
- (2) If f is a  $\Delta$ -irresolute surjection, then g is  $\Delta$ -open (respectively,  $\Delta$ -closed).

*Proof.* We consider only the case where  $g \circ f$  is  $\Delta$ -open, as the case for  $\Delta$ -closed mappings follows analogously.

(1) Let S be a  $\Delta$ -open set in  $\mathfrak{X}$ . Since  $g \circ f$  is  $\Delta$ -open, we have

$$(g \circ f)(\mathbb{S}) = g(f(\mathbb{S}))$$

as a  $\Delta$ -open set in 3. Since *g* is  $\Delta$ -irresolute, its preimage satisfies

 $g^{-1}\Big(g\big(f(\mathbb{S})\big)\Big)$ 

being  $\Delta$ -open in  $\mathfrak{Y}$ . Since *g* is injective, we obtain

$$g^{-1}(g(f(\mathfrak{S}))) = f(\mathfrak{S}).$$

Thus, f(S) is  $\Delta$ -open in  $\mathfrak{Y}$ , proving that f is  $\Delta$ -open.

(2) Let S be a  $\Delta$ -open set in  $\mathfrak{Y}$ . Since *f* is  $\Delta$ -irresolute, we conclude that

$$f^{-1}(\mathbb{S})$$

is  $\Delta$ -open in  $\mathfrak{X}$ . Because  $g \circ f$  is  $\Delta$ -open, its image satisfies

$$(g \circ f)(f^{-1}(\mathbb{S}))$$

being  $\Delta$ -open in 3. Since *f* is surjective, it follows that

$$(g \circ f)(f^{-1}(\mathfrak{S})) = g(f(f^{-1}(\mathfrak{S}))) = g(\mathfrak{S}).$$

Hence, g(S) is  $\Delta$ -open in  $\mathfrak{Z}$ , proving that g is  $\Delta$ -open.

**Proposition 5.6.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces. If  $f : \mathfrak{X} \to \mathfrak{Y}$  is  $\Delta$ -open, then for any subset  $\mathcal{A} \subseteq \mathfrak{X}$ , we have

$$f(\Delta Int(\mathcal{A})) \subseteq \Delta Int(f(\mathcal{A})).$$

*Proof.* Assume that f is  $\Delta$ -open. For any subset  $\mathcal{A} \subseteq \mathfrak{X}$ , let  $y \in f(\Delta Int(\mathcal{A}))$ . Then there exists some  $x \in \Delta Int(\mathcal{A})$  such that y = f(x). By Proposition 2.10, there exists a  $\Delta$ -neighborhood  $\Delta N(x)$  of x satisfying

$$x \in \Delta N(x) \subseteq \mathcal{A}.$$

Applying f to both sides, we obtain

$$f(x) \in f(\Delta N(x)) \subseteq f(\mathcal{A}).$$

Since *f* is  $\Delta$ -open, it follows that  $f(\Delta N(x))$  is  $\Delta$ -open in  $\mathfrak{Y}$ . Consequently,

$$f(\Delta N(x)) \subseteq \Delta Int(f(\mathcal{A})).$$

Therefore, we conclude that

$$y = f(x) \in \Delta Int(f(\mathcal{A})),$$

which proves the desired result.

The following result provides a partial converse to Proposition 5.6.

**Proposition 5.7.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$ . Suppose that for each subset  $\mathcal{A} \subseteq \mathfrak{X}$ , we have

$$f(\Delta Int(\mathcal{A})) \subseteq \Delta Int(f(\mathcal{A})),$$

and that for each subset  $\mathbb{B} \subseteq \mathfrak{Y}$ , the  $\Delta$ -interior  $\Delta Int(\mathbb{B})$  is  $\Delta$ -open in  $\mathfrak{Y}$ . Then f is  $\Delta$ -open.

*Proof.* Let  $\mathcal{A}$  be a  $\Delta$ -open set in  $\mathfrak{X}$ . Then by definition,  $\Delta Int(\mathcal{A}) = \mathcal{A}$ , so we obtain

$$f(\mathcal{A}) = f(\Delta Int(\mathcal{A})) \subseteq \Delta Int(f(\mathcal{A})).$$

However, since  $\Delta Int(f(\mathcal{A})) \subseteq f(\mathcal{A})$ , it follows that

$$f(\mathcal{A}) = \Delta Int(f(\mathcal{A})).$$

By assumption,  $\Delta Int(f(\mathcal{A})) = f(\mathcal{A})$  is  $\Delta$ -open in  $\mathfrak{Y}$ . Thus, f is  $\Delta$ -open.

**Proposition 5.8.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces. If  $f : \mathfrak{X} \to \mathfrak{Y}$  is  $\Delta$ -closed, then for any subset  $\mathcal{A} \subseteq \mathfrak{X}$ , we have

$$\Delta Cl(f(\mathcal{A})) \subseteq f(\Delta Cl(\mathcal{A})).$$

*Proof.* Assume that f is  $\Delta$ -closed and let  $\mathcal{A} \subseteq \mathfrak{X}$ . Then, for any  $\Delta$ -closed set  $\mathcal{C}$  in  $\mathfrak{X}$  with  $\mathcal{C} \supseteq \mathcal{A}$ , we have that  $f(\mathcal{C})$  is  $\Delta$ -closed in  $\mathfrak{Y}$  and clearly satisfies  $f(\mathcal{C}) \supseteq f(\mathcal{A})$ . Therefore, we obtain

$$\Delta Cl(f(\mathcal{A})) = \bigcap_{\substack{K \supseteq f(\mathcal{A}) \\ K \ \Delta \text{-closed}}} K \subseteq \bigcap_{\substack{\mathfrak{C} \supseteq \mathcal{A} \\ \mathfrak{C} \ \Delta \text{-closed}}} f(\mathfrak{C}) \subseteq f\left(\bigcap_{\substack{\mathfrak{C} \supseteq \mathcal{A} \\ \mathfrak{C} \ \Delta \text{-closed}}} \mathfrak{C}\right) = f(\Delta Cl(\mathcal{A})).$$

The following result provides a partial converse to Proposition 5.8.

**Proposition 5.9.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$ . Suppose that for every subset  $\mathcal{A} \subseteq \mathfrak{X}$ , we have

$$\Delta Cl(f(\mathcal{A})) \subseteq f(\Delta Cl(\mathcal{A})),$$

and that for every subset  $\mathcal{B} \subseteq \mathfrak{Y}$ , the  $\Delta$ -closure  $\Delta Cl(\mathcal{B})$  is  $\Delta$ -closed in  $\mathfrak{Y}$ . Then f is  $\Delta$ -closed.

*Proof.* Let A be a  $\Delta$ -closed set in  $\mathfrak{X}$ . Then by definition,  $\Delta Cl(A) = A$ , so we obtain

$$\Delta Cl(f(\mathcal{A})) \subseteq f(\Delta Cl(\mathcal{A})) = f(\mathcal{A}).$$

However, since  $f(A) \subseteq \Delta Cl(f(A))$ , it follows that

$$f(\mathcal{A}) = \Delta Cl(f(\mathcal{A})).$$

By assumption,  $\Delta Cl(f(\mathcal{A})) = f(\mathcal{A})$  is  $\Delta$ -closed in  $\mathfrak{Y}$ . Thus, f is  $\Delta$ -closed.

**Proposition 5.10.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$  be  $\Delta$ -open. Then for each subset  $\mathbb{B} \subseteq \mathfrak{Y}$  and each  $\Delta$ -closed set  $\mathfrak{K}$  in  $\mathfrak{X}$  containing  $f^{-1}(\mathbb{B})$ , there exists a  $\Delta$ -closed set  $\mathfrak{K}$  in  $\mathfrak{Y}$  such that  $\mathfrak{K} \supseteq \mathbb{B}$  and  $f^{-1}(\mathfrak{K}) \subseteq \mathfrak{H}$ .

*Proof.* Let  $\mathcal{B} \subseteq \mathfrak{Y}$  and let  $\mathcal{H}$  be a  $\Delta$ -closed set in  $\mathfrak{X}$  such that  $\mathcal{H} \supseteq f^{-1}(\mathcal{B})$ . Then  $\mathfrak{X} - \mathcal{H}$  is  $\Delta$ -open in  $\mathfrak{X}$ , and since f is  $\Delta$ -open, it follows that  $f(\mathfrak{X} - \mathcal{H})$  is  $\Delta$ -open in  $\mathfrak{Y}$ . Define

$$\mathcal{K} = \mathfrak{Y} - f(\mathfrak{X} - \mathcal{H}).$$

Clearly,  $\mathcal{K}$  is  $\Delta$ -closed in  $\mathfrak{Y}$ , and we have

$$\begin{split} \mathcal{H} \supseteq f^{-1}(\mathcal{B}) \Leftrightarrow \mathfrak{X} - \mathcal{H} \subseteq \mathfrak{X} - f^{-1}(\mathcal{B}) \\ \Rightarrow f(\mathfrak{X} - \mathcal{H}) \subseteq f(\mathfrak{X} - f^{-1}(\mathcal{B})) \\ \Leftrightarrow \mathcal{K} = \mathfrak{Y} - f(\mathfrak{X} - \mathcal{H}) \supseteq \mathfrak{Y} - f(\mathfrak{X} - f^{-1}(\mathcal{B})) \\ \Rightarrow \mathcal{K} \supseteq \mathfrak{Y} - f(\mathfrak{X} - f^{-1}(\mathcal{B})) \supseteq \mathcal{B} \\ \Rightarrow \mathcal{K} \supseteq \mathcal{B}. \end{split}$$

Furthermore, we verify that  $f^{-1}(\mathcal{K}) \subseteq \mathcal{H}$ :

$$f^{-1}(\mathcal{K}) = f^{-1} \big( \mathfrak{Y} - f(\mathfrak{X} - \mathcal{H}) \big)$$
  
=  $f^{-1}(\mathfrak{Y}) - f^{-1} \big( f(\mathfrak{X} - \mathcal{H}) \big)$   
=  $\mathfrak{X} - f^{-1} \big( f(\mathfrak{X} - \mathcal{H}) \big)$   
 $\subseteq \mathfrak{X} - (\mathfrak{X} - \mathcal{H}) = \mathcal{H}.$ 

|   | - |   |  |
|---|---|---|--|
| L |   |   |  |
| L |   |   |  |
| - |   | - |  |

**Proposition 5.11.** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces, and let  $f : \mathfrak{X} \to \mathfrak{Y}$  be  $\Delta$ -closed. Then for each subset  $\mathbb{B} \subseteq \mathfrak{Y}$  and each  $\Delta$ -open set  $\mathfrak{U}$  in  $\mathfrak{X}$  containing  $f^{-1}(\mathbb{B})$ , there exists a  $\Delta$ -open set  $\mathcal{V}$  in  $\mathfrak{Y}$  such that  $\mathcal{V} \supseteq \mathbb{B}$  and  $f^{-1}(\mathcal{V}) \subseteq \mathfrak{U}$ .

*Proof.* Let  $\mathcal{B} \subseteq \mathfrak{Y}$  and let  $\mathcal{U}$  be a  $\Delta$ -open set in  $\mathfrak{X}$  with  $\mathcal{U} \supseteq f^{-1}(\mathcal{B})$ . Then  $\mathfrak{X} - \mathcal{U}$  is  $\Delta$ -closed in  $\mathfrak{X}$ , and since f is  $\Delta$ -closed, it follows that  $f(\mathfrak{X} - \mathcal{U})$  is  $\Delta$ -closed in  $\mathfrak{Y}$ . Define

$$\mathcal{V} = \mathfrak{Y} - f(\mathfrak{X} - \mathcal{U}).$$

Clearly,  $\mathcal{V}$  is  $\Delta$ -open in  $\mathfrak{Y}$ , and we have

$$\begin{split} \mathfrak{U} &\supseteq f^{-1}(\mathfrak{B}) \Leftrightarrow \mathfrak{X} - \mathfrak{U} \subseteq \mathfrak{X} - f^{-1}(\mathfrak{B}) \\ &\Rightarrow f(\mathfrak{X} - \mathfrak{U}) \subseteq f\big(\mathfrak{X} - f^{-1}(\mathfrak{B})\big) \\ &\Leftrightarrow \mathfrak{V} = \mathfrak{Y} - f(\mathfrak{X} - \mathfrak{U}) \supseteq \mathfrak{Y} - f\big(\mathfrak{X} - f^{-1}(\mathfrak{B})\big) \end{split}$$

Furthermore, we verify that  $f^{-1}(\mathcal{V}) \subseteq \mathcal{U}$ :

$$egin{aligned} f^{-1}(\mathfrak{V}) &= f^{-1}ig(\mathfrak{Y} - f(\mathfrak{X} - \mathfrak{U})ig) \ &= f^{-1}ig(\mathfrak{Y}) - f^{-1}ig(f(\mathfrak{X} - \mathfrak{U})ig) \ &= \mathfrak{X} - f^{-1}ig(f(\mathfrak{X} - \mathfrak{U})ig) \ &\subset \mathfrak{X} - (\mathfrak{X} - \mathfrak{U}) = \mathfrak{U}. \end{aligned}$$

#### 6. CONCLUSION

In this work, we introduced four distinct classes of mappings in topological spaces, each characterized by its interaction with  $\Delta$ -open and  $\Delta$ -closed sets.

The first class,  $\Delta$ -continuous mappings, is defined by the condition that the inverse image of any open set must be  $\Delta$ -open. A comprehensive characterization of these mappings, incorporating closed and  $\Delta$ -closed sets, is provided in Theorem 3.3.

Next, we examined  $\Delta$ -irresolute mappings, which are distinguished by the property that the inverse image of every  $\Delta$ -open set remains  $\Delta$ -open. Theorem 4.4 presents a fundamental characterization of  $\Delta$ -irresolute mappings in terms of  $\Delta$ -closed sets.

The hierarchical relationships among these classes are encapsulated in the implications

continuous mapping  $\Rightarrow \Delta$ -irresolute mapping  $\Rightarrow \Delta$ -continuous mapping.

However, as demonstrated in Example 3.2 and Example 4.2, these implications are not necessarily reversible.

The third and fourth classes- $\Delta$ -open and  $\Delta$ -closed mappings—further enrich this framework. A  $\Delta$ -open mapping ensures that the image of any  $\Delta$ -open set remains  $\Delta$ -open, while a  $\Delta$ -closed mapping guarantees that the image of every  $\Delta$ -closed set is also  $\Delta$ -closed. The distinctions between  $\Delta$ -open,  $\Delta$ -closed, and  $\Delta$ -continuous mappings, as illustrated in Examples 5.3 and 5.4, underscore the intricate relationships among these concepts.

Looking ahead, we intend to extend this study to explore  $\Delta$ -compactness,  $\Delta$ -connectedness, and  $\Delta$ separation axioms in topological spaces, further expanding the theoretical foundation of  $\Delta$ -structured mappings.

**Authors' Contributions.** All authors have read and approved the final version of the manuscript. The authors contributed equally to this work.

**Acknowledgment.** The author would like to thank Palestine Technical University-Kadoorie (PTUK) for their support and help.

**Conflicts of Interest.** The authors declare that there are no conflicts of interest regarding the publication of this paper.

#### References

- M.H. Alqahtani, H.Y. Saleh, A Novel Class of Separation Axioms, Compactness, and Continuity via C-Open Sets, Mathematics 11 (2023), 4729. https://doi.org/10.3390/math11234729.
- [2] D. Andrijević, Semi-Preopen Sets, Mat. Vesnik 38 (1986), 24–32. http://eudml.org/doc/259773.
- [3] L.A. Añora, C. Paran, L.L. Butanas, M. Labendia, θ<sup>ω</sup>-Open Set and its Corresponding Topological Concepts, Mindanawan
  J. Math. 5 (2023), 75–90. https://journals.msuiit.edu.ph/tmjm/article/view/185.
- [4] P. Bhattacharyya, Semi-Generalized Closed Sets in Topology, Indian J. Math. 29 (1987), 375–382. https://cir.nii.ac.jp/crid/1570572700569024256.
- [5] C. Boonpok, N. Srisarakham, Weak Forms of (Λ, b)-Open Sets and Weak (Λ, b)-Continuity, Eur. J. Pure Appl. Math. 16 (2023), 29–43. https://doi.org/10.29020/nybg.ejpam.v16i1.4571.
- [6] C. Boonpok, C. Viriyapong, On Some Forms of Closed Sets and Related Topics, Eur. J. Pure Appl. Math. 16 (2023), 336–362. https://doi.org/10.29020/nybg.ejpam.v16i1.4582.
- [7] S. Crossley, S. Hildebrand, Semi-Topological Properties, Fundam. Math. 74 (1972), 233–254. https://doi.org/10. 4064/fm-74-3-233-254.
- [8] S. Ganesan, On  $\alpha$ - $\Delta$ -Open Sets and Generalized  $\Delta$ -Closed Sets in Topological Spaces, Int. J. Anal. Exp. Model Anal. 12 (2020), 213–239.
- [9] O.Y. Khattabomar, Expansion *gis*-Closed & Its Lower Separation Axioms, Desimal: J. Mat. 6 (2023), 19–28. https://doi.org/10.24042/djm.v6i1.15875.
- [10] Ali H. Kocaman, On Some Strong Irresolute Functions Defined by Betaopen Sets, Ann. Fuzzy Math. Inform. 27 (2024), 149–157. https://doi.org/10.30948/AFMI.2024.27.2.149.
- [11] Ardoon Jongrak, A Characterization of S<sub>β</sub>-Continuous Fixed Point Property, Prog. Appl. Sci. Technol. 13 (2023), 9–16. https://doi.org/10.14456/PAST.2023.12.
- [12] R.M. Latif, G<sup>\*\*</sup>β-Continuous and G<sup>\*\*</sup>β-Irresolute Mappings in Topological Spaces, Eurasia Proc. Sci. Technol. Eng. Math. 25 (2023), 168–186. https://doi.org/10.55549/epstem.1404691.
- [13] N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Mon. 70 (1963), 36–41. https: //doi.org/10.1080/00029890.1963.11990039.
- [14] N. Levine, Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo 19 (1970), 89–96. https://doi.org/10.1007/ BF02843888.
- [15] S.N. Maheshwari, S.S. Thakur, On α-Irresolute Mappings, Tamkang J. Math. 11 (1980), 209–214. https://www. researchgate.net/publication/282357460.
- [16] M.A. Marabeh, Topological-Like Notions via Δ-Open Sets, Results Nonlinear Anal. 6 (2023), 12-23. https:// nonlinear-analysis.com/index.php/pub/article/view/144.
- [17] A.S. Mashhour, On Precontinuous and Weak Precontinuous Mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53. https://cir.nii.ac.jp/crid/1573950400472990592.

- [18] A.S. Mashhour, I.A. Hasanein, S.N. El-Deeb,  $\alpha$ -Continuous and  $\alpha$ -Open Mappings, Acta Math. Hung. 41 (1983), 213–218. https://doi.org/10.1007/BF01961309.
- [19] J.R. Munkres, Topology, Pearson, Harlow, 2013.
- [20] G.B. Navalagi, Semi-precontinuous Functions and Properties of Generalized Semi-preclosed Sets in Topological Spaces, Int. J. Math. Math. Sci. 29 (2002), 85–98. https://doi.org/10.1155/S0161171202010499.
- [21] O. Njåstad, On Some Classes of Nearly Open Sets, Pac. J. Math. 15 (1965), 961–970. https://doi.org/10.2140/pjm. 1965.15.961.
- [22] T. Nour, A.M. Jaber, Semi Δ-Open Sets in Topological Spaces, Int. J. Math. Trends Technol. 66 (2020), 139–143. http: //eudml.org/doc/49389.
- [23] N. Palaniappan, K.C. Rao, Regular Generalized Closed Sets, Kyungpook Math. J. 33 (1993), 211–219. https:// koreascience.kr/article/JAK0199325748114711.page.
- [24] A.M. Rajab, D.Z. Ali, O.A. Hadi, Decomposition of Pre-β-Irresolute Maps and g-Closed Sets in Topological Space, Int. J. Res. Rev. 10 (2023), 889–901. https://doi.org/10.52403/ijrr.202307103.
- [25] A.M. Rajab, H.S. Abu Hamd, E.N. Hameed, Properties and Characterizations of k-Continuous Functions and k-Open Sets in Topological Spaces, Int. J. Sci. Healthc. Res. 8 (2023), 405–425. https://doi.org/10.52403/ijshr.20230355.
- [26] V.V.S. Ramachandram, D. Nagapurnima, Irresolute Maps in Topological Ordered Spaces, J. Contemp. Technol. Appl. Eng. 2 (2023), 1–5. https://doi.org/10.21608/jctae.2023.240365.1017.
- [27] J.A. Sasam, M. Labendia, θ<sub>sw</sub>-Continuity of Maps in the Product Space and Some Versions of Separation Axioms, Mindanawan J. Math. 4 (2022), 1–12. https://journals.msuiit.edu.ph/tmjm/article/view/36.
- [28] J. Saadoun Shuwaie, A. Khalaf Hussain, Topological Spaces F<sub>1</sub> and F<sub>2</sub>, Wasit J. Comput. Math. Sci. 1 (2022), 40–44. https://doi.org/10.31185/wjcm.Vol1.Iss2.36.
- [29] M.V. Kumar, Between Semi-Closed Sets and Semi-Pre-Closed Set, Rend. Istit. Mat. Univ. Trieste 32 (2000), 25–41. http://hdl.handle.net/10077/4255.
- [30] N. Velicko, H-Closed Topological Spaces, in: Mathematical Society Translations: Ser. 2, (1968). https://doi.org/10. 1090/trans2/078/05.