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Abstract. This work presents a comprehensive analysis of integral stability for impulsive dynamic equa-
tions on time scales using the comparison principle framework. We first establish a comparison theorem,
which provides a rigorous basis for comparing the behavior of the main complex system to that of a simpler
system of lower order known as the comparison system, whose qualitative properties are easier to ascertain.
Building on this result, we derive an integral stability theorem, offering sufficient conditions for integral
stability in terms of the properties of the comparison system. Our approach leverages the vector Lyapunov
functions and comparison equations to ensure the cumulative effect of impulses and system dynamics
remains bounded. The theoretical findings are validated through an illustrative example, demonstrating
the applicability of the proposed framework to systems with mixed continuous-discrete dynamics and
impulsive effects.
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1. INTRODUCTION

The study of dynamic equations on time scales has emerged as a unifying mathematical framework
that seamlessly integrates continuous and discrete dynamical systems ( [4,5,9]). This hybrid approach
is particularly valuable for modeling systems that exhibit both continuous evolution and discrete jumps,
such as population dynamics with harvesting, control systems with impulsive inputs, and neural
networks with instantaneous state changes. Impulsive dynamic equations, which incorporate sudden
perturbations or state jumps, are a natural extension of this framework and have garnered significant
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attention due to their ability to capture real-world phenomena with abrupt changes. Stability analysis
of such systems is of paramount importance, as it provides critical insights into the long-term behavior
and robustness of solutions under external disturbances.

Stability analysis of systems in both classical [28,29,32–34] and non-classical [31,35] systems has
occupied the interest of researchers in recent times due to its importance [20]. Stability concepts, such
as Lyapunov stability and asymptotic stability, have been extensively studied for both continuous and
discrete systems [7,8,12]. However, the presence of impulses introduces additional complexity, as these
sudden changes can drastically alter the system’s trajectory [11]. Furthermore, when such systems
are analyzed on time scales [13,14,17–19], the interplay between continuous and discrete dynamics
necessitates a more sophisticated approach to stability analysis. Integral stability, a generalization of
classical stability concepts, offers a robust framework for analyzing systems where the cumulative
effect of perturbations over time plays a critical role. This concept is particularly relevant for impulsive
systems, as it accounts for the aggregated impact of impulses and system dynamics, providing a more
comprehensive measure of stability than pointwise criteria.

In this work, we present a comprehensive study of integral stability for impulsive dynamic equations
on time scales using the comparison principle framework. The comparison principle is a powerful
tool in stability analysis, allowing us to relate the behavior of a complex system to that of a simpler,
well-understood comparison system. By leveraging this principle, we establish a unified framework for
analyzing integral stability that is applicable to a wide range of impulsive dynamic systems on time
scales.

The foundation of our stability analysis lies in the formulation and proof of a comparison theorem for
impulsive dynamic equations on time scales. This theorem provides a rigorous basis for comparing the
behavior of the original system to that of a scalar comparison system, enabling a systematic approach
to stability analysis. Building on this result, we proceed to state and prove an integral stability theorem,
which establishes sufficient conditions for integral stability in terms of the properties of the comparison
system. Our approach integrates Lyapunov functions and vector comparison equations to derive explicit
criteria for integral stability, ensuring that the cumulative effect of impulses and system dynamics
remains bounded. By bridging the gap between time scale calculus, impulsive systems, and integral
stability theory, this work advances the understanding of dynamic systems with complex temporal
behaviors.

This article is organized as follows: In Section 2, we provide the necessary preliminaries on time scale
calculus, impulsive dynamic equations, and stability concepts. In Section 3, we present the comparison
theorem, including its statement and proof, which was then applied to develop the integral stability
theorem, and providing a detailed proof. In Section 4, we illustrate the theoretical findings through a
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practical example, and Section 5 concludes the article with a discussion of the results and highlighting
the importance of the work.

2. Preliminaries Notes

In this section, we lay the groundwork by introducing key notations and definitions that will be
instrumental in developing the main results.

Definition 2.1. ( [2]) For t ∈ T, we define the forward jump operator as σ(t) = inf{s ∈ T : s > t} and the

backward jump operator as ρ(t) = sup{s ∈ T : s < t}. t ∈ T is said to be right scattered (r-s) if σ(t) > t, left

scattered (l-s) if ρ(t) < t, right dense (r-d) if σ(t) = t and left dense (l-d) if ρ(t) = t. A function µ(t) = σ(t)−t

is called the graininess function.

Definition 2.2 ( [2]). A function G : T → R is said to be r-d continuous (Crd) if it is continuous at all

right-dense points of T, and its left-sided limits exist and are finite at all left-dense points of T.

Definition 2.3 ( [2]). If a function K ∈ C[[0, j], [0,∞)] is strictly increasing on [0, j] with K(0) = 0, then it is

called a class K function.

Definition 2.4. A function g ∈ Crd[T× Rn,Rn] is said to be quasimonotone non-decreasing in u if u < v and

ui = vi for 1 ≤ i ≤ n implies gi(u) ≤ gi(v), ∀i ∈ N, u, v ∈ Rn.

Definition 2.5. A function b ∈ Crd[T × R+,Rn+] is said to belong to a class OK if b(t, ·) ∈ K and for any

t ∈ Tk, and b(t, ·)→∞ as t→∞.

Statement of the Problem

Consider the impulsive dynamic system on time scale

x∆(t) = f(t, x), t ∈ T, t 6= ti

∆x(t) = x(t+i )− x(ti) = Ii(x(t)), t = ti

x(t0) = x0,

(1)

where x(t+i ) denotes the right limit of x(ti) at t = ti, i ∈ N, x : T→ RN , f ∈ Crd[T×RN ,RN ], f(t10) = 0,
0 ≤ t0 < t1 < · · ·∞. Ii ∈ Crd[Rn,Rn], Ii(0) = 0 is the sequence of instantaneous impulse operators. T
is a strictly monotone increasing function such that ∀ti ∈ T, lim

i→∞
ti =∞. The solution of the impulsive

dynamic equation with impulse effect (1) depends not only on the initial condition (t0, x0) but also
on the moments of impulses tk for each k ∈ N. Let x(t) = x(t, t0, x0) be the unique solution of (1)
satisfying the initial condition x(t0, t0, x0) = x0, for the purpose of this work, we assume that the
solution x(t) = x(t; t0, x0) of (1) exists and is unique (see [10, 21–23]), this work aims to investigate
the integral stability.
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To achieve this aim, we consider the following comparison impulsive dynamic system on time scale
systems

u∆ = g1(t, u) t 6= ti

∆u = Ωi(u(ti)) t = ti

u(t0) = u0

(2)

V ∆ = g2(t, v) t 6= ti

∆V = Ψi(V (ti)) t = ti

v(t0) = v0

(3)

and the perturbed system of (3)

v∆ = g2(t, v) + h(t) t 6= ti

∆v = Ψi(v(ti)) + ηi(ti) t = ti

v(t0) = v0,

(4)

where
(i) g1 ∈ Crd[T× Rn,Rn], and Ωi ∈ Crd[Rn,Rn] are quasimonotone non-decreasing functions, such

that g1(t, 0) = 0, Ωi(0) = 0. Note that g1(t, u) is quasimonotone non-decreasing in u.
(ii) g2 ∈ Crd[T × R,Rn], is quasimonotone non-decreasing with respect to its second argument,

Ψi ∈ [Rn,Rn], h(t) ∈ [T,Rn], ηi ∈ [T,Rn] and g2(t, 0) = Ψi(0) = 0, ηi(0) = 0.
Note that the solution u(t) = u(t; t0, u0) of (2) exists and is unique (see [10,24–27,30]).

Definition 2.6. A function V : Tk × RN → RN+ is said to belong to classM if

(1) V (t, x) ∈ Crd[Tk × RN ,RN+ ]

(2) V (t, x) is locally Lipschitzian with respect to its second argument

(3) lim
t→t−i

V (t, x) = V (ti − 0, x) = v(ti, x) and lim
t→t+i

V (t, x) exists ∀i ∈ N, at each (t, x) with left dense t

and Tk = T − {m} if T has a right scattered maximumm or else Tk = T.

Definition 2.7. Let V (t, x) ∈M then, we define the Dini derivative of V (t, x) relative to (1) as follows:

D+V ∆(t, x) = lim sup
µ(t)→0

1

µ(t)

{
V (t+ µ(t), x+ µ(t)f(t, x))− V (t, x)

}
.

Definition 2.8. A zero solution of (1) is said to be stable if for every ε > 0, and any t0 ∈ Tk, there exists a

positive function δ(t0, ε) ∈ K which is continuous in t0 for each ε such that the inequality

‖x0‖ < δ,

implies

‖x(t)‖ < ε,
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where x(t) = x(t; t0, x0) is any solution of (1).

For the purpose of this research, we shall define the following sets;
(1) Sρ = {(t, x) ∈ T× RN : ‖x‖ < ρ and ρ > 0};

(2) S∗ρ = {(t, x) ∈ T× RN : ‖x‖ ≥ ρ, and ρ > 0};

(3) Λ(t, T, ρ) = {x ∈ RN : (t, x) ∈ Sρ, S ∈ [t, t+ T ]}.

Definition 2.9. The zero solution of (1) is said to be integrally stable if for every ε ≥ 0, t0 ∈ Tk, there exists

δ(t0, ε) > 0 ∈ K which is rd−continuous in t0 for each ε such that for any solution x∗(t) = x∗(t, t0, x0 of (),

‖x0‖ ≤ ε implies ‖x∗(t)‖ < δ and for T > 0, (5)

the perturbations f∗(t, x) and I∗i (x), i ∈ N satisfy∫ t0+T

t0

sup
‖x(t)‖<δ

‖f∗(s, x∗)‖∆s+
∑

t0<ti≤t0+T

sup
‖x∗(ti)‖<δ

‖I∗i (x∗)‖ ≤ ε (6)

3. Main Results

Theorem 3.1 (Comparison Theorem ). Assume that

(1) g1(t, u) ∈ Crd[T× Rn,Rn] is quasimonotone nondecreasing in u

(2) V ∈ Crd[T× Rn,Rn+] is locally Lipschitzian in x and satisfy

D+V ∆(t, x) ≤ g1(t, V (t, x)) t 6= ti, i ∈ N

(3) Ωi ∈ [Rn,Rn], V (t+ 0, x+ Ii(x)) ≤ Ωi(V (t, x)) where Ωi ∈ K.

Letm(t) = m(t, t0, u0) be existing on Tk. Then

V (t0 + 0, x0) = V (t+0 , x0) ≤ u0

implies

V (t, x(t)) ≤ m(t)

where x(t) = x(t, t0, x0) is any solution of (1) existing on Tk.

Proof. Let x(t) be the solution of (1) defined for t ≥ t0, t, t0 ∈ Tk such that V (t+0 , x0) ≤ u0. Also let
r(t) = V (t, x(t)) for t 6= ti. Then

r(t+ µ(t))− r(t) = V (t+ µ(t), x(t+ µ(t)))− V (t, x(t))

= V (t+ µ(t), x(t+ µ(t)))− V (t+ µ(t), x+ µ()f(t, x))

+ V (t+ µ(t), x+ µ(t)f(t, x))− V (t, x(t))

Since V is Lipschitzian with respect to x, we have

r(t+ µ(t))− r(t) ≤ L‖x(t+ µ(t))− (x+ µ(t)f(t, x))‖e + V (t+ µ(t), x+ µ(t)f(t, x))− V (t, x(t))
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where L is the Lipschitz constant and e = (1, 1, · · · , 1)T . Taking lim sup
µ(t)→0

1
µ(t) of both sides.

lim sup
µ(t)→0

1

µ(t)
{r(t+ µ(t))− r(t)} = lim sup

µ(t)→0

1

µ(t)
{L‖x(t+ µ(t))− (x+ µ(t)f(t, x))‖e

+ V (t+ µ(t), x+ µ(t)f(t, x))− V (t, x(t))}

D+r∆(t) ≤ 1

µ(t)
[lim sup
µ(t)→0

L‖x(t+ µ(t))− lim sup
µ(t)→0

(x+ µ(t)f(t, x))‖e]

+ lim sup
µ(t)to0

1

µ(t)
{V (t+ µ(t), x+ µ(t)f(t, x))− V (t, x(t))}

D+r∆(t) =
1

µ(t)
[L‖x(t)− x(t)‖e]

+ lim sup
µ(t)→0

1

µ(t)
{V (t+ µ(t), x+ µ(t)f(t, x))− V (t, x(t))}

Applying definition 3 and from condition 2 of the theorem

D+r∆(t) ≤ D+V (t, x(t)) ≤ g1(t, V (t, x(t))).

From condition (3) of the theorem and equation (1), we have r(t+) ≤ u0 and from equation (1) and
condition (3) we also have

m(t+i ) = V (t+i , x(t+i )) = V (t+i , x(ti) + I(x(ti))) ≤ Ωi(V (ti, x))

Then the inequality
V (t, x(t)) ≤ m(t) for t ≥ t0

completing the proof. �

Theorem 3.2 (Integral Stability Theorem). Assume that:

(1) f ∈ Crd[T×Rn,Rn], Ii ∈ Crd[Rn,Rn] and g1(t, u) ∈ Crd[T×Rn,Rn] is quasimonotone nondecreas-

ing in u.

(2) For V1(t, x) ∈M, V1(t, 0) = 0, V1 is decrescent and

(i) D+V ∆
1 (t, x) ≤ g1(t, V1(t, x)) holds for (t, x) ∈ Sρ, t 6= ti

(ii) V1(t, x+ Ii(x)) ≤ Ωi(V1(t, x)) for all (t, x ∈ Sρ) where Ωi is quasimonotone non decreasing such

that Ωi(x) ≥ x

(3) For V2(t, x) ∈M, V2(t, 0) = 0,

(i) b(‖x‖) ≤ V2(t, x) ≤ a(‖x‖) for (t, x) ∈ Sρ ∩ S∗ρ and a, b ∈ K

(ii) D+V ∆
1 (t, x) +D+V ∆

2 (t, x) ≤ g2(t, V1(t, x) + V2(t, x)) holds for (t, x) ∈ Sρ ∩ Sρ∗ and t 6= ti,

∀i ∈ N where g2 is quasimonotone with respect to the second argument

(iii) V1(t+i , x+Ii(x))+V2(t+i , x+Ii(x)) ≤ Ψi(V1(ti, x(ti)))+V2(ti, x(ti)) for Ψi ∈ K and Ψi ≥ x

(4) The zero solution of systems (1),(2), (3) exists. Then if the zero solution of (2) is stable and (3) is

integrally stable, then it implies that (1) will be integrally stable.
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Proof. By the decrescent property of V1(t, x), then there exists ρ1 < ρ which is positive and d1 ∈ OK

such that
‖x‖ < ρ1

implies
V1(t, x) < d1(t, x) (7)

Choose ε > 0 such that ε < ρ1.
By the Lipschitzian property on V1(t, x) and V2(t, x), then there exists Lipschitz constants L1 and L2 of
V1 and V2. Set (L1 + L2)ε = ε1.
Byb stability of (2), given ε1 > 0, and t0 ∈ T, there exists δ1(t0, ε) > 0 such that

‖u0‖ < δ1

implies
‖m(t, t0, u0)‖ < ε1

2
, t ≥ t0 (8)

wherem(t, t0, u0) = m(t) is the maximal solution of (2) which of course is any solution of (2).
Since d1 ∈ DK, exists δ2(δ1) > 0, such that

‖u‖ < δ2 implies d1(t, u) < δ1 (9)

Also, by the integral stability of (3), we can find λ1(t0, ε1) ∈ K for each ε1 such that for every solution
V (t) = V (t, t0, v0) of (4),

‖V (t)‖ < λ1 (10)

holds, where ‖v0‖ ≤ ε1 and for every T > 0, h(t) and ηi satisfy∫ t0+T

t0

|h(s)|∆s+
∑

t0<ti<t0+T

|ηi(ti)| ≤ ε1. (11)

Moreso, for b ∈ K, lim
s→∞

b(s) = ∞. Take λ(λ1) > 0 such that b(λ) ≥ λ1 and λ > d2(ε) for d2 ∈ K

satisfying d2(ε) < ρ1. Choose δ3 = δ3(ε1, λ), ε < δ3 < min{δ2, ρ1} such that

a(δ3) <
ε1
2

and d2(δ3) < λ (12)

hold.
For any solution x∗(t) = x∗(t, t0, x0) of (2), we show that if (5) and (6) hold, then

‖x∗(t)‖ < λ for t ≥ t0, t, t0 ∈ T (13)

Suppose this claim is false, then we can find a point t1 > t0 such that

‖x∗(t1)‖ ≥ λ and ‖x∗(t)‖ < λ at t ∈ [t0, t1) ⊂ T (14)
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For t1 6= ti, the solution x∗(r) is continuous at t1 and ‖x∗(t1)‖ = λ but ‖x∗(t1)‖ > δ3 because if
‖x∗(t1)‖ ≤ δ3, then d2(x∗(t1)) < λwhich contradicts (14) by the choice of δ3.
Take the interval (t0, t1) ⊂ T, choose t10 ∈ (t0, t1 such that t10 6= tk, ‖x∗(t10)‖ = δ3 and for t ∈ [t10, t1),

(t, x∗(t)) ∈ Sλ ∩ S∗ρ

Set u0 = V1(t10, x
∗(t10)), and letm1(t, t10, u0) be the maximal solution of (2) then from (2i) and (2ii)

of our theorem and applying the comparison theory, we have that

V1(t, x(t, t10, x0)) ≤ m1(t1, t10, u0) for t ∈ [t10, t1] ∈ T (15)

where x(t, t10, x0) is a solution of (1) with respect to t10.
By the choice of our δ3 = ‖x∗(t10)‖, δ < δ2 and u0 = V1(t10, x

∗(t10)), applying (7) and (9) we have that

u0 = V1(t10, x
∗(t10)) ≤ d1(t10, x

∗(t10)) < δ1

Applying (8) to (15) we have that

V1(t, x(t, t10, x0)) ≤ m1(t, t10, u0) <
ε1
2

for t ∈ [t10, t1] ∈ T (16)

Combining (12) and (3i) of our theorem, we have

V2(t10, x
∗(t10)) ≤ a‖x∗(t10)‖ < a(δ1) <

ε1
2

(17)

For V (t, x) ∈M, let V1(t, x) + V2(t, x), from (3ii) of our theorem and by the Lipschitzian of V1 and V2,
we get that

D+V ∆(t, x) = D+V ∆
1 (t, x) +D+V ∆

2 (t, x)

= lim sup
µ(t)→0

1

µ(t)
{V1(t+ µ(t), x+ µ(t)(f(t, x) + f∗(t, x)))− V1(t, x)}

+ lim sup
µ∗(t)→0

1

µ∗(t)

{
V2(t+ µ∗(t), x+ µ∗(t)(f(t, x) + f∗(t, x)))− V2(t, x)

}
= lim sup

µ(t)→0

1

µ(t)

{
V1(t+ µ(t), x+ µ(t)(f(t, x) + f∗(t, x)))

−V1(t+ µ(t), x+ µ(t)f(t, x))

+V1(t+ µ(t), x+ µ(t)f(t, x))− V1(t, x)
}

+ lim sup
µ∗(t)→0

1

µ∗(t)

{
V2(t+ µ∗(t), x+ µ∗(t)(f(t, x) + f∗(t, x)))

−V2(t+ µ∗(t), x+ µ∗(t)(f(t, x)))

+V2(t+ µ∗(t), x+ µ∗(t)f(t, x))− V2(t, x)
}

= lim sup
µ(t)→0

1

µ(t)
{V1(t+ µ(t), x+ µ(t)(f(t, x) + f∗(t, x)))

−V1(t+ µ(t), x+ µ(t)f(t, x))}
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+ lim sup
µ∗(t)→0

1

µ∗(t)
{V2(t+ µ∗(t), x+ µ∗(t)(f(t, x) + f∗(t, x)))

−V2(t+ µ∗(t), x+ µ∗(t)f(t, x))}

+ lim sup
µ(t)→0

1

µ(t)
{V1(t+ µ(t), x+ µ(t)f(t, x))− V1(t, x)}

+ lim sup
µ∗(t)→0

1

µ∗(t)
{V2(t+ µ∗(t), x+ µ∗(t)f(t, x))− V2(t, x)}

Since V1 and V2 are Lipschitzian, we get

≤ L1 sup
x∈Λ(t10,T ∗,λ)

‖f∗(t, x)‖+ L2 sup
x∈L(t10,T ∗,λ)

‖f∗(t, x)‖+D+V ∆
1 (t, x) +D+V ∆

2 (t, x)

from (3ii) we have

≤ (L1 + L2) sup
x∈L(t10,T ∗,λ)

‖f∗(t, x)‖+ g2(V1(t, x) + V2(t, x)), (18)

where T ∗ = t1 − t10 ∈ T

Also for ti ∈ (t10, t1), and (ti, x) ∈ Sλ ∩ S∗ε and applying (3iii) we get

V (t+i , x+ Ii(x) + I∗i (x))

=V (ti, x+ Ii(x)) + V (t∗i , x+ Ii(x))− V (t+i , x+ Ii(x))

=V (t+i , x+ Ii(x)) + V (t+i , x+ Ii(x) + I∗i (x))− V (t+i , x+ Ii(x))

=V (t+i , x+ Ii(x)) + V1(t+i , x+ Ii(x) + I∗i (x))

+ V2(t+i , x+ Ii(x) + I∗i (x))− V1(t+i , x+ Ii(x))− V2(t+i , x+ Ii(x))

=V (t+i , x+ Ii(x)) + V1(t+i , x+ Ii(x) + I∗i (x))− V1(t+i , x+ Ii(x))

+ V2(t+i , x+ Ii(x) + I∗i (x))− V2(t+i , x+ Ii(x)).

(19)

Applying the Lipschitz property on V1 and V2, we get

≤Ψi(V (ti, x(ti))) + L1‖I∗i (x)‖+ L2‖I∗+(x)‖

=Ψi(V (ti, x(ti))) + (Li + L2)‖I∗i (x)‖

≤Ψi(V (ti, x(ti))) + (L1 + L2)
∑

t0<ti<t0+T

sup
x(ti)<λ

‖I∗i (x)‖.

From (4), let h(t) = (L1 + L2) sup
x∈Λ(t10,T ∗,λ)

‖f∗(t, x)‖ and ηi = (L1 + L2) sup
x(ti)<λ

‖I∗i (x)‖ Then from (18),
we have

D+V (t, x) ≤ g2(t, V (t, x)) + h(t),

and from (19), we have

V (t∗i , Ii(x) + I∗i (x)) ≤ Ψi(V (ti, x(ti))) + ηi(ti).
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Takem∗(t, t10, v10) to be the maximal solution of (4) and set v10 = V (t10, x
∗(t10)) applying (18) and

(19) and from the comparison theorem, we have

V (t, x∗(t, t0, x0)) ≤ m∗(t, t10, v10) for t ∈ Tk

From (7) and by the choice of ε1.∫ t1

t10

h(s)∆s+
∑

t0<ti≤t1

ηi = (L1 + L2)

∫ t1

t10

sup
x∗∈Λ(t10,T,λ)

‖f∗(s, x)‖∆s

+ (M1 +M2)
∑

t0<ti≤t∗
sup

x(ti)<λ
‖I∗i (x)‖

=(L1 + L2)
[ ∫ t1

t10

sup
x∈Λ(t10,T,λ)

‖f∗(s, x)‖∆s

+
∑

t10<ti<t1

sup
x(ti)<λ

‖I∗i (x)‖
]
< ε(L1 + L2) < ε1,

(20)

Take T ∗ > t∗ ∀t∗, T ∗ ∈ Tk such that ∫ t1t10 h(s)∆s+ 1
2(T ∗ − t∗)h(t1) < ε1

let h∗(t) be such that h∗(t) ∈ [T,R] and
h∗(t) = h(t) for t ∈ [t10, t1] ∈ Tk

h∗(t) = h(t1)
t1−T ∗ (t− T ∗) for t ∈ (t1, T

∗] ∈ Tk

h∗(t) = 0 when t ≥ T ∗∀t, T ∗ ∈ Tk.
Also define constants η∗i such that η∗i = ηi when ti ∈ (t10, t1] ∈ Tk

η∗i = 0 when ti > t1

And if (6) holds then by (20), we get that∫ t10+T

t10

|h∗(s)|∆s+
∑

t0<ti<t0+T

|η∗i | < ε1, (21)

takem∗(t, t10, v10) to be the maximal solution of (4) and h(s) = h∗(s), ηi = η∗i , then

m∗1(t, t10, v10) = m∗(t, t10, v10) for t ∈ Tk,

from (16) and (17), we deduce that

V (t10, x
∗(t10)) = V1(t10, x

∗(t10)) + V2(t10, x
∗(t10)) < ε1,

can be rewritten as
‖v10‖ε1, (22)

and applying (10), we have

‖m∗1(t, t10, w10)‖ < λ1 for t ≥ t10 ∈ Tk (23)

Since ε1 was chosen arbitrarily, then from (23) and from (3i) in our theorem, we have that

b(λ) ≥λ1 > ‖m∗1(t, t10, v10)‖ = ‖m∗(t, t10, v10)‖ ≥ V (t1, x
∗(ti, t10, v10))
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=V1(t1, x
∗(t1, t10, v10)) + V2(t1, x

∗(t1, t10, v10)) ≥ V2(t1, x
∗(t1, t10, v10))

≥b(‖x∗(t1, t10, v10)‖) = b(λ).

this is a contradiction since b(λ) > b(λ), so (13) is true for t ≥ t0 ∈ Tk

Choose ti ∈ (t0, t1) such that δ3 = ‖x∗(ti)‖ and (t, x∗(t)) ∈ Sλ ∩ S∗ρ and t ∈ [ti, t1) ∈ Tk.
Select δ∗3 such that δ3 < δ∗3 < λ and δ∗3 = ‖x∗(t10, t0, x0)‖, t10 6= ti ∈ (t0, t1) ∈ Tk. If we repeat the
previous staeps with δ3 = δ∗3 we will still get a contradiction and then show that (13) is true.
At t1 = tk from (14) we have ‖x∗(tk)‖ ≥ λ and ‖x∗(t)‖ < λ, for t ∈ [t0, ti]

‖x∗(t+i , t0, x0)‖ = x∗(ti) + (Ii + I∗i )(x∗(ti))

Choose λ(λ1) > 0 such that b(λ) ≥ sup
i

Ψi(m
∗
i (ti, t0, v10)) and the following same pattern as above, we

get (23) and applying (3i) and (3iii) to (23) we get

b(λ) ≥ sup
i

(Ψi(m
∗
1(ti, t0, v10))) > Ψi(m

∗
1(ti, t0, v10)) ≥ Ψi(V (ti, x

∗(ti)))

≥ V (ti, x
∗(ti)) ≥ V2(ti, x

∗(ti)) ≥ b(x∗(ti)) ≥ b(λ),

which is a contradiction since b(λ) > b(λ).
This implies that (13) is true for all t ∈ Tk and therefore (1) is integrally stable. �

4. Illustration

Consider the system 
x∆

1 = x2 cos t+ e−tx1 − (x3
1 + x1x

2
2) cos2 t, t 6= ti

x∆
2 = x1 cos t+ e−tx2 − (x2

1x2 + x2
2) cos2 t, t 6= ti

∆x1 = yx1 + zx2, ∆x2 = yx1 + zx2, t = ti,

for 2y =
√

1 + α1 +
√

1 + α2 − 2, 2z =
√

1 + α1 −
√

1 + α2 and −1 < α1 ≤ 0, −1 < α2 ≤ 0. Applying
the concept of vector Lyapunov function, we can choose V = (V1, V2)T where V1 = 1

2(x1 + x2)2,
V2 = 1

2(x1 − x2)2 so that the associated norm ‖x‖ =
√
x2

1 + x2
2.

V0(t, x) =
2∑
i=1

V1(x1, x2) =
1

2
(x1 + x2)2 +

1

2
(x1 − x2)2

=
1

2
(x2

1 + 2x1x2 + x2
2) +

1

2
(x2

1 − 2x1x2 + x2
2)

=
1

2
x2

1 + x1 + x2 +
1

2
x2

2 +
1

2
x2

1 + x1x2 +
1

2
x2

2

=x2
1 + x2

2

V0(t, x) =x2
1 + x2

2.
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Choose b(r) = r, a(r) = 2r2,
So the assumption

b(‖x‖) ≤ V0(t, x) ≤ a(‖x‖)

becomes √
x2

1 + x2
2 ≤ x

2
1 + x2

2 ≤ 2(
√
x2

1 + x2
2).

Computing for D+V ∆
1 (t, x) for V1(t, x) = V1(x1, x2) = 1

2(x1 − x2)2.

We have

D+V ∆
1 (x1, x2) = lim sup

µ(t)→0

1

µ(t)
{V1(x1 + µ(t)f1(t, x), x2 + µ(t)f2(t, x))− V (x1, x2)}

= lim sup
µ(t)→0

1

µ(t)
{1

2
[x1 + µ(t)f1(t, x)− (x2 + µ(t)f2(t, x))]2 − 1

2
(x1 − x2)2}

= lim sup
µ(t)→0

1

µ(t)
{1

2
[(x1 + µ(t)f1(t, x))2 + (x2 + µ(t)f2(t, x))2

−2((x1 + µ(t)f1(t, x))(x2 + µ(t)f2(t, x)))]− 1

2
(x1 − x2)2}

= lim sup
µ(t)→0

1

µ(t)
{1

2
[x2

1 + 2x1µ(t)f1(t, x) + µ2(t)f2
1 (t, x) + x2

2

+2x2µ(t)f2(t, x) + µ2(t)f2
2 (t, x)− 2x1x2 − 2x1µ(t)f2(t, x)

−2x2µ(t)f(t, x)− 2µ2(t)f1(t, x)f2(t, x)]− 1

2
(x1 − x2)2}

= lim sup
µ(t)→0

1

µ(t)
{1

2
[(x1 − x2)2 + 2µ(t)f1(t, x)(x1 − x2)

−2µ(t)f2(t, x)(x1 − x2)]− 1

2
(x1 − x2)2}

=
1

2
[(x1 − x2)2 + 2f1(t, x)(x1 − x2)− 2f2(t, x)(x1 − x2)]− 1

2
(x1 − x2)2

=
1

2
(x1 − x2)2 + (x1 − x2)(f1(t, x)− f2(t, x))− 1

2
(x1 − x2)2

= (x1 − x2)(f1(t, x)− f2(t, x))

= (x1 − x2)(x2 cos t+ e−tx1

−(x3
1 + x1x

2
2) cos2 t− x1 cos t− e−tx2 + (x2

1x2 + x3
2) cos2 t)

= (x1 − x2)(e−t(x1 − x2)− cos t(x1 − x2)− (x3
1 + x1x

2
2) cos2 t

+(x2
1x2 + x3

2) cos2 t)

≤ (x1 − x2)[(x1 − x2)(e−t − cos t)]

= (x1 − x2)2(e−t − cos t)

D+V ∆(x1, x2) ≤ (e−t − cos t)V1(x1, x2).
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for V2(x1, x2) = 1
2(x1 + x2)2,

D+V ∆
2 (x1, x2) = lim sup

µ(t)→0

1

µ(t)
{V2(x1 + µ(t)f1(t, x), x2 + µ(t)f2(t, s))− V (x1, x2)}

= lim sup
µ(t)→0

1

µ(t)
{1

2
(x1 + µ(t) + x2 + µ(t)f2(t, x))2 − 1

2
(x+x2)2}

= lim sup
µ(t)→0

1

µ(t)
{1

2
((x1 + µ(t)f1(t, x))2 + (x2 + µ(t)f2(t, x))2

+2(x1 + µ(t)f1(t, x))(x2 + µ(t)f2(t, x)))− 1

2
(x1 + x2)2}

= lim sup
µ(t)→0

1

µ(t)
{1

2
[x2

1 + 2x1µ(t)f1(t, x) + µ2(t)f2
1 (t, x) + x2

2 + 2x2µ(t)f2(t, x)

+µ2(t)f2
2 (t, x) + 2x1x2 + 2x1µ(t)f2(t, x)

+2x2µ(t)f1(t, x) + 2µ2(t)f1(t, x)f2(t, x)]− 1

2
(x1 + x2)2}

= lim sup
µ(t)→0

1

µ(t)
{1

2
[(x1 + x2)2

+2µ(t)f1(t, x)(x1 + x2) + 2µ(t)f2(t, x)(x1 + x2)]− 1

2
(x1 + x2)2}

=
1

2
[(x1 + x2)2 + 2f1(t, x)(x1 + x2) + 2f2(t, x)(x1 + x2)]− 1

2
(x1 + x2)2

= (x1 + x2)(2f1(t, x) + 2f2(t, x))

= (x1 + x2)(2[(x2 cos t+ e−tx1 − (x3
1 + x1x

2
2) cos2 t)

+(x1 cos t) + e−tx2 − (x2
1x2 + x2

2) cos2 t])

≤ (x1 + x2)(x1 + x2)(e−t + cos t)

D+V ∆
2 (x1, x2) ≤ (e−t + cos t)V2(x1, x2).

This follows that D+V ∆
1 (x1, x2)

D+V ∆
2 (x1, x2)

 =

e−t cos t

e−t − cos t

V1

V2

 . (24)

From system (24), we obtain the comparison result

g1(t, u1, u2) = (e−t − cos t)u1

g2(t, u1, u2) = (e−t + cos t)u2

u1(t+i ) = (1 + c1)u1(ti), u2(t+i ) = (1 + c2)u2(ti)

It is clear that u1 = u2 = 0 of (24) is integrally stable and hence by Theorem 3.2, x = y = 0 is also
integrally stable.
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5. Conclusion

In this work, we developed a comprehensive framework for analyzing the integral stability of impul-
sive dynamic equations on time scales using the comparison principle. By establishing a comparison
theorem, we provided a rigorous foundation for comparing the behavior of the original system to
that of a comparison system of lower order whose qualitative properties can easily be ascertained.
This enabled us to derive an integral stability theorem, which offers explicit sufficient conditions for
ensuring the cumulative effect of impulses and system dynamics remains bounded. Our approach,
which integrates Lyapunov functions and scalar comparison equations, not only unifies and extends
existing stability results but also provides a computationally tractable method for stability analysis.The
applicability of the proposed framework was demonstrated through an illustrative example, highlight-
ing its effectiveness in analyzing systems with mixed continuous-discrete dynamics and impulsive
effects. This example underscores the versatility of our approach and its potential for addressing
real-world problems in fields such as engineering, biology, and economics.
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