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MATHEMATICAL ANALYSIS OF FMD WITH OPTIMAL CONTROL

A.S. EEGUNJOBI∗, N. CHERE, D. IIYAMBO, P.M. NDEEVELO

Mathematics Department, Namibia University of Science and Technology, Windhoek, Namibia
∗Corresponding author: samdet1@yahoo.com

Received Mar. 8, 2025

Abstract. Foot-and-Mouth Disease (FMD) is a highly contagious infection that impacts livestock and
poses significant economic challenges in Namibia. This study develops an SEIRV mathematical model
incorporating environmental transmission dynamics to analyze FMD spread. The model divides the
population into Susceptible, Exposed, Infectious, Recovered, and Environmental compartments, accounting
for pathogen shedding anddecay. Wederive the basic reproduction numberR0, conduct sensitivity analysis,
and propose optimal control strategies using Pontryagin’s principle. Simulations based on Namibian data
highlight the need for integrated control measures, including environmental management and vaccination,
to reduce FMD transmission.
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1. Introduction

Mathematical analysis serves as a fundamental tool for understanding complex real-world systems
in various domains, including physical, economic, and biological sciences. It provides a rigorous
framework through the theories of differentiation, integration, limits, and analytic functions, enabling
the study of dynamic and intricate systems [12–14]. Among its numerous applications, mathematical
modelling plays a crucial role in epidemiology, aiding in the prediction, control, and mitigation of
infectious diseases.

In this study, we apply mathematical analysis to investigate the transmission dynamics of Foot-and-
Mouth Disease (FMD), a highly contagious viral infection affecting livestock in Namibia. FMD has
severe economic consequences, disrupting local and international trade in animal-based products
[8]. Epidemiological modelling provides a structured approach to understanding the spread of
such diseases, facilitating the design of effective control strategies. Our approach builds on classical
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compartmental models, particularly the Susceptible-Infectious-Recovered (SIR) model, introduced by
Kermack and McKendrick in the early 20th century [5].

Mathematical models have been widely employed in epidemiology to study disease dynamics and
design intervention strategies. One of the earliest applications of mathematical modelling in disease
control dates back to Bernoulli’s analysis of smallpox vaccination in the 18th century [1]. Later, Ross
developed mathematical frameworks for malaria prevention [2], while Eegunjobi et al. [3] studied the
super-infection of two strains of the dengue virus, demonstrating how co-infection dynamics influence
disease progression and control strategies. Van den Driessche and Watmough refined compartmental
models to incorporate reproduction numbers and equilibrium analysis [4].

Recent studies have appliedmathematicalmodels to livestock diseases, including FMD. Zhao et al. [6]
analyzed the economic impact of FMD outbreaks in the United States, emphasizing the importance
of preventive measures. Coburn et al. [5] developed influenza transmission models, demonstrating
the applicability of compartmental frameworks to various infectious diseases. Gaff and Schaefer [7]
explored optimal vaccination and treatment strategies through mathematical optimization techniques.

Further advancements in epidemiological modelling involve extending the classical SIR model
to incorporate additional compartments and demographic factors such as birth and death rates [9].
These extensions improve model accuracy and provide deeper insights into disease persistence and
eradication strategies. Monteiro et al. [10] highlighted the role of incubation delays in shaping epidemic
trends, while Song and Chen [11] examined optimal control strategies in structured populations.

Our study extends these theoretical foundations by formulating an FMD transmission model tailored
to Namibia’s livestock industry. We analyze the stability properties of equilibrium points, emphasizing
the role of the basic reproduction number (R0) in determining disease persistence or eradication. If
R0 ≤ 1, the disease-free equilibrium is globally asymptotically stable, while for R0 > 1, an endemic
equilibrium emerges.

This study applies mathematical modelling to analyze FMD dynamics in Namibia, building upon
classical and modern epidemiological frameworks. By incorporating demographic and control factors,
our model offers insights into disease control strategies and long-term epidemic behavior.

The remaining sections of this article are arranged as follows: In section 2, we present the derivation
of our model. Section 3 illustrates the main results, while Section 4 provides the application of the
results to the formulated model with infection force under intervention policy to support our findings.
In the last section, we provide a brief discussion and summary of the results.

2. Mathematical Formulation

We define the following compartments and transitions in the model: S: Susceptible individuals E:
Exposed individuals I : Infectious individuals R: Recovered individuals V : Environment (reservoir).
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Susceptible (S) individuals enter the system at rate α, they can be infected by infectious individuals
(βSI) or by exposure from the environment (λVS). - Susceptible individuals die naturally at rate ε.
In Exposed (E), Susceptible individuals move to the exposed compartment either due to infection
by infectious individuals (βSI) or by exposure from the environment (λVS). Exposed individuals
transition to the infectious compartment at rate γE. Exposed individuals shed the virus back into the
environment at rate ωE. Exposed individuals die naturally or from the disease at rate ε. In Infectious
(I), Exposed individuals move to the infectious state at rate γE. Infectious individuals recover at
rate θI or die at combined rate µ + ε. Infectious individuals shed the virus into the environment
at rate ρI . Recovered (R) individuals return to immunity at rate θI and die naturally at rate ε.The
Environment (V) receives the virus from both exposed individuals (ωE) and infectious individuals
(ρI). The environment decays naturally at rate δ, and contributes to new infections at rate λVS.

The corresponding differential equations for each compartment are given below:
dS

dt
= α− βSI − λVS − εS,

dE

dt
= βSI + λVS − (γ + ε)E − ωE,

dI

dt
= γE − (µ+ ε+ θ)I − ρI,

dR

dt
= θI − εR,

dV
dt

= ρI + ωE − λV − δV

(1)

Figure 1. Diagram

3. Mathematical Analysis of the SEIRV Model

Initially, the study assesses the well-posedness of the model by investigating the positivity and
boundedness of the solutions for S, E, I , and R in relation to time (t). These analytical assessments are
pivotal in establishing the biological significance of the formulated environmental FMD model.
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3.1. Positive Invariance of the SEIRV Model. To ensure the model is biologically meaningful, we
define the feasible region:

Ω =
{

(S,E, I,R,V) ∈ R5
+ | S + E + I +R = N, S,E, I,R ≥ 0, V ≥ 0

}
.

Considering

dS

dt
= α− βSI − λVS − εS =⇒ dS

dt
+ Sp(t) = α where p(t) = βI + λV + ε

solving, we obtain

S(t) = S(0) + e−
∫
βI+λV+εdn

[ ∫ t

0
αe−

∫
βI+λV+εdndt

]
≥ 0. (2)

∀t ≥ 0, S(t) ≥ 0, this is also true for E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, and V ≥ 0.

3.2. Boundedness of Solutions for the SEIRModel. Since S + E + I + R = N , we already know
that S,E, I,R are bounded. We now check the boundedness of V .

Solving:

V(t) = e−(λ+δ)t
[
V(0) +

∫ t

0
(ρI + ωE)e(λ+δ)tdt

]
. (3)

Since I(t) is bounded, the integral remains finite, ensuring that V is bounded.
Since all state variables remain non-negative and bounded, we conclude that the feasible region Ω

is positively invariant under the system dynamics. This ensures that the model remains biologically
meaningful for all t ≥ 0

3.3. Disease-free and endemic Equilibrium. The disease free equilibrium is given as

(S,E, I,R,V) = (
α

ε
, 0, 0, 0, 0)

The endemic equilibrium is given by:

S∗ =
(γ + ε+ ω)(µ+ ε+ θ + ρ)(λ+ δ)

βγ(λ+ δ) + λ (ω(µ+ ε+ θ + ρ) + ργ)
,

E∗ = (µ+ ε+ θ + ρ)
I∗

γ
,

I∗ =
αγ(γ + ε+ ω)(µ+ ε+ θ + ρ)− ε(λ+ δ)

βγ(λ+ δ) + λ (ω(µ+ ε+ θ + ρ) + ργ)
,

R∗ =
θ

ε
I∗,

V ∗ =
ω(µ+ ε+ θ + ρ) + ργ

γ(λ+ δ)
I∗.
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3.4. The Basic Reproduction Number R0. Building on the approach presented in [4]- [15] and
leveraging the next-generation matrix method, we proceed to compute the basic reproduction number
through a structured sequence of steps. Considering the right hand side of equation E(t), I(t) and V in
equation (1) we derive F − U , where F represents new infections, while U accounts for all other terms
governing the dynamics of the compartment under consideration. The new infections from E, I,V is
given as

F =


(βSI + λVS

0

0

 . At the disease-free equilibrium (DFE), we where S = α
ε and E = I = V = 0,

so the Jacobian of F with respect to (E, I,V) is:

F =


0 βα

ε
λα
ε

0 0 0

0 0 0

 . From the equations of E, I,V , the transition terms are:

V =


(γ + ε+ ω)E

−γE + (µ+ ε+ θ + ρ)I

−ωE − ρI + (λ+ δ)V

 . Taking the Jacobian of V with respect to (E, I,V), we get:

V =


γ + ε+ ω 0 0

−γ µ+ ε+ θ + ρ 0

−ω −ρ λ+ δ

 and

V −1 =


1

γ+ε+ω 0 0

γ
(γ+ε+ω)(µ+ε+θ+ρ)

1
µ+ε+θ+ρ 0

ωε+γρ+ωµ+ωρ+ωθ
(γ+ε+ω)(µ+ε+θ+ρ)(λ+δ)

ρ
(µ+ε+θ+ρ)(λ+δ)

1
λ+δ

 .
We compute the FV −1 and the basic reproduction number R0 for the problem under consideration
is defined as the spectral radius of the non-negative matrix FV −1, denoted mathematically as R0 =

ρ(FV −1).

R0 =
β α γ

ε (γ + ε+ ω) (µ+ ε+ θ + ρ)
+

αγ λ ρ

ε (γ + ε+ ω) (µ+ ε+ θ + ρ) (λ+ δ)

+
αλω

(γ + ε+ ω) (λ+ δ) ε

(4)

The basic reproduction number, R0, is defined as the average number of secondary infections
produced by one infectious individual in a completely susceptible population. This term represents
the average number of new infections generated through direct contact with an infectious FMD animal.
When an infectious animal sheds the virus, the overall chance that this environmental virus leads to a
new infection is captured by second term in the R0 expression. This term quantifies the new infections
generated indirectly via the environment contaminated by infectious animals while the third term
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captures the infections due to environmental contamination that originate from animals that are still in
the incubation phase. This is indirect transmission via the environment from exposed animals.

Sensitivity Analysis of R0

The normalized sensitivity indices ΓR0
ψ as in [22] quantify the proportional change in R0 due to a

small change in parameter ψ defined as

ΓR0
ψ =

∂R0

∂ψ
× ψ

R0
. (5)

Positive values indicate R0 increases with ψ, while negative values indicate R0 decreases with ψ. The
magnitude reflects the strength of the effect. The normalized sensitivity indices for each parameter is
given as

ΓR0
α > 0,ΓR0

β > 0,ΓR0
λ > 0,ΓR0

γ > 0

while
ΓR0
ε < 0,ΓR0

ω < 0,ΓR0
µ < 0,ΓR0

θ < 0,ΓR0
ρ < 0,ΓR0

δ < 0,

and illustrated in Fig.

Figure 2. Sensitivity indices graph
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Table 1. Normalized Sensitivity Indices of R0

Parameter (K) Sensitivity Index (ΓR0
K ) Interpretation

α (Recruitment rate) 1.000 Strongest positive effect.
β (Direct transmission rate) 0.213 Moderate positive effect.
λ (Environmental transmission rate) 0.785 Large positive effect.
ε (Natural death rate) −1.001 Strongest negative effect.
γ (Transition rate: E → I) 0.051 Weak positive effect.
ω (Shedding rate: E → V) −0.051 Weak negative effect.
µ (Disease-induced death rate) −0.005 Negligible negative effect.
θ (Recovery rate) −0.106 Moderate negative effect.
ρ (Shedding rate: I → V) −0.102 Weak negative effect.
δ (Environment decay rate) −0.785 Large negative effect.

It is observed form the estimation that α and λ are the strongest positive drivers of R0 while ε and δ
are the strongest negative drivers.Reducing environmental transmission (λ) and enhancing pathogen
decay (δ) are critical for controlling R0. Counterintuitively, higher shedding rates (ω, ρ) slightly reduce
R0, suggesting complex interactions in the model. This investigation highlights the importance of
environmental transmission (λ) and decay (δ) in FMD disease spread. Public health strategies should
prioritize reducing environmental contamination and enhancing pathogen degradation.

4. Optimal Control

In this section, we analyse the optimality function of SEIRV model using control variables u1 and
u2. The system dynamics with controls u1, and uu is given by:

dS

dt
= α− βSI − λVS − (ε+ u1)S,

dE

dt
= βSI + λVS − (γ + ε+ ω)E,

dI

dt
= γE − (µ+ ε+ θ + ρ)I,

dR

dt
= θI − εR+ u1S

dV
dt

= ρI + ωE − (λ+ δ + u2)V

(6)

Our mail goal is to reduce the number of infections and minimize environmental contamination. We
minimize the number of infections while controlling intervention costs:

J(u1, u2) =

∫ T

0

[
AE(t) +BI(t) + CV(t) +

D1

2
u21(t) +

D2

2
u22(t)

]
dt, (7)
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where A,B,C penalize FMD burden, and D1, D2 are positive weight control costs. We adopt the
Pontryagin’s maximum principle to find the optimal solution for the model.

Apply the Hamiltonian H to obtain the minimum value of Pontryagin’s maximum principle, which
is given

H = AE +BI + CV +
D1

2
u21 +

D2

2
u22 + λS [α− βSI − λVS − (ε+ u1)S]

+ λE [βSI + λVS − (γ + ε+ ω)E] + λI [γE − (µ+ ε+ θ + ρ)I]

+ λR [θI − εR+ u1S] + λV [ρI + ωE − (λ+ δ + u2)V] (8)

Theorem 4.1. There exists an optimal control u∗1, u∗2 and the corresponding solution (S∗, E∗, I∗, R∗V∗)

that minimizes J. For the above statement to be true, there exists adjoint functions
λS(t), λE(t), λI(t), λR(t), λV(t) such that

dλS
dt

= (βI + λV + ε+ u1)λS − (βI + λV)λE − u1λR

dλE
dt

= −A+ (γ + ε+ ω)λE − γλI − ωλV

dλI
dt

= −B + βS(λS − λE) + (µ+ ε+ θ + ρ)λI − θλR − ρλV

dλR
dt

= ελR

dλV
dt

= −C + λS(λS − λE) + (λ+ δ + u2)λV

(9)

with the transversality conditions

λS(T ) = λE(T ) = λI(T ) = λR(T ) = λV(T ) = 0.

Also,

u∗1 = max

(
0,min

(
umax1 ,

(λS − λR)S

D1

))
,

u∗2 = max

(
0,min

(
umax2 ,

λVV
D2

))
.

(10)

Proof. To find the optimal controls u∗1 and u∗2, we use the PontryaginMaximumPrinciple, which requires
that the optimal controls maximize the Hamiltonian. The partial derivatives ofH with respect to u1
and u2 are:

∂H

∂u1
= D1u1 − λSS + λRS,

∂H

∂u2
= D2u2 − λVV.

Setting these derivatives to zero for optimality:

D1u1 − (λS − λR)S = 0, D2u2 − λVV = 0.

Solving for u1 and u2:
u1 =

(λS − λR)S

D1
, u2 =

λVV
D2

.
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Since the controls are constrained by 0 ≤ u1 ≤ umax1 and 0 ≤ u2 ≤ umax2 , we apply the projection
condition:

u∗1 = max

(
0,min

(
umax1 ,

(λS − λR)S

D1

))
, u∗2 = max

(
0,min

(
umax2 ,

λVV
D2

))
.

�

u∗1 represents the optimal level of intervention that reduces the susceptible population S moving
into infected states. The expression ensures that the control remains within feasible bounds, avoiding
negative or excessive values. u∗2 represents the optimal level of environmental control effort applied
to reduce the presence of Foot and Mouth Disease (FMD) in the environment. This could include
disinfection of contaminated areas, movement restrictions, or biosecurity measures. Again, it ensures
that the control is within the allowed range

4.1. Numerical Simulation Results. By applying the data presented in Table 3 to our SEIRV model,
we calculated a basic reproduction number of R0 = 2.. Since R0 > 1, this indicates that the foot-
and-mouth disease (FMD) is expected to spread through the population, potentially triggering an
outbreak.

Figure 2 further illustrates how the SEIRV model uses the specified variables and parameter values
to simulate the disease dynamics over time. Notably, the figure shows an encouraging trend: by day
20, the infection rate falls to zero. This decline suggests that despite the initial potential for rapid
disease transmission, the progression of the outbreak may be effectively controlled as the infection
subsides over time. Additionally, the FMD recovery curve displays a markedly steep incline early
in the outbreak, indicating that infected livestock are recovering at an accelerated rate. This trend
suggests that improvements in veterinary care, may be significantly boosting recovery rates. As these
advancements take effect, they likely contribute to reducing the overall impact of the FMD outbreak by
shortening the infectious period and limiting further transmission.

Moreover, the curve representing exposed livestock exhibits a clear downward trend, declining
steadily over time and reaching zero at approximately 24 days. This rapid decrease suggests that
the latent period during which livestock are susceptible but not yet infectious is relatively short, or
that early intervention measures (such as prompt detection, quarantine, and vaccination) are highly
effective in preventing further exposures. The reduction of exposed livestock to zero is a promising
sign, as it implies that new cases are no longer emerging in this category, thereby helping to contain the
outbreak. Additionally, the model reveals that the environmental factor follows an intriguing pattern
during the outbreak. Initially, this factor increases as the virus accumulates in the environment—likely
due to early shedding from infected animals and the lack of immediate decontamination. However,
after approximately 20 days, the environmental factor begins to decline. This downturn may be
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attributed to effective decontamination measures, the natural decay of the virus, or adaptive changes
in environmental conditions that reduce viral persistence.

An increase in the infectious rate expedites disease progression, significantly impacting the dynamics
of the exposed compartment. As this rate rises, livestock quickly transition from the exposed state to
the infectious stage, resulting in a marked reduction in the number of animals remaining in the exposed
compartment, as illustrated in Fig. 4. Concurrently, this rapid progression leads to an expanded
recovery compartment, with more animals moving through the stages of infection and eventually
recuperating.

As the rates ω and ρ increase, as shown in Fig.5, the amount of virus shed by these groups rises,
leading to a significant accumulation of the pathogen in the environment. This elevated viral presence
not only reflects the intensity of the outbreak but also enhances the potential for secondary infections,
as the FMD virus can persist in environmental reservoirs. The figure clearly demonstrates that higher
values ofω and ρ are directly associatedwith an increase in V underscoring the importance of controlling
virus shedding to mitigate the spread of FMD. Fig.6 illustrate the impact of gamma on the recovery
compartment. Increasing γ shortens the time spent in the exposed compartment, leading to a faster
accumulation of animals in the infectious compartment.This in turn feeds the recovery process, as more
infectious animals translate into more recovered compartment. The rate of increase in R depends on
both γ, meaning that if γ increases, R increases proportionally.

Figure 3. Sensitivity indices graph
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Table 2. Initial Conditions (Variables)
Variable Value Reference
S(0) 2.4× 106 [23]
E(0) 100 [26]
I(0) 50 [24]
R(0) 0 Assumed
V(0) 1,000 [27]

Table 3. Parameter Values
Parameter Value Unit Description Reference
α 750 individuals/day Cattle birth rate [23]
β 0.0005 individuals-1·day-1 Direct transmission rate [24]
λ 0.0001 (TCID50/mL)-1·day-1 Environmental transmission rate [25]
ε 0.00014 day-1 Natural mortality rate [23]
γ 0.1429 day-1 Progression rate (latent to infectious) [27]
ω 0.1 TCID50·individual-1·day-1 Shedding rate (exposed) [26]
µ 0.005 day-1 Disease-induced mortality rate [24]
θ 0.1 day-1 Recovery rate [25]
ρ 0.5 TCID50·individual-1·day-1 Shedding rate (infectious) [26]
δ 0.05 day-1 Environmental decay rate [27]

5. Conclusion

This study develops a compartmental mathematical model to explore the transmission dynamics of
foot-and-mouth disease, incorporating data from Namibia for numerical simulations and sensitivity
analysis. Themodel’s solutionswere proven to be both positive and bounded. Furthermore, equilibrium
points were identified, and optimal control strategies were examined. The basic reproduction number
was derived, and extensive numerical simulations were performed. Our findings yield the following
key insights:

• u∗1 and u∗2 expressions provide the optimal control strategies for minimizing the objective
functional while satisfying the system dynamics.
• our investigation highlights the importance of environmental transmission (λ) and decay (δ) in
disease spread. Public health strategies should prioritize reducing environmental contamina-
tion and enhancing pathogen degradation.
• Increasing γ reduces the susceptible population while expanding the recovered compartment.
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• An increase in both ρ and ω initially amplifies the environmental compartment before causing
its decline.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication
of this paper.
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