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Abstract. In this study, we investigate the concepts of ∆-continuous, ∆-irresolute, ∆-open, and ∆-closed
mappings. We establish that every continuous mapping is inherently ∆-irresolute and that every ∆-
irresolute mapping is ∆-continuous. However, the converse implications do not necessarily hold. This
distinction sets ∆-continuous mappings apart from traditional continuous mappings, particularly since the
composition of two ∆-continuous mappings may not always preserve ∆-continuity. We propose several
methods for constructing new ∆-continuous (or ∆-irresolute) mappings from existing ones, including
pasting-type lemmas specifically tailored for these mappings. Additionally, we present counterexamples
to illustrate and clarify these concepts.
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1. Introduction

The study of open-like and closed-like sets in topological spaces has garnered significant attention
from researchers over the past fewdecades. Likewise, numerous variations of continuous-likemappings
have been introduced and explored within this framework. A foundational contribution in this area
was made by N. Levine, who introduced the concepts of semi-open sets and semi-continuous mappings in
topological spaces [13]. A set S in a topological space X is defined as semi-open if

S ⊆ Cl(Int(S))

[13], where Cl(A) and Int(A) denote the closure and interior of a set A in X, respectively. A mapping
is semi-continuous if the inverse image of any open set is semi-open [13].
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Building upon this foundation, S. Crossley and S. Hildebrand introduced irresolute mappings, which
are characterized by the property that the inverse image of any semi-open set is also semi-open [7].

In 1965, Olav Njåstad introduced α-sets [21], where a set S in a topological space X is an α-set if

S ⊆ Int(Cl(Int(S)))

[21]. This led to the definition of α-irresolute mappings, in which the inverse image of each α-set is
also an α-set [15], followed by the development of α-continuous mappings [18].

Further generalizations introduced notions such as θ-open and δ-open sets [30], as well as pre-open
sets and pre-continuous mappings [17]. A set S in a topological space X is pre-open if

S ⊆ Int(Cl(S))

[17] and is classified as semi-preopen if

S ⊆ Cl(Int(Cl(S))))

[2]. These advancements prompted the exploration of various types of mappings in topological spaces,
including semi-precontinuous, semi-preopen, semi-preclosed, semi-preirresolute, pre-semi-preopen,
and pre-semi-preclosed mappings, along with their fundamental properties and characterizations [20].
Additionally, M. Veera Kumar contributed to this field by introducing ψ-continuous and ψ-irresolute
mappings, based on a novel class of closed-like sets known as ψ-closed sets [29].

The pursuit of new classes of continuous-like mappings based on open-like and closed-like sets
remains an active area of research. Recent notable contributions include [1], [3], [5], [6], [9], [10], [11],
[12], [24], [25], and [26].

A set in a topological space is termed ∆-open if it is the symmetric difference of two open sets. This
concept, first appearing in [22] and [8], is attributed to a preprint by M. Veera Kumar. Correspondingly,
the complement of a ∆-open set is defined as ∆-closed. These notions, along with related concepts,
have been extensively studied by the author in [16].

This paper is structured as follows:
- Section 2 provides a consolidation of fundamental notions and preliminary results necessary for the
subsequent discussions.
- Section 3 introduces the concept of a ∆-continuous mapping (Definition 3.1) and examines its
properties (Theorem 3.4). Necessary conditions for ∆-continuity are explored in Propositions 3.6, 3.7,
and 3.8. Example 3.10 demonstrates that the composition of two ∆-continuous mappings may fail to
be ∆-continuous, although Proposition 3.11 establishes that composing a continuous mapping with a
∆-continuous mapping results in a ∆-continuous mapping. Additionally, Proposition 3.12 presents
techniques for constructing ∆-continuous mappings, while Theorem 3.15 provides a pasting-type
lemma. The section concludes with Proposition 3.17, which states that a ∆-continuous mapping into a
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product space X×Y ensures the ∆-continuity of its coordinate mappings.
- Section 4 defines ∆-irresolute mappings (Definition 4.1) and establishes that every ∆-irresolute
mapping is necessarily ∆-continuous. However, as demonstrated by Example 4.2, the converse does not
always hold. This section mirrors Section 3 in its analysis of results related to ∆-irresolute mappings.
- Section 5 introduces the notions of ∆-open and ∆-closed mappings, illustrating through various
examples that these concepts are independent of each other and distinct from ∆-continuous mappings.
The section further presents several results concerning ∆-open and ∆-closed mappings.

2. Preliminaries

In this section, we provide basic notions and results related to ∆-open and ∆-closed sets. These
results will be used and applied in the subsequent sections.

Recall that for two sets A and B, their symmetric difference is given as

A∆B := (A−B) ∪ (B−A) = (A ∪B)− (A ∩B).

Definition 2.1. ( [22] and [8]) A set A in a topological space (X, σ) is called ∆-open if there exist open sets O1

and O2 such that

A = O1∆O2.

In a topological space (X, σ), any open set O satisfies O = O∆∅, which directly implies that every
open set is also ∆-open. However, there exist ∆-open sets that are not necessarily open in the standard
topology on R. For instance, the set (0, 1] ∪ [2, 3) can be expressed as (0, 2)∆(1, 3), demonstrating that
it is ∆-open while not being an open set in the usual topology of R.

The complement of a ∆-open set is called ∆-closed. We recall a characterization of ∆-open sets.

Theorem 2.2. ( [16]) A set A in a topological space (X, σ) is ∆-open if and only if there is an open set O and a

closed set C such that A = O ∩ C.

Corollary 2.3. ( [16]) A set B in a topological space (X, σ) is ∆-closed if and only if there is an open set O and

a closed set C such that B = O ∪ C.

From Theorem 2.2, it follows that every open and closed set is ∆-open. Furthermore, the finite
intersection of ∆-open sets remains ∆-open. However, the union of two ∆-open sets is not necessarily
∆-open, nor is the arbitrary intersection of ∆-open sets.
Similarly, Corollary 2.3 implies that every open and closed set is ∆-closed. Additionally, a finite union
of ∆-closed sets is also ∆-closed. However, the intersection of two ∆-closed sets is not necessarily
∆-closed, and an arbitrary union of ∆-closed sets does not always retain the ∆-closed property.
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Example 2.4. ( [16]) Let X = {a, b, c, d, e} with a topology

σ = {φ,X, {a, b, c}, {a, b, c, d}}.

The collection of all ∆-open sets in X is

σ∆o = {φ,X, {a, b, c}, {a, b, c, d}, {d, e}, {d}, {e}}.

Clearly, the sets {a, b, c} and {e} are ∆-open, whereas their union is not.

It is important to observe from the previous example that the collection of all ∆-open sets does not
necessarily form a topology in general.

Example 2.5. ( [16]) Let Q =
⋃∞

n=1{rn} be an enumeration of the rationals. For each n ∈ N, let Sn =

R − {r1, r2, ..., rn}, then considering R under the standard topology, each Sn is an open set, so it is ∆-open.

However,
⋂∞

n=1 Sn = R−Q is not ∆-open.

It should be noted that the open set O and the closed set C in Corollary 2.3 can be chosen to be
disjoint. In fact, if B = O ∪ C, with O is open and C is closed, then B = O ∪ (C− O) where C− O is
closed.

Definition 2.6. ( [16]) Let (X, σ) be a topological space, and x ∈ X. A ∆-open set containing x is called

∆-neighborhood. We write ∆N(x).

Definition 2.7. ( [16]) Let (X, σ) be a topological space, and A ⊆ X.

(1) The union of all ∆-open sets contained in A is said to be the ∆-interior of A and is denoted by ∆Int(A).

(2) The intersection of all ∆-closed sets containing A is said to be the ∆-closure of A and is denoted by ∆Cl(A).

Clearly, ∆Int(A) need not be ∆-open and ∆Cl(A) need not be ∆-closed. It should be also noted that
if A is ∆-open, then ∆Int(A) = A, and if A is ∆-closed, then ∆Cl(A) = A. In either case the converse
is not true.

Example 2.8. ( [16]) LetQ =
⋃∞

n=1{rn} be an enumeration of the rationals. For each n ∈ N, let On = (−n, n)

andCn = {r1, r2, ..., rn}. ThenAn = On∩Cn is∆-open set inR under the standard topology. LetA =
⋃∞

n=1 An

then Int(A) = A, nevertheless A = Q is not ∆-open.

It is crucial to note that in the proof of [22, Theorem 3], the authors assumed that the ∆-interior of a
set is∆-open. However, the preceding example demonstrates that this assumption does not always hold.

Because each open set is ∆-open and each closed set is ∆-closed, the following result follows directly.
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Lemma 2.9. ( [16]) Let (X, σ) be a topological space and A ⊆ X. Then

(1) ∆Int(A) ⊆ ∆Cl(A).

(2) Int(A) ⊆ ∆Int(A) ⊆ A.

(3) A ⊆ ∆Cl(A) ⊆ Cl(A).

Proposition 2.10. ( [16]) Let (X, σ) be a topological space and A ⊆ X. Then x ∈ ∆Int(A), if and only if,

there is a ∆N(x), such that ∆N(x) ⊆ A.

Basic properties of ∆-interior are summarized in the next proposition.

Proposition 2.11. ( [16]) Let (X, σ) be a topological space and A,B ⊆ X. Then

(1) If A ⊆ B, then ∆Int(A) ⊆ ∆Int(B).

(2) ∆Int(A) ∪∆Int(B) ⊆ ∆Int(A ∪B).

(3) ∆Int(A ∩B) = ∆Int(A) ∩∆Int(B).

Proposition 2.12. ( [16]) Let (X, σ) be a topological space and Y ⊆ X. Then, S is ∆-open in Y if and only if

there is a ∆-open set A in X such that S = Y ∩A.

Proposition 2.13. ( [16]) Let (X, σ) be a topological space and Y ⊆ X. Then, S is ∆-closed in Y if and only if

there is a ∆-closed set B in X such that S = Y ∩B.

Proposition 2.14. ( [16]) Let (X, σ) be a topological space and Y ⊆ X. If S is ∆-open in Y and Y is ∆-open

in X, then S is ∆-open in X.

3. ∆-continuous mappings

Given topological spaces X and Y, recall that a mapping f : X → Y is called continuous if for
every open set O in Y, the preimage f−1(O) is open in X. Similarly, a mapping f : X→ Y is termed
semi-continuous if for every open set O in Y, the preimage f−1(O) is semi-open in X [13]. Following
this pattern, we introduce the following concept.

Definition 3.1. Let X and Y be topological spaces. A mapping f : X → Y is said to be ∆-continuous if for

every open set O in Y, the preimage f−1(O) is ∆-open in X.

It is evident that every continuous mapping is ∆-continuous. However, the converse does not
necessarily hold.

Example 3.2. Let X = {a, b, c}. Consider two topologies on X:

σ1 = {∅,X, {a}}, σ2 = {∅,X, {a, b}}.

Define a mapping f : (X, σ1)→ (X, σ2) by

f(a) = c, f(b) = b, f(c) = a.
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The collection of all ∆-open sets in (X, σ1) is given by

σ1∆o = {∅,X, {a}, {b, c}}.

It is clear that f is ∆-continuous. However, the preimage of the set {a, b} under f is

f−1({a, b}) = {b, c},

which is not open in (X, σ1). Therefore, f is not continuous.

We provide the following characterization for ∆-continuous mappings.

Theorem 3.3. Let X and Y be topological spaces, and let f : X→ Y. Then f is ∆-continuous if and only if for

every closed set C in Y, the preimage f−1(C) is ∆-closed in X.

Proof. (=⇒) Assume that f : X→ Y is ∆-continuous. Let C be a closed set in Y. Since Y \ C is open in
Y, applying the definition of ∆-continuity gives

f−1(Y \ C) = X \ f−1(C),

which must be ∆-open in X. Consequently, f−1(C) is ∆-closed in X.
(⇐=) Conversely, suppose that for every closed set C inY, the preimage f−1(C) is ∆-closed in X. Let

O be an open set in Y. Then Y \ O is closed in Y, and by assumption, its preimage

f−1(Y \ O) = X \ f−1(O)

must be ∆-closed in X. This implies that f−1(O) is ∆-open in X, proving that f is ∆-continuous. �

Theorem 3.4. Let X and Y be topological spaces, and let f : X→ Y. The ∆-continuity of f implies each of the

following statements:

(1) For each x ∈ X and for every neighborhoodN(f(x)) of f(x) inY, there exists a ∆-neighborhood ∆N(x)

of x in X such that f
(
∆N(x)

)
⊆ N(f(x)).

(2) For every subset A ⊆ X, we have

f
(
∆Cl(A)

)
⊆ Cl

(
f(A)

)
.

(3) For every subset B ⊆ Y, we have

f−1
(
Int(B)

)
⊆ ∆Int

(
f−1(B)

)
.

Proof. (1) Let x ∈ X and let N(f(x)) be a neighborhood of f(x) in Y. Since f is ∆-continuous,
the preimage f−1

(
N(f(x))

) is ∆-open in X, and since x ∈ f−1
(
N(f(x))

), we take ∆N(x) =

f−1
(
N(f(x))

). Thus,
f
(
∆N(x)

)
= f

(
f−1

(
N(f(x))

))
⊆ N(f(x)).
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(2) LetA ⊆ X. SinceCl(f(A)
) is closed inY, Theorem 3.3 ensures that f−1

(
Cl
(
f(A)

)) is ∆-closed
in X. Moreover, since A ⊆ f−1

(
Cl
(
f(A)

)), we conclude that

∆Cl(A) ⊆ f−1
(
Cl
(
f(A)

))
.

Therefore, applying f yields

f
(
∆Cl(A)

)
⊆ Cl

(
f(A)

)
.

(3) Let B ⊆ Y. Since Int(B) is open in Y, its preimage f−1
(
Int(B)

) is ∆-open in X by the ∆-
continuity of f . Moreover, since f−1

(
Int(B)

)
⊆ f−1(B), it follows that

f−1
(
Int(B)

)
⊆ ∆Int

(
f−1(B)

)
.

�

None of the statements in Theorem 3.4 assures ∆-continuity.

Example 3.5. Let X = {a, b, c} with the topologies

σ1 = {∅,X, {a}, {a, b}}, σ2 = {∅,X, {a}}.

Define a mapping f : (X, σ1)→ (X, σ2) by

f(a) = a, f(b) = b, f(c) = a.

The collection of all ∆-open sets in (X, σ1) is given by

σ1∆o = {∅,X, {a}, {a, b}, {b, c}, {c}, {b}}.

The set {a} is open in (X, σ2), but its preimage under f is

f−1({a}) = {a, c},

which is not ∆-open in (X, σ1). Thus, f is not ∆-continuous.

However, it is easy to verify that statement (1) in Theorem 3.4 is satisfied. Furthermore, in (X, σ1), we observe

that

∆Cl(A) = ∆Int(A) = A

for any subset A ⊆ X. Hence, statements (2) and (3) in Theorem 3.4 are also trivially satisfied.

An extra condition is needed for each statement in Theorem 3.4 to guarantee the ∆-continuity.

Proposition 3.6. Let X and Y be topological spaces, and let f : X → Y. Suppose that for each x ∈ X

and every neighborhood N(f(x)) of f(x) in Y, there exists a ∆-neighborhood ∆N(x) of x in X such that

f
(
∆N(x)

)
⊆ N(f(x)). Further, assume that for any subset A ⊆ X, the ∆-interior ∆Int(A) is ∆-open in X.

Then f is ∆-continuous.
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Proof. Let O be an open set in Y, and let x ∈ f−1(O). Since O is a neighborhood of f(x), there exists
a ∆-neighborhood ∆N(x) of x in X such that f(∆N(x)

)
⊆ O. This implies that ∆N(x) ⊆ f−1(O).

Consequently, we obtain

f−1(O) =
⋃

x∈f−1(O)

∆N(x) = ∆Int
(
f−1(O)

)
.

Since ∆Int
(
f−1(O)

) is assumed to be ∆-open in X, it follows that f−1(O) is ∆-open in X. Hence, f is
∆-continuous. �

Proposition 3.7. Let X and Y be topological spaces, and let f : X→ Y. Suppose that for every subset A ⊆ X,

we have

f
(
∆Cl(A)

)
⊆ Cl

(
f(A)

)
.

Further, assume that for any subset A ⊆ X, the ∆-closure ∆Cl(A) is ∆-closed in X. Then f is ∆-continuous.

Proof. Let C be a closed set in Y and set A = f−1(C). Then, A ⊆ X and by assumption, we have

f
(
∆Cl(A)

)
⊆ Cl

(
f(A)

)
.

That is,
f
(

∆Cl
(
f−1(C)

))
⊆ Cl

(
f
(
f−1(C)

))
⊆ Cl(C) = C.

Thus, applying the preimage under f , we obtain

∆Cl
(
f−1(C)

)
⊆ f−1

(
f
(

∆Cl
(
f−1(C)

)))
⊆ f−1(C).

This implies that
f−1(C) = ∆Cl

(
f−1(C)

)
,

which is ∆-closed in X. By Theorem 3.3, it follows that f is ∆-continuous. �

Proposition 3.8. Let X and Y be topological spaces, and let f : X→ Y. Suppose that for every subset B ⊆ Y,

we have

f−1
(
Int(B)

)
⊆ ∆Int

(
f−1(B)

)
.

Further, assume that for any subset A ⊆ X, the ∆-interior ∆Int(A) is ∆-open in X. Then f is ∆-continuous.

Proof. Let O be an open subset of Y. Since the interior of an open set is itself, we have Int(O) = O, and
thus

f−1(O) = f−1
(
Int(O)

)
.

By assumption, it follows that
f−1

(
Int(O)

)
⊆ ∆Int

(
f−1(O)

)
.

Consequently, we obtain
f−1(O) = ∆Int

(
f−1(O)

)
.
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Since ∆Int
(
f−1(O)

) is assumed to be ∆-open in X, it follows that f−1(O) is ∆-open in X. Therefore, f
is ∆-continuous. �

Next we consider some methods of constructing ∆-continuous mappings, but first we recall the
following result on continuous mappings in topological spaces.

Proposition 3.9. ( [19]) Let X and Y be topological spaces. Then

(1) If f : X −→ Y is given by f(x) = y0 where y0 ∈ Y is a fixed element, then f is continuous.

(2) If A is a subspace of X, the inclusion mapping iA : A −→ X is continuous.

(3) Let π1 : X×Y→ X and π2 : X×Y→ Y be projections onto the first and second factors, respectively. Then

π1 and π2 are continuous.

The composition of two ∆-continuous mappings need not be ∆-continuous as illustrated in the
following example.

Example 3.10. Let X = {a, b, c, d} with the topology

σ = {∅,X, {a}, {a, b}, {a, b, c}}.

The collection of all ∆-open sets in X is

σ∆o = {∅,X, {a}, {a, b}, {a, b, c}, {b, c, d}, {c, d}, {d}, {b}, {c}, {b, c}}.

Define a mapping f : X→ X by

f(a) = d, f(b) = b, f(c) = a, f(d) = c.

It is easy to check that f is ∆-continuous. Nevertheless, the composition f ◦ f is not ∆-continuous. Indeed, we

compute:

(f ◦ f)−1({a, b, c}) = f−1
(
f−1({a, b, c})

)
= f−1({b, c, d}) = {a, b, d},

which is not ∆-open in X. Thus, f ◦ f fails to be ∆-continuous.

Next, we demonstrate that the composition of a ∆-continuous mapping and a continuous mapping
results in a ∆-continuous mapping.

Proposition 3.11. Let X,Y,Z, andW be topological spaces. Consider the mappings f : X→ Y, g : Y→ Z,

and h : Z→W.

(1) If f is continuous and g is ∆-continuous, then g ◦ f is ∆-continuous.

(2) If g is ∆-continuous and h is continuous, then h ◦ g is ∆-continuous.
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Proof. (1) Assume that f is continuous and g is ∆-continuous. Let G be an open set in Z. Since g is
∆-continuous, it follows that g−1(G) is ∆-open in Y. By Theorem 2.2, we can express g−1(G) as
the intersection of an open set O and a closed set C in Y, i.e.,

g−1(G) = O ∩ C.

Since f is continuous, its preimage preserves openness and closedness, meaning that f−1(O) is
open in X and f−1(C) is closed in X. Consequently, we obtain

(g ◦ f)−1(G) = f−1
(
g−1(G)

)
= f−1(O ∩ C) = f−1(O) ∩ f−1(C).

By Theorem 2.2, this intersection is ∆-open in X, proving that g ◦ f is ∆-continuous.
(2) Suppose that g is ∆-continuous and h is continuous. Let G be an open set in W. Since h is

continuous, we know that h−1(G) is open in Z. The ∆-continuity of g then ensures that

g−1
(
h−1(G)

)
is ∆-open in Y. Hence, we obtain

(h ◦ g)−1(G) = g−1
(
h−1(G)

)
,

which is ∆-open in Y. Therefore, h ◦ g is ∆-continuous.
�

Proposition 3.12. Let X and Y be topological spaces.

(1) If f : X → Y is ∆-continuous and A is a subspace of X, then the restriction of f to A, denoted by

f |A : A→ Y, is ∆-continuous.

(2) Let f : X → Y be ∆-continuous. If B is a subspace of Y such that f(X) ⊆ B, then the mapping

f : X→ B is ∆-continuous.

(3) Let f : X → Y be ∆-continuous. If Z is a topological space containing Y as a subspace, then the

mapping h : X→ Z obtained by extending the codomain of f is ∆-continuous.

Proof. (1) The mapping f |A can be expressed as the composition f |A = f ◦ iA, where iA is the
inclusion mapping iA : A→ X. By Proposition 3.9(2) and Proposition 3.11(1), it follows that
f |A is ∆-continuous.

(2) Suppose that f : X→ Y is ∆-continuous and that B is a subspace ofY such that f(X) ⊆ B. Let
G be an open set in B. Then, by the definition of the subspace topology, there exists an open set
O in Y such that G = B ∩ O. The preimage under f satisfies:

f−1(G) = f−1(B ∩ O) = f−1(B) ∩ f−1(O).
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Since f(X) ⊆ B, we have f−1(B) = X, so that

f−1(G) = X ∩ f−1(O) = f−1(O).

Since f is ∆-continuous, f−1(O) is ∆-open in X, and hence f : X→ B is ∆-continuous.
(3) Assume that f : X → Y is ∆-continuous and that Z is a topological space containing Y as a

subspace. Define the mapping h : X→ Z by extending the codomain of f . This mapping can
be expressed as the composition

h = iY ◦ f,

where iY : Y→ Z is the inclusion mapping. By Proposition 3.9(2) and Proposition 3.11(2), it
follows that h is ∆-continuous.

�

We recall the usual pasting lemma for continuous mappings in topological spaces

Theorem 3.13. ( [19]) Let X and Y be topological spaces. Let X = A ∪B, where A and B are closed in X. Let

f : A→ Y and g : B→ Y be continuous. Assume f(x) = g(x) for each x ∈ A ∩B and let h : X→ Y be a

mapping defined by h(x) = f(x) for x ∈ A, and h(x) = g(x) for x ∈ B. Then, h is continuous.

Proof. Let C be a closed subset of Y. Then h−1(C) = f−1(C) ∪ g−1(C). Since f is continuous, f−1(C)

is closed in A, and so it is closed in X. Similarly, g−1(C) is closed in B, and so in X. Hence, h−1(C) =

f−1(C) ∪ g−1(C) is closed in X. Therefore, h is continuous. �

The proof of Theorem 3.13 relies on the following classical result: LetY be a subspace of X. If C is closed

in Y and Y is closed in X, then C is closed in X. However, this conclusion does not necessarily hold in the
context of ∆-closedness.

Example 3.14. Let X = {a, b, c, d, e} be a topological space with topology

σ = {∅,X, {a, b, c}, {a, b, c, d}}.

The collection of all ∆-open sets in X is

σ∆o = {∅,X, {a, b, c}, {a, b, c, d}, {d, e}, {d}, {e}}.

The collection of all ∆-closed sets in X is

σ∆c = {∅,X, {a, b, c}, {a, b, c, d}, {a, b, c, e}, {d, e}, {e}}.

Consider the subspace Y = {a, b, c, d} and the set C = {d}. Clearly, Y is ∆-closed in X. Additionally, since

C = Y ∩ {d, e},

Proposition 2.13 ensures that C is ∆-closed in Y. However, C is not ∆-closed in X, demonstrating that ∆-

closedness is not necessarily transitive in this setting.
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Motivated by Theorem 3.13 and Example 3.14 we propose the following pasting-type lemma for
∆-continuous mappings.

Theorem 3.15. Let X and Y be topological spaces. Suppose that X = A ∪B, where A and B are ∆-open in X.

Let f : A→ Y and g : B→ Y be ∆-continuous mappings such that f(x) = g(x) for all x ∈ A ∩B. Define a

mapping h : X→ Y by

h(x) =

f(x), if x ∈ A,

g(x), if x ∈ B.

Assume further that the union of any two ∆-open sets in X is again ∆-open. Then, h is ∆-continuous.

Proof. Let O be an open subset of Y. Then, by the definition of h, we have

h−1(O) = f−1(O) ∪ g−1(O).

Since f is ∆-continuous, f−1(O) is ∆-open inA. By Proposition 2.14, this implies that f−1(O) is ∆-open
in X. Similarly, since g is ∆-continuous, g−1(O) is ∆-open in B, and thus it is also ∆-open in X.

By assumption, the union of any two ∆-open sets in X is ∆-open. Therefore,

h−1(O) = f−1(O) ∪ g−1(O)

is ∆-open in X. Consequently, h is ∆-continuous. �

The condition in Theorem 3.15 that the union of any two ∆-open sets is again ∆-open cannot be
omitted.

Example 3.16. Let X = {a, b, c, d, e} be a topological space with topology

σ = {∅,X, {a, b, c}, {a, b, c, d}}.

The collection of all ∆-open sets in X is

σ∆o = {∅,X, {a, b, c}, {a, b, c, d}, {d, e}, {d}, {e}}.

Clearly, the sets {a, b, c} and {e} are ∆-open, but their union {a, b, c, e} is not ∆-open.

Consider the subspaces A = {a, b, c} and B = {d, e}. Let σA and σB be the induced topologies on A and B,

respectively.

Define a mapping f : (A, σA)→ (X, σ) by

f(a) = a, f(b) = b, f(c) = c.

Clearly, f is continuous, so it is also ∆-continuous.

Next, define a mapping g : (B, σB)→ (X, σ) by

g(d) = e, g(e) = d.
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Then, g is ∆-continuous.

Now, consider the mapping h : (X, σ)→ (X, σ) as defined in Theorem 3.15. For the open set O = {a, b, c, d},

we compute

h−1(O) = f−1(O) ∪ g−1(O).

Since f−1(O) = {a, b, c} and g−1(O) = {e}, we obtain

h−1(O) = {a, b, c} ∪ {e} = {a, b, c, e}.

However, {a, b, c, e} is not ∆-open in X. Thus, h is not ∆-continuous, demonstrating that the assumption on the

union of ∆-open sets in Theorem 3.15 is necessary.

Proposition 3.17. Let X,Y, and Z be topological spaces. Suppose f1 : X→ Y and f2 : X→ Z are mappings,

and define f : X→ Y× Z by

f(x) = (f1(x), f2(x)).

If f is ∆-continuous on X, then both f1 and f2 are ∆-continuous on X.

Proof. Let π1 : Y× Z→ Y and π2 : Y× Z→ Z be the natural projection mappings onto the first and
second coordinates, respectively. Then, we can express f1 and f2 as compositions:

f1(x) = π1(f(x)) = (π1 ◦ f)(x), f2(x) = π2(f(x)) = (π2 ◦ f)(x).

By Proposition 3.9(3), the projection maps π1 and π2 are continuous. Since f is ∆-continuous, applying
Proposition 3.11(2) ensures that the compositions π1 ◦ f and π2 ◦ f are ∆-continuous. Hence, both f1

and f2 are ∆-continuous. �

It iswell known that open and closed sets are preserved under homoeomorphisms. Similar conclusion
holds for ∆-open and ∆-closed sets.

Proposition 3.18. Let f : X→ Y be a homeomorphism. Then:

(1) The image of a ∆-open set under f is ∆-open in Y.

(2) The inverse image of a ∆-open set under f is ∆-open in X.

(3) The image of a ∆-closed set under f is ∆-closed in Y.

(4) The inverse image of a ∆-closed set under f is ∆-closed in X.

Proof. (1) Let A be a ∆-open set in X. By Theorem 2.2, there exist an open set O and a closed set C
in X such that

A = O ∩ C.

Since f is a bijection, we obtain

f(A) = f(O ∩ C) = f(O) ∩ f(C).
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As f is a homeomorphism, the image of O under f is open inY, and the image of C is closed in
Y. By Theorem 2.2, it follows that f(A) is ∆-open in Y.

(2) Let B be a ∆-open set inY. By Theorem 2.2, there exist an open set G and a closed set F in Y

such that
B = G ∩ F.

Taking the preimage under f , we obtain

f−1(B) = f−1(G ∩ F) = f−1(G) ∩ f−1(F).

Since f is a homeomorphism, f−1(G) is open in X and f−1(F) is closed in X. By Theorem 2.2, it
follows that f−1(B) is ∆-open in X.

(3) The proof for the image of a ∆-closed set follows similarly by applying Corollary 2.3.
(4) The proof for the inverse image of a ∆-closed set follows analogously using Corollary 2.3.

�

4. ∆-irresolute mappings

Given topological spaces X andY, a mapping f : X→ Y is called irresolute if for every semi-open set
O in Y, the preimage f−1(O) is semi-open in X [7]. Following this concept, we introduce the following
notion in terms of ∆-open sets.

Definition 4.1. Let X and Y be topological spaces. A mapping f : X→ Y is said to be ∆-irresolute if for every

∆-open set S in Y, the preimage f−1(S) is ∆-open in X.

Combining Definition 4.1 and Proposition 3.18, we get that each homeomorphism is ∆-irresolute.
Evidently each ∆-irresolute mapping is ∆-continuous. The converse need not be true.

Example 4.2. Let X = {a, b, c} be a finite set equipped with the topologies

σ1 = {∅,X, {a}, {a, b}} and σ2 = {∅,X, {b}, {b, c}}.

Define a mapping f : (X, σ1)→ (X, σ2) by

f(a) = c, f(b) = b, f(c) = a.

The collection of all ∆-open sets in (X, σ1) is given by

σ1∆o = {∅,X, {a}, {a, b}, {b, c}, {c}, {b}}.

Similarly, the collection of all ∆-open sets in (X, σ2) is

σ2∆o = {∅,X, {b}, {b, c}, {a, c}, {a}, {c}}.
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It is evident that f is ∆-continuous. However, the set {a, c} is ∆-open in (X, σ2), but its preimage under f is

f−1({a, c}) = {a, c},

which is not ∆-open in (X, σ1). Thus, f is not ∆-irresolute.

We show that each continuous mapping is ∆-irresolute.

Proposition 4.3. Let X and Y be topological spaces. If f : X→ Y is continuous, then it is ∆-irresolute.

Proof. Let S be a ∆-open set in Y. By Theorem 2.2, there exist an open set O and a closed set C in Y

such that

S = O ∩ C.

Taking the preimage under f , we obtain

f−1(S) = f−1(O ∩ C) = f−1(O) ∩ f−1(C).

Since f is continuous, it follows that f−1(O) is open in X and f−1(C) is closed in X. By Theorem 2.2,
their intersection is ∆-open in X. Therefore, f−1(S) is ∆-open in X, proving that f is ∆-irresolute. �

Example 3.2 provides an instance of a ∆-irresolute mapping that is not continuous. We have
previously established that ∆-continuity can be characterized in terms of closed and ∆-closed sets; see
Theorem 3.3. In a similar fashion, we present the following result for ∆-irresolute mappings.

Theorem 4.4. Let X and Y be topological spaces, and let f : X→ Y. Then f is ∆-irresolute if and only if for

every ∆-closed set C in Y, the preimage f−1(C) is ∆-closed in X.

Proof. (=⇒) Assume that f : X→ Y is ∆-irresolute. Let C be a ∆-closed set in Y. By definition,Y \ C
is ∆-open in Y. Since f is ∆-irresolute, it follows that

f−1(Y \ C) = X \ f−1(C)

is ∆-open in X. Consequently, f−1(C) is ∆-closed in X.
(⇐=) Conversely, suppose that for every ∆-closed set C in Y, the preimage f−1(C) is ∆-closed in X.

Let O be a ∆-open set in Y. Then, Y \ O is ∆-closed in Y, and by assumption, its preimage satisfies

f−1(Y \ O) = X \ f−1(O),

which is ∆-closed in X. This implies that f−1(O) is ∆-open in X, proving that f is ∆-irresolute. �

By similar arguments as Theorem 3.4, Proposition 3.6, Proposition 3.7, and Proposition 3.8, one can
prove the next results on ∆-irresolute mappings.
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Proposition 4.5. Let X and Y be topological spaces, and let f : X → Y. If f is ∆-irresolute, then for each

x ∈ X and for every ∆-neighborhood ∆N(f(x)) of f(x) in Y, there exists a ∆-neighborhood ∆N(x) of x in X

such that

f
(
∆N(x)

)
⊆ ∆N(f(x)).

Proposition 4.6. Let X and Y be topological spaces, and let f : X → Y. If f is ∆-irresolute and for every

subset B ⊆ Y, the ∆-closure ∆Cl(B) is ∆-closed in Y, then for every subset A ⊆ X, we have

f
(
∆Cl(A)

)
⊆ ∆Cl

(
f(A)

)
.

Proposition 4.7. Let X and Y be topological spaces, and let f : X → Y. If f is ∆-irresolute and for every

subset B ⊆ Y, the ∆-interior ∆Int(B) is ∆-open in Y, then for every subset B ⊆ Y, we have

f−1
(
∆Int(B)

)
⊆ ∆Int

(
f−1(B)

)
.

Proposition 4.8. Let X and Y be topological spaces, and let f : X → Y. Suppose that for every x ∈ X and

every ∆-neighborhood ∆N(f(x)) of f(x) in Y, there exists a ∆-neighborhood ∆N(x) of x in X such that

f
(
∆N(x)

)
⊆ ∆N(f(x)).

Further, assume that for any subset A ⊆ X, the ∆-interior ∆Int(A) is ∆-open in X. Then f is ∆-irresolute.

Proposition 4.9. Let X and Y be topological spaces, and let f : X→ Y. Suppose that for every subset A ⊆ X,

we have

f
(
∆Cl(A)

)
⊆ ∆Cl

(
f(A)

)
.

Further, assume that for any subset A ⊆ X, the ∆-closure ∆Cl(A) is ∆-closed in X. Then f is ∆-irresolute.

Proposition 4.10. Let X andY be topological spaces, and let f : X→ Y. Suppose that for every subset B ⊆ Y,

we have

f−1
(
∆Int(B)

)
⊆ ∆Int

(
f−1(B)

)
.

Further, assume that for any subset A ⊆ X, the ∆-interior ∆Int(A) is ∆-open in X. Then f is ∆-irresolute.

The proof of the following theorem is straightforward and is therefore omitted.

Theorem 4.11. Let X,Y, and Z be topological spaces.

(1) If f : X→ Y is a homeomorphism, then f is ∆-irresolute.

(2) If f : X → Y is ∆-irresolute and g : Y → Z is ∆-irresolute, then the composition g ◦ f : X → Z is

∆-irresolute.

(3) If f : X→ Y is ∆-irresolute and A is a subspace of X, then the restriction f |A : A→ Y is ∆-irresolute.

(4) Let f : X → Y be ∆-irresolute. If B is a subspace of Y such that f(X) ⊆ B, then the mapping

f : X→ B is ∆-irresolute.
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(5) Let f : X→ Y be ∆-irresolute. If Z is a topological space containingY as a subspace, then the mapping

h : X→ Z obtained by extending the codomain of f is ∆-irresolute.

(6) Let f1 : X→ Y and f2 : X→ Z be mappings. Define f : X→ Y× Z by

f(x) = (f1(x), f2(x)).

If f is ∆-irresolute, then both f1 and f2 are ∆-irresolute.

In connection with Theorem 3.15 the coming result is easily proved.

Theorem 4.12. Let X and Y be topological spaces. Suppose that X = A ∪B, where A and B are ∆-open in X.

Let f : A→ Y and g : B→ Y be ∆-irresolute mappings such that f(x) = g(x) for all x ∈ A ∩ B. Define a

mapping h : X→ Y by

h(x) =

f(x), if x ∈ A,

g(x), if x ∈ B.

Assume further that the union of any two ∆-open sets in X is again ∆-open. Then, h is ∆-irresolute.

5. ∆-open and ∆-closed mappings

Recall that a mapping is called open (closed) if the image of each open (closed) set is again an open
(a closed) set. Similar notions can be defined in terms of ∆-open and ∆-closed sets.

Definition 5.1. Let X and Y be topological spaces. A mapping f : X → Y is said to be ∆-open if for every

∆-open set S in X, the image f(S) is ∆-open in Y.

Definition 5.2. Let X and Y be topological spaces. A mapping f : X→ Y is said to be ∆-closed if for every

∆-closed set S in X, the image f(S) is ∆-closed in Y.

In connection with Proposition 3.18, it is evident that a homeomorphism is both a ∆-open and a
∆-closed mapping. However, for the mapping f in Example 3.10, the set S = {c, d} is both ∆-open and
∆-closed, but its image under f , given by f(S) = {a, c}, is neither ∆-open nor ∆-closed. This provides
an example of a mapping that is ∆-continuous but neither ∆-open nor ∆-closed.

Example 5.3. Let X = {a, b, c} be a topological space with topology

σ1 = {∅,X, {a, b}}.

Let Y = {a, b, c, d} be a topological space with topology

σ2 = {∅,Y, {b, d}, {c, d}, {d}, {b, c, d}}.

Define a mapping f : (X, σ1)→ (Y, σ2) by

f(a) = b, f(b) = a, f(c) = d.
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The collection of all ∆-open sets in (X, σ1) coincides with the collection of all ∆-closed sets in (X, σ1), which is

σ1∆o = {∅,X, {a, b}, {c}}.

It is straightforward to verify that f is both a ∆-open and a ∆-closed mapping. However, the set {b, d} is open

in (Y, σ2), but its preimage under f ,

f−1({b, d}) = {a, c},

is not ∆-open in (X, σ1). Thus, f is not ∆-continuous. Consequently, f is neither ∆-irresolute nor continuous.

Next we give an example of a ∆-open mapping that is not ∆-closed and vice versa.

Example 5.4. Let X = {a, b, c, d} be a topological space with topology

σ = {∅,X, {a, c, d}, {c, d}}.

The collection of all ∆-open sets in (X, σ) is given by

σ∆o = {∅,X, {a, c, d}, {c, d}, {b}, {a, b}, {a}}.

On one hand, define a mapping f : X→ X by

f(a) = f(b) = f(c) = f(d) = a.

It is easy to verify that f is ∆-open but not ∆-closed.

On the other hand, define a mapping g : X→ X by

g(a) = g(b) = b, g(c) = c, g(d) = d.

Then, g is ∆-closed. However, the set {a, c, d} is ∆-open, yet its image under g,

g({a, c, d}) = {b, c, d},

is not ∆-open. Thus, g is not ∆-open.

It is evident that the composition of two ∆-open (respectively, ∆-closed) mappings is again a ∆-open
(respectively, ∆-closed) mapping.

Theorem 5.5. Let f : X → Y and g : Y → Z be mappings. Assume that the composition g ◦ f : X → Z is

∆-open (respectively, ∆-closed).

(1) If g is a ∆-irresolute injection, then f is ∆-open (respectively, ∆-closed).

(2) If f is a ∆-irresolute surjection, then g is ∆-open (respectively, ∆-closed).

Proof. We consider only the case where g ◦ f is ∆-open, as the case for ∆-closed mappings follows
analogously.
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(1) Let S be a ∆-open set in X. Since g ◦ f is ∆-open, we have

(g ◦ f)(S) = g
(
f(S)

)
as a ∆-open set in Z. Since g is ∆-irresolute, its preimage satisfies

g−1
(
g
(
f(S)

))
being ∆-open in Y. Since g is injective, we obtain

g−1
(
g
(
f(S)

))
= f(S).

Thus, f(S) is ∆-open in Y, proving that f is ∆-open.
(2) Let S be a ∆-open set in Y. Since f is ∆-irresolute, we conclude that

f−1(S)

is ∆-open in X. Because g ◦ f is ∆-open, its image satisfies

(g ◦ f)
(
f−1(S)

)
being ∆-open in Z. Since f is surjective, it follows that

(g ◦ f)
(
f−1(S)

)
= g
(
f
(
f−1(S)

))
= g(S).

Hence, g(S) is ∆-open in Z, proving that g is ∆-open.
�

Proposition 5.6. Let X and Y be topological spaces. If f : X→ Y is ∆-open, then for any subset A ⊆ X, we

have

f
(
∆Int(A)

)
⊆ ∆Int

(
f(A)

)
.

Proof. Assume that f is ∆-open. For any subset A ⊆ X, let y ∈ f(∆Int(A)
). Then there exists some

x ∈ ∆Int(A) such that y = f(x). By Proposition 2.10, there exists a ∆-neighborhood ∆N(x) of x
satisfying

x ∈ ∆N(x) ⊆ A.

Applying f to both sides, we obtain

f(x) ∈ f
(
∆N(x)

)
⊆ f(A).

Since f is ∆-open, it follows that f(∆N(x)
) is ∆-open in Y. Consequently,

f
(
∆N(x)

)
⊆ ∆Int

(
f(A)

)
.

Therefore, we conclude that
y = f(x) ∈ ∆Int

(
f(A)

)
,
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which proves the desired result. �

The following result provides a partial converse to Proposition 5.6.

Proposition 5.7. Let X andY be topological spaces, and let f : X→ Y. Suppose that for each subset A ⊆ X,

we have

f
(
∆Int(A)

)
⊆ ∆Int

(
f(A)

)
,

and that for each subset B ⊆ Y, the ∆-interior ∆Int(B) is ∆-open in Y. Then f is ∆-open.

Proof. Let A be a ∆-open set in X. Then by definition, ∆Int(A) = A, so we obtain

f(A) = f
(
∆Int(A)

)
⊆ ∆Int

(
f(A)

)
.

However, since ∆Int
(
f(A)

)
⊆ f(A), it follows that

f(A) = ∆Int
(
f(A)

)
.

By assumption, ∆Int
(
f(A)

)
= f(A) is ∆-open in Y. Thus, f is ∆-open. �

Proposition 5.8. Let X andY be topological spaces. If f : X→ Y is ∆-closed, then for any subset A ⊆ X, we

have

∆Cl
(
f(A)

)
⊆ f

(
∆Cl(A)

)
.

Proof. Assume that f is ∆-closed and let A ⊆ X. Then, for any ∆-closed set C in Xwith C ⊇ A, we have
that f(C) is ∆-closed in Y and clearly satisfies f(C) ⊇ f(A). Therefore, we obtain

∆Cl
(
f(A)

)
=

⋂
K⊇f(A)

K ∆-closed

K ⊆
⋂
C⊇A

C ∆-closed

f(C) ⊆ f

( ⋂
C⊇A

C ∆-closed

C

)
= f

(
∆Cl(A)

)
.

�

The following result provides a partial converse to Proposition 5.8.

Proposition 5.9. Let X and Y be topological spaces, and let f : X→ Y. Suppose that for every subset A ⊆ X,

we have

∆Cl
(
f(A)

)
⊆ f

(
∆Cl(A)

)
,

and that for every subset B ⊆ Y, the ∆-closure ∆Cl(B) is ∆-closed in Y. Then f is ∆-closed.

Proof. Let A be a ∆-closed set in X. Then by definition, ∆Cl(A) = A, so we obtain

∆Cl
(
f(A)

)
⊆ f

(
∆Cl(A)

)
= f(A).

However, since f(A) ⊆ ∆Cl
(
f(A)

), it follows that

f(A) = ∆Cl
(
f(A)

)
.

By assumption, ∆Cl
(
f(A)

)
= f(A) is ∆-closed in Y. Thus, f is ∆-closed. �
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Proposition 5.10. Let X and Y be topological spaces, and let f : X → Y be ∆-open. Then for each subset

B ⊆ Y and each ∆-closed setH in X containing f−1(B), there exists a ∆-closed set K in Y such that K ⊇ B

and f−1(K) ⊆ H.

Proof. Let B ⊆ Y and let H be a ∆-closed set in X such that H ⊇ f−1(B). Then X−H is ∆-open in X,
and since f is ∆-open, it follows that f(X−H) is ∆-open in Y. Define

K = Y− f(X−H).

Clearly, K is ∆-closed in Y, and we have

H ⊇ f−1(B)⇔ X−H ⊆ X− f−1(B)

⇒ f(X−H) ⊆ f
(
X− f−1(B)

)
⇔ K = Y− f(X−H) ⊇ Y− f

(
X− f−1(B)

)
⇒ K ⊇ Y− f

(
X− f−1(B)

)
⊇ B

⇒ K ⊇ B.

Furthermore, we verify that f−1(K) ⊆ H:

f−1(K) = f−1
(
Y− f(X−H)

)
= f−1(Y)− f−1

(
f(X−H)

)
= X− f−1

(
f(X−H)

)
⊆ X− (X−H) = H.

�

Proposition 5.11. Let X and Y be topological spaces, and let f : X → Y be ∆-closed. Then for each subset

B ⊆ Y and each ∆-open set U in X containing f−1(B), there exists a ∆-open set V in Y such that V ⊇ B and

f−1(V) ⊆ U.

Proof. Let B ⊆ Y and let U be a ∆-open set in X with U ⊇ f−1(B). Then X− U is ∆-closed in X, and
since f is ∆-closed, it follows that f(X− U) is ∆-closed in Y. Define

V = Y− f(X− U).

Clearly, V is ∆-open in Y, and we have

U ⊇ f−1(B)⇔ X− U ⊆ X− f−1(B)

⇒ f(X− U) ⊆ f
(
X− f−1(B)

)
⇔ V = Y− f(X− U) ⊇ Y− f

(
X− f−1(B)

)
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⇒ V ⊇ Y− f
(
X− f−1(B)

)
⊇ B

⇒ V ⊇ B.

Furthermore, we verify that f−1(V) ⊆ U:

f−1(V) = f−1
(
Y− f(X− U)

)
= f−1(Y)− f−1

(
f(X− U)

)
= X− f−1

(
f(X− U)

)
⊆ X− (X− U) = U.

�

6. Conclusion

In this work, we introduced four distinct classes ofmappings in topological spaces, each characterized
by its interaction with ∆-open and ∆-closed sets.

The first class, ∆-continuous mappings, is defined by the condition that the inverse image of any
open set must be ∆-open. A comprehensive characterization of these mappings, incorporating closed
and ∆-closed sets, is provided in Theorem 3.3.

Next, we examined ∆-irresolute mappings, which are distinguished by the property that the inverse
image of every ∆-open set remains ∆-open. Theorem 4.4 presents a fundamental characterization of
∆-irresolute mappings in terms of ∆-closed sets.

The hierarchical relationships among these classes are encapsulated in the implications

continuous mapping⇒ ∆-irresolute mapping⇒ ∆-continuous mapping.

However, as demonstrated in Example 3.2 and Example 4.2, these implications are not necessarily
reversible.

The third and fourth classes-∆-open and ∆-closed mappings—further enrich this framework. A
∆-open mapping ensures that the image of any ∆-open set remains ∆-open, while a ∆-closed mapping
guarantees that the image of every ∆-closed set is also ∆-closed. The distinctions between ∆-open,
∆-closed, and ∆-continuous mappings, as illustrated in Examples 5.3 and 5.4, underscore the intricate
relationships among these concepts.

Looking ahead, we intend to extend this study to explore ∆-compactness, ∆-connectedness, and ∆-
separation axioms in topological spaces, further expanding the theoretical foundation of ∆-structured
mappings.
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