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1. Introduction

In this paper, we give some existence results for functional differential equations with delay and
random effects, we study the following systems

x′(t, ω) = A1(ω)x(t, ω) + f(t, xt(., ω), yt(., ω), ω), t ∈ J := [0, T ]

y′(t, ω) = A2(ω)x(t, ω) + g(t, xt(., ω), yt(., ω), ω), t ∈ J := [0, T ]

x(θ, ω) = ϕ(θ, ω), θ ∈ [−r, 0]

y(θ, ω) = ψ(θ, ω), θ ∈ [−r, 0].

(1)

where f, g : J × C([−r, 0] × Ω, X) × C([−r, 0] × Ω, X) × Ω → X , (Ω,A) is a measurable space, Ai :

Ω×X → X , i = 1, 2 are random operators, ϕ,ψ are two random maps and X is a separable Banach
space.
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For any function x defined on [−r, T ]×Ω and any t ∈ J we denote by xt(., ω) the element of C([−r, 0]×

Ω, X) defined by
xt(θ, ω) = x(t+ θ, ω), θ ∈ [−r, 0].

Here xt(., ω) represents the history of the state from time t− r, up to the present time t.
Functional differential equations arise in a variety of areas of biological, physical, and engineering

applications, and such equations have received much attention in recent years. An important guide to
investigations of functional differential equations of various types, see the books of Kolmanovskii and
Myshkis [6] and the references therein.

Probabilistic functional analysis is an important to research due to its applications to probabilistic
models. Random operator theory is needed for the study of random equations. The problem of fixed
points for random mappings was initialed by the Prague school of probabilities. Several well-known
fixed point theorems of single-valued mappings such as Banach’s and Schauder’s have been extended
in generalized Banach spaces; see [5]. Some new fixed point theorems for single-valued operators
on a set with two vectors-valued metric and a generalization of the Banach contraction principle for
operators see for examples [9].

In recent years, much literature has dealt with the existence, uniqueness, andmultiplicity of solutions
to systems of difference equations [1, 3] and the references therein.

This paper is organized as follows: In Section 2, we introduce the material needed in this paper
such as generalized metric space, some fixed point theorems and preliminary facts which will be used
and some random fixed point theorems. In Section 3, we shall use a random version of the Perov
type theorem for the study of the semilinear initial value problems of random functional differential
equations. In Section 4, we present an illustrative and comparative example.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout
this paper. Let (X, ‖.‖) be a Banach space.
C([−r, T ]× Ω, X) is the Banach space of all continuous functions from [−r, T ]× Ω into X with the

norm
‖x‖∞ = sup

t∈[0,T ]
sup

θ∈[−r,0]
|x(t+ θ, ω)|.

Definition 2.1. A map N is said compact if the image is relatively compact. N is said completely continuous if

is continuous and the image of every bounded is relatively compact.

Definition 2.2. The map f : J × E × Ω→ X is called random Carathéodory if

(i) the map (t, ω)→ f(t, x, ω) is jointly measurable for each x ∈ E;

(ii) the map x→ f(t, x, ω) is continuous for all t ∈ J and ω ∈ Ω.
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Definition 2.3. A Carathéodory function f : J × E × Ω → X is called random L1-Carathéodory for each

q > 0, there exists hq ∈ L1(J,R+) such that

‖f(t, x)‖ ≤ hq(t, ω), a.e. t ∈ J

for all ‖x‖ ≤ q and ω ∈ Ω.

Definition 2.4. A square matrix of real numbers is said to be convergent to zero if and only if its spectral radius

ρ(M) is strictly less than 1. In other words, this means that all the eigenvalues ofM are in the open unit disc i.e.

|λ| < 1, for every λ ∈ C with det(M − λI) = 0, where I denote the unit matrix ofMn×n(R).

Theorem 2.5 ( [12], pages 12,88). LetM ∈Mn×n(R+). The following assertions are equivalent:

(i) M is convergent towards zero;

(ii) Mk → 0 as k →∞;

(iii) The matrix (I −M) is nonsingular and

(I −M)−1 = I +M +M2 + . . .+Mk + . . . ,

(iv) The matrix (I −M) is nonsingular and (I −M)−1 has nonnegative elements.

Definition 2.6. Let (X, d) be a generalized metric space. An operator N : X → X is said to be contractive if

there exists a convergent to zero matrixM such that

d(N(x), N(y)) ≤Md(x, y) for all x, y ∈ X.

For n = 1 we recover the classical Banach’s contraction fixed point result.

Definition 2.7. We say that a non-singular matrix A = (aij)1≤i,j≤n ∈ Mn×n(R) has the absolute value

property if

A−1|A| ≤ I,

where

|A| = (|aij |)1≤i,j≤n ∈Mn×n(R+).

Some examples of matrices convergent to zero A ∈ Mn×n(R), which also satisfies the property
(I −A)−1|I −A| ≤ I are:

1) A =

 a 0

0 b

 ,where a, b ∈ R+ and max(a, b) < 1

2) A =

 a −c

0 b

 ,where a, b, c ∈ R+ and a+ b < 1, c < 1

3) A =

 a −a

b −b

 ,where a, b, c ∈ R+ and |a− b| < 1, a > 1, b > 0.
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Theorem 2.8. [3] Let (X, d) be a complete generalized metric space and N : X → X a contractive operator

with Lipschitz matrixM. Then N has a unique fixed point x∗ and for each x0 ∈ X we have

d(Nk(x0), x∗) ≤Mk(I −M)−1d(x0, N(x0)) for all k ∈ N.

Theorem 2.9. [11] Let (Ω,F) be a measurable space, X be a real separable generalized Banach space and

F : Ω×X → X be a continuous random operator, and letM(ω) ∈ Mn×n(R+) be a random variable matric

such that for every ω ∈ Ω the matrix,M(ω) converge to 0 and

d(F (ω, x1), F (ω, x2)) ≤M(ω)d(x1, x2) for each x1, x2 ∈ X, ω ∈ Ω.

then there exists any random variable x : Ω→ X which is the unique random fixed point of F.

Theorem 2.10. [11] Let X be a separable generalized Banach space and let F : Ω×X → X be a completely

continuous random operator. Then, either

(i) the random equation F (ω, x) = x has a random solution, i.e., there is a measurable function x : Ω→ X

such that F (ω, x(ω)) = x(ω) for all ω ∈ Ω, or

(ii) the setM = {x : Ω → X is measurable|λ(ω)F (ω, x) = x} is unbounded for some measurable

λ : Ω→ X with 0 < λ(ω) < 1 on Ω.

Theorem 2.11. (Carathéodory) [11] LetX be a separable metric space andG : Ω×X → X be a mapping such

thatG(., x) is measurable for all x ∈ X andG(ω, .) is continuous for all ω ∈ Ω. Then the map (ω, x)→ G(ω, x)

is jointly measurable.

As consequence of above theorem we can easily prove the following result.

Lemma 2.12. [11] Let X be a separable generalized metric space and G : Ω×X → X be a mapping such that

G(., x) is measurable for all x ∈ X and G(ω, .) is continuous for all ω ∈ Ω. Then the map (ω, x)→ G(ω, x) is

jointly measurable.

Proposition 2.13. [7] Let X be a separable Banach space, and D be a dense linear subspace of X . Let

L : Ω×D → X be a closed linear random operator such that, for each ω ∈ Ω, L(ω) is one to one and onto. Then

the operator R : ω ×X → X defined by R(ω)x = L−1(ω)x is random.

3. Existence and uniqueness of random solutions

In this section, we establish the existence, uniqueness, and compactness of solutions set of random
functional differential equations (1).

Set Cr := C([−r, 0]× Ω, X) and C := C([−r, T ]× Ω, X).
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Definition 3.1. We say that a functionx : [−r, T ]×Ω→ X is amild solution of problem (1) if (x(t, ω), y(t, ω)) =

(ϕ(t, ω), ψ(t, ω)), t ∈ [−r, 0] and
x(t, ω) = S1(ω, t)ϕ(0, ω) +

∫ t

0
S1(ω, t− s)f(s, xs(., ω), ys(., ω), ω)ds, t ∈ J

y(t, ω) = S2(ω, t)ψ(0, ω) +

∫ t

0
S2(ω, t− s)g(s, xs(., ω), ys(., ω), ω)ds, t ∈ J.

where {S1(ω, t)}t≥0, {S2(ω, t)}t≥0 are random C0-semigroups of bounded linear operators on X with infini-

tesimal generators A1, A2, respectively and ω ∈ Ω.

There exist random variablesM1,M2 : Ω→ (0; +∞) such that ‖Si(ω, t)‖ ≤Mi(ω) for each i = 1, 2

and ω ∈ Ω.

Theorem 3.2. f, g : J × Cr × Cr × Ω → X are two Carathéodory functions. Assume that the following

condition hold:

(H1) There exist p1, p2, p3, p4 : Ω→ L1(J,R+) are random variable such that

‖f(t, x, y, ω)− f(t, x̃, ỹ, ω)‖ ≤ p1(ω)‖x− x̃|+ p2(ω)‖y − ỹ‖

and

‖g(t, x, y, ω)− g(t, x̃, ỹ, ω)‖ ≤ p3(ω)‖x− x̃‖+ p4(ω)‖y − ỹ‖,

for each t ∈ J , x, y, x̃, ỹ ∈ Cr and ω ∈ Ω.

IfM(ω) converges to 0, then the problem (1) has a unique random solution.

Proof: Consider the operator N : C × C × Ω→ C × C, (x, y, ω)→ (L1(x, y, ω), L2(x, y, ω))

where

L1(x(t, ω), y(t, ω), ω) =


ϕ(t, ω), t ∈ [−r, 0]

S1(ω, t)ϕ(0, ω)

+

∫ t

0
S1(ω, t− s)f(s, xs(., ω), ys(., ω), ω)ds , t ∈ J

and

L2(x(t, ω), y(t, ω), ω) =


ψ(ω, t), t ∈ [−r, 0]

S2(ω, t)ψ(0, ω)

+

∫ t

0
S2(ω, t− s)g(s, xs(., ω), ys(., ω), ω)ds , t ∈ J.

First we show that N is a random operator on C × C × Ω. Since f and g are Carathéodory functions,
then ω → f(t, x, y, ω) and ω → g(t, x, y, ω) are measurable maps in view of lemma 2.12. By the
Crandall-Liggett formula, we have
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Si(ω, t) = lim
n→∞

(I − t

n
Ai(ω))−nx, i = 1, 2.

From Proposition 2.13, we know that ω → (I− t
nAi(ω))−nx are measurable operators, thus ω → Si(ω, t)

are measurable. Using the continuity properties of the semigroups S1(ω, t), S2(ω, t), we get
ω → S1(ω, t)ϕ(0, ω), (s, ω)→ S1(ω, t− s)f(s, xs(., ω), ys(., ω), ω)

and
ω → S2(ω, t)ψ(0, ω), (s, ω)→ S2(ω, t− s)g(s, xs(., ω), ys(., ω), ω)

are measurable. Further, the integral is a limit of a finite sum of measurable functions, therefore, the
maps

ω → L1(x(t, ω), y(t, ω), ω), ω → L2(x(t, ω), y(t, ω), ω)

are measurable. As a result, N is a random operator on N : C × C × Ω into C × C.
We show that N satisfies all the conditions of Theorem 2.9 on C × C × Ω.
Let (x, y), (x̃, ỹ) ∈ C × C then
‖L1(x(t, ω), y(t, ω), ω)− L1(x̃(t, ω), ỹ(t, ω), ω)‖ =

‖
∫ t

0
S1(ω, t− s)(f(s, xs(., ω), ys(., ω), ω)− f(s, x̃s(., ω), ỹs(., ω), ω))ds‖

≤
∫ t

0
‖S1(ω, t− s)‖‖f(s, xs(., ω), ys(., ω), ω)− f(s, x̃s(., ω), ỹs(., ω), ω)‖ds

≤ M1(ω)

∫ t

0
p1(s, ω)‖xs(., ω)− x̃s(., ω)‖ds

+M1(ω)

∫ t

0
p2(s, ω)‖ys(., ω)− ỹs(., ω)‖ds

Then

‖L1(x, y, ω)− L1(x̃, ỹ, ω)‖H ≤ M1(ω)

τ
(‖x− x̃‖H + ‖y − ỹ‖H)

where
‖x‖H = sup

t∈J
e−τK(t,ω), K(t, ω) =

∫ t

0
p(r, ω)dr, τ ≥M1(ω) +M2(ω)

and
p(t, ω) =

i=4∑
i=1

pi(t, ω).

Similarly, we obtains

‖L2(x, y, ω)− L2(x̃, ỹ, ω)‖H ≤ M2(ω)

τ
(‖x− x̃‖H + ‖y − ỹ‖H).

Hence

d0(N(x, y, ω), N(x̃, ỹ, ω)) ≤ M(ω)d0((x, y), (x̃, ỹ))
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where

M(ω) =

 M1(ω)
τ

M1(ω)
τ

M2(ω)
τ

M2(ω)
τ


and

d0(x, y) =

 ‖x− y‖H
‖x̃− ỹ‖H

 .

It is clear that the spectral ρ(M(ω)) = M1(ω)+M2(ω)
τ < 1, then the matrixM(ω) has converge to 0. From

theorem 2.9 there exists unique random solution of problem (1). We denote by (x(t, ω), y(t, ω)) the
mild solution of (1).

Lemma 3.3. (Grönwall-Bihari) [2] Let I = [a, b] and let u, g : I → R be positive continuous functions.

Assume there exist c > 0 and a continuous nondecreasing function h : [0,∞)→ (0,+∞) such that

u(t) ≤ c+

∫ t

a
g(s)h(u(s))ds, ∀t ∈ I.

Then

u(t) ≤ H−1
(∫ t

a
g(s)ds

)
, ∀t ∈ I,

provided ∫ +∞

c

dy

h(y)
>

∫ b

a
g(s)ds,

where H−1 refers to inverse of the function H(u) =
∫ u
c

dy
h(y) for u ≥ c.

We consider the following set of hypotheses in what follows:
(H2) The functions f and g are random Carathéodory on [0, T ]× Cr × Cr × Ω.
(H3) There exist a measurable and bounded functions γ1, γ2 : Ω→ L1([0, T ],R+) and a continuous

and nondecreasing function ψ1, ψ2 : R+ → (0,∞) such that
‖f(t, x, y, ω)‖ ≤ γ1(t, ω)ψ1(‖x‖+ ‖y‖), ‖g(t, x, y, ω)‖ ≤ γ2(t, ω)ψ2(‖x‖+ ‖y‖)

for all ω ∈ Ω, t ∈ [0, T ] and x, y ∈ Cr.
(H4) A1, A2 are the generators of a strongly continuous semigroup S1(ω, t), S2(ω, t) respectively for

t ∈ J and ω ∈ Ω which are compact for t > 0 in the Banach space X .
Now, we give prove of the existence result of problem (1) by using Schaefer’s random fixed point
theorem type in generalized Banach space.

Theorem 3.4. Assume that the hypotheses (H2), (H3) and (H4) hold. If∫ T

0
φ(s, ω)ds <

∫ ∞
c

du

Γ(u)
for all ω ∈ Ω,

where

c = M1(ω)‖ϕ(0, ω)‖+M2(ω)‖ψ(0, ω)‖, φ = max{M1(ω)γ1,M2(ω)γ2} and Γ = ψ1 + ψ2.
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Then the problem (1) has a random solution.

moreover the set

S = {(x, y) ∈ C × C : (x,y) is solution of the problem (1) }

is compact.

Proof: Let N : C × C × Ω→ C × C a random operator defined in Theorem 3.2.
Clearly, the random fixe point of N are solutions to (1), where N is defined in Theorem 3.2. In order to
apply Theorem 2.10 , we first show that N is completely continuous. The proof will be given in several
steps.

Step 1: N(., ., ω) = (L1(., ., ω), L2(., ., ω) is continuous.

Let (xn, yn) be a sequence such that (xn, yn)→ (x, y) in C × C as n→∞. Then

‖L1(xn(t, ω), yn(t, ω), ω)− L1(x(t, ω), y(t, ω), ω)‖

≤ M1(ω)

∫ t

0
‖f(s, xns(., ω), yns(., ω), ω)− f(s, xs(., ω), ys(., ω), ω)‖ds

and so
‖L1(xn(., ω), yn(., ω), ω)− L1(x(., ω), y(., ω), ω)‖∞

≤ M1(ω)

∫ T

0
‖f(s, xns(., ω), yns(., ω), ω)− f(s, xs(., ω), ys(., ω), ω)‖ds.

Since f is an L1-Carathéodory function, we have by the Lebesgue dominated convergence theorem,
we have

‖L1(xn(., ω), yn(., ω), ω)− L1(x(., ω), y(., ω), ω)‖∞ → 0 as n→∞.

Similarly

‖L2(xn(., ω), yn(., ω), ω)− L2(x(., ω), y(., ω), ω)‖∞ → 0 as n→∞.

Thus N is continuous.
Step 2: N maps bounded sets into bounded sets inC×C. Indeed, it is enough to show that for any q > 0

there exists a positive constantK such that for each (x, y) ∈ Bq = {(x, y) ∈ C×C : ‖x‖∞ ≤ q, ‖y‖∞ ≤ q},
we have

‖N(x, y, ω)‖∞ ≤ K = (K1,K2).

Then for each t ∈ [0, T ], we get

‖L1(x(t, ω), y(t, ω), ω)‖ = ‖ϕ(0, ω)S1(ω, t) +

∫ t

0
S1(ω, t− s)f(s, xs(., ω), ys(., ω), ω)ds‖

≤ M1(ω)(‖ϕ(0, ω)‖+

∫ t

0
‖f(s, xs(., ω), ys(., ω), ω)‖ds).



Asia Pac. J. Math. 2025 12:40 9 of 13

From (H3), we have

‖L1(x(., ω), y(., ω), ω)‖∞ ≤ M1(ω)(q + ψ1(2q)

∫ T

0
γ1(s, ω)ds) := K1.

Similarly, we have

‖L2(x(., ω), y(., ω), ω)‖∞ ≤ M2(ω)(q + ψ2(2q)

∫ T

0
γ2(s, ω)ds) := K2.

Step 3: N maps bounded sets into equicontinuous sets of C × C.
Let 0 < τ1, τ2 ∈ J , τ1 < τ2 and Bq be a bounded set of C × C as in Step 2. Let (x, y) ∈ Bq then for

each t ∈ J we have

‖h(τ2)− h(τ1)‖ ≤ ‖S1(ω, τ2)− S1(ω, τ2)‖‖ϕ(0, ω)‖

+ψ1(2q)

∫ τ1−ε

0
‖S1(ω, τ2 − s)− S1(ω, τ2 − s)‖γ1(s, ω)ds

+ψ1(2q)

∫ τ1−ε

τ1

‖S1(ω, τ2 − s)− S1(ω, τ1 − s)‖γ1(s, ω)ds

+ψ1(2q)

∫ τ2

τ1

‖S1(ω, τ2 − s)‖γ1(s, ω)ds,

where
h1(τi) = L1(ω, x(τi, ω), y(τi, ω)), i = 1, 2.

The right-hand side tends to zero as τ2 − τ1 → 0, and ε sufficiently small, since {S1(ω, t)}t≥0 is a
strongly continuous operator and the compactness of {S1(ω, t)}t≥0 for t > 0 implies the continuity in
the uniform operator topology. By a similar way we can prove the equicontinuity for L2(Bg ×Bg).

As a consequence of Steps 2, 3 and the Arzelá -Ascoli theorem we can conclude that we conclude
that N maps Bq into a precompact set in C × C.
Step 4: (A priori bounds on solutions.)

Now, it remains to show that the set

Σ =
{

(x, y) ∈ C × C : (x, y) = λ(ω)N(x, y), λ(ω) ∈ (0, 1)
}
is bounded.

Let (x, y) ∈ Σ. Then x = λ(ω)L1(x, y) and y = λ(ω)L2(x, y) for some 0 < λ(ω) < 1.
Thus, for t ∈ [0, T ], we have

‖x(t, ω)‖ ≤ M1(ω)(‖ϕ(0, ω)‖+

∫ t

0
‖f(s, xs(., ω), ys(., ω), ω)‖ds)

≤ M1(ω)(‖ϕ(0, ω)‖+

∫ t

0
γ1(s, ω)ψ1(‖xs(., ω)‖+ ‖ys(., ω)‖))ds

and

‖y(t, ω)‖ ≤ M2(ω)(‖ψ(0, ω)‖+

∫ t

0
γ2(s, ω)ψ2(‖xs(., ω)‖+ ‖ys(., ω)‖))ds.
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Therefore

‖x(t, ω)‖+ ‖y(t, ω)‖ ≤ c+

∫ t

0
φ(s, ω)Γ(‖xs(., ω)‖+ ‖ys(., ω)‖)ds,

By Lemma 3.3, we have

‖x(t, ω)‖+ ‖y(t, ω)‖ ≤ H−1
( ∫ t

0
φ(s)ds

)
:= K∗, for each t ∈ [0, T ],

where

H(z) =

∫ z

c

du

Γ(u)
.

Consequently

‖x‖∞ ≤ K∗ and ‖y‖∞ ≤ K∗.

This shows that Σ is bounded. As a consequence of Theorem 2.10 we deduce that N has at least one
fixed point which is a random mild solution of problem(1).
Step 5: It remains to show that the set S is compact.

Let the sequence (xn, yn)n∈N ⊂ S, then

xn(t,Ω) =


ϕ(t, ω), t ∈ [−r, 0]

S1(ω, t)ϕ(0, ω)

+

∫ t

0
S1(ω, t− s)f(s, xns(., ω), yns(., ω), ω)ds , t ∈ J

and

yn(t, ω) =


ψ(t, ω), t ∈ [−r, 0]

S2(ω, t)ψ(0, ω)

+

∫ t

0
S2(ω, t− s)g(s, xns(., ω), yns(., ω), ω)ds , t ∈ J.

Let B = {(xn, yn) : n ∈ N} ⊆ C × C.
Then from earlier parts of the proof of this theorem, we conclude thatB is bounded and equicontinuous.
Then from theAscoli-Arzelà theoremwe can conclude thatB is compact, then there exists a subsequence
(xnm, ynm) ⊂ S; (xnm, ynm)→ (x, y) as nm →∞. Consider

z(t,Ω) =


ϕ(t, ω), t ∈ [−r, 0]

S1(ω, t)ϕ(0, ω)

+

∫ t

0
S1(ω, t− s)f(s, zs(., ω), js(., ω), ω)ds , t ∈ J

and

j(t, ω) =


ψ(t, ω), t ∈ [−r, 0]

S2(ω, t)ψ(0, ω)

+

∫ t

0
S2(ω, t− s)g(s, zs(., ω), js(., ω), ω)ds , t ∈ J,
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then

‖xnm(t, ω)− z(t, ω)‖ ≤ M1(ω)

∫ t

0
‖f(s, xns(., ω), yns(., ω), ω)− f(s, zs(., ω), js(., ω), ω)‖ds

and so

‖xnm(., ω)− z(., ω)‖∞ ≤ M1(ω)

∫ T

0
‖f(s, xns(., ω), yns(., ω), ω)− f(s, zs(., ω), js(., ω), ω)‖∞ds

Since f is an L1-Carathéodory function, we have by the Lebesgue dominated convergence theorem, we
have

‖xnm(., ω)− z(., ω)‖∞ → 0 as n→∞.

Similarly

‖ynm(., ω)− j(., ω)‖∞ → 0 as n→∞.

Thus

x(t,Ω) =


ϕ(t, ω), t ∈ [−r, 0]

S1(ω, t)ϕ(0, ω)

+

∫ t

0
S1(ω, t− s)f(s, xs(., ω), ys(., ω), ω)ds , t ∈ J

and

y(t, ω) =


ψ(t, ω), t ∈ [−r, 0]

S2(ω, t)ψ(0, ω)

+

∫ t

0
S2(ω, t− s)g(s, xs(., ω), ys(., ω), ω)ds , t ∈ J,

4. An example

Let Ω = R be equipped with the usual σ− algebra consisting of Lebesgue measurable subsets of
(−∞, 0) and J := [0, 1].
Consider the following random differential equation system.



x′(t, ω) = ω2x(t, ω) + tω2

(2+ω2)(1+x2t (.,ω)+y
2
t (.,ω))

, t ∈ J

y′(t, ω) = ω4x(t, ω) + t2ω2

(2+ω2)(1+x2t (.,ω)+y
2
t (.,ω))

, t ∈ J

x(θ, ω) = ϕ(θ, ω), θ ∈ [−r, 0]

y(θ, ω) = ψ(θ, ω), θ ∈ [−r, 0].

(2)

here
f(t, x, y, ω) =

tω2

(2 + ω2)(1 + x2 + y2)

g(t, x, y, ω) =
t2ω2

(2 + ω2)(1 + x2 + y2)

and
A1(ω) = ω2, A2(ω) = ω4.



Asia Pac. J. Math. 2025 12:40 12 of 13

Clearly, the map (t, ω) 7→ f(t, x, y, ω) is jointly continuous for all x, y ∈ [1,∞). The same for the map
g. Also the maps x 7→ f(t, x, y, ω) and y 7→ f(t, x, y, ω) are continuous for all t ∈ J and ω ∈ Ω.

Similarly for the maps corresponding to function g. Thus the functions f and g are Carathéodory on
J × [1,∞)× [1,∞)×Ω. Firstly, we show that f and g are Lipschitz functions. Indeed, let x, y ∈ R, then

|f(t, x, y, ω)− f(t, x̃, ỹ, ω)| =

∣∣∣∣ tω2

(2 + ω2)(1 + x2 + y2)
− tω2

(2 + ω2)(1 + x̃2 + ỹ2)

∣∣∣∣
=

∣∣∣∣ tω2[(1 + x̃2 + ỹ2)− (1 + x2 + y2)]

(2 + ω2)(1 + x2 + y2)(1 + x̃2 + ỹ2)

∣∣∣∣
=

tω2

(2 + ω2)(1 + x2 + y2)(1 + x̃2 + ỹ2)

∣∣x̃2 + ỹ2 − x2 − y2
∣∣

≤ ω2

(2 + ω2)
|x− x̃|+ ω2

(2 + ω2)
|y − ỹ|.

Then
A1(ω) = ω2, A2(ω) = ω4

and
‖f(t, x, y, ω)− f(t, x̃, ỹ, ω)‖∞ ≤

ω2

(2 + ω2)
‖x− x̃‖∞ +

ω2

(2 + ω2)
‖y − ỹ‖∞.

Analogously for the function g, we get

‖g(t, x, y, ω)− g(t, x̃, ỹ, ω)‖∞ ≤
ω2

(2 + ω2)
‖x− x̃‖∞ +

ω2

(2 + ω2)
‖y − ỹ‖∞.

We take
p1(ω) = p2(ω) = p3(ω) = p4(ω) =

ω2

(2 + ω2)
,

p(t, ω) =
i=4∑
i=1

pi(t, ω) =
4ω2

(2 + ω2)
,

S1(ω, t) = e−w
2t, S2(ω, t) = e−w

4t, ‖Si(ω, t)| ≤ 1 = Mi(ω), i = 1, 2 for all ω ∈ Ω, t ∈ J
and

τ > M1(ω) +M2(ω) = 2.

We have

M(ω) =
1

τ

1 1

1 1

 .

It is clear that the spectral ρ(M(ω)) = 2
τ < 1, then the matrixM(ω) has converge to 0. Therefore, all the

conditions of Theorem 3.2 are satisfied. Hence the problem (2) has a unique random solution.
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