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Abstract. In multi-criteria decision-making, there are different approaches to determining the weights
before using any techniques (e.g., analytic hierarchy process and fuzzy entropy methods). In this paper,
we integrate machine learning techniques with multi-criteria decision-making to address two distinct
challenges: the selection of optimal phase transition materials and the classification of diabetes data. For
the multi-criteria decision-making problem, we utilize extended entropy functions—including entropy,
fractional entropy, and Tsallis entropy—to calculate criteria weights based on non-probabilistic and prob-
abilistic aspects. These weights guide the selection process using multi-objective optimization methods
like ratio analysis and complex proportional assessment, aimed at identifying materials with superior
thermal performance at minimal cost for latent heat thermal energy storage systems. Empirical results
validate the effectiveness of our proposed strategies in phase transition material selection and highlight
their advantages when compared to the technique for order performance by similarity to the ideal solution.
Additionally, a classification problem for diabetes data is addressed using pattern recognition, demon-
strating the synergy between machine learning and multi-criteria decision-making in tackling diverse
decision-making challenges.
2020 Mathematics Subject Classification. 26-08; 58-08; 62C05; 62E99; 94-08; 94A17.
Key words and phrases. fuzzy set; entropy; multi-criteria decision-making; optimization; pattern recogni-
tion; ratio analysis.

1. Introduction

In order to give a framework for addressing a range of issues where an indefiniteness originating
more from a type of inherent ambiguity than from a statistical fluctuation plays a vital role, Zadeh [27]
created the fuzzy sets theory. Since users often select a fuzzy set’s membership function subjectively,
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different people may provide quite different membership functions for the same idea. Users are always
presented with the knowledge grade of the items in the fuzzy sets via the forms of the membership
functions. To put it another way, each membership function also helps users see the fuzziness of the
associated fuzzy set. Therefore, in order to quantify the fuzziness of fuzzy collections, we need certain
criteria. To express the fuzziness of a fuzzy set, De Luca and Termini [6] used the idea of entropy. This
note proposes the introduction of a measure for a generalized set’s degree of entropy or fuzziness.
Since no probabilistic idea is required to define this number, its meaning differs significantly from
that of classical entropy. A global measure of the situation of interest’s indefiniteness is provided by
this function. A notion from fuzzy set theory and information theory, fuzzy entropy quantifies the
degree of fuzziness or uncertainty in a fuzzy set or system. Entropy is generally used to quantify
information content, randomness, or uncertainty. Fuzzy entropy measures the degree of ambiguity or
uncertainty around the items of a fuzzy set in the context of fuzzy systems. Entropy is unquestionably
an appropriate measurement of a fuzzy collection. The entropy of fuzzy sets has been the subject
of several works (see, for example, [7], [16] and [26]). Fuzzy entropy is used in fields like pattern
recognition, image processing, time-series analysis, and machine learning. For example, it can help
assess the complexity of physiological signals or determine the uncertainty in classification problems.
If a fuzzy set represents the concept of "young age," the fuzzy entropy would indicate the uncertainty
in determining who qualifies as young. If many people have membership values close to 0.5, the set has
high entropy. If most values are close to 0 or 1, the entropy is lower, indicating clearer distinctions. Fuzzy
entropy is a useful metric when assessing or quantifying uncertainty in systems where information is
not binary or absolute but rather exists on a continuum. A fuzzy set allows elements to have degrees of
membership between 0 and 1, rather than being simply in or out of the set. Each element in a fuzzy set
has a membership value, often denoted by S(x), where 0 ≤ S(x) ≤ 1.

In classical systems, entropy (like Shannon entropy [21])measures uncertainty based on a probability
distribution, where each event has a certain probability. In fuzzy systems, entropy measures the
fuzziness or the uncertainty of membership values. The closer the membership values are to 0.5, the
higher the fuzziness (because they are neither close to full membership 1 nor full non-membership 0).

A universal set Y , where Y is real and finite, defines a fuzzy set S. Let S(y) : y → [0, 1] be the fuzzy
set S’s membership function for y ∈ Y . The following characteristics apply to the measure of fuzziness
En(S) [6]:

(1) If S is a crisp set in Y , then En(S) = 0.
(2) If S(y) = 1

2 , then En(S) is a unique greatest for every y ∈ Y .
(3) If S2(y) ≤ S1(y) forA1 ≤ 1

2 and S2(y) ≥ S1(y) forA1 ≥ 1
2 , thenEn(S1) ≥ En(S2) for two fuzzy

sets S1 and S2.
(4) As Sc is the traditional complement of S, then En(Sc) = 1− En(S).
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While specific formulas for fuzzy entropy vary based on the approach (e.g., De Luca and Termini’s
fuzzy entropy [6]), a common expression could look like this:

En(S) = −M

∑
y∈Y

S(y) log(S(y)) + (1− S(y)) log(1− S(y))

 , (1)

whereM is constant.
Making decisions is a fundamental part of almost all human activity, whether it be carrying out

everyday tasks or any kind of professional work. Making the best choices in industries may improve
product quality while reducing various hazards. Numerous professionals and scholars have researched
and developed various techniques to provide the best forecasts and crucial choices. Multi-criteria
decision-making (MCDM) is onemethod for resolvingmulti-objective optimization issues; see Jaimes et
al. [10]. When choosing from the given options, MCDM is utilized. It offers qualitative and quantitative
evaluations to determine the relative relevance of the requirements in relation to the overall goal of
the problems, as well as the value of each alternative with respect to each criterion (Ma et al. [15],
Dalalah et al. [5]). There are several approaches for MCDM. The labels Multi-Attribute Decision-
Making (MADM), Multi-Criteria Decision Assistance (MCDA), or Multi-Objective Decision-Making
(MODM) have been substituted by researchers for MCDM throughout time, see Yalcin et al. [25]. The
"Multiobjective Optimization on the basis of Ratio Analysis" (MOORA) approach is one of the many
MCDM techniques that have been created and evaluated over the past 20 years for resolving non-trivial
issues. It has garnered a lot of interest in a variety of application fields. Brauers and Zavadskas [3]
first used the MOORA technique to rank the alternatives using dimensionless square root ratios for
privatization issues in a transition economy. Additionally, Zavadskas et al. [29] presented the COPRAS
(Complex Proportional Assessment) approach as an MCDM tool. It is also used to determine which
option, out of all the options, is the best. To find a solution that has a ratio to the optimal solution, the
COPRAS approach compares the proportional ratios of the best and worst ideal solutions.

In information theory, many extensions of uncertainty were presented. Fractional entropy (Ubriaco
[23]) and Tsallis entropy (Tsallis [22]) are obtained, respectively, as

∑
s

pt(y)(− ln pt(y))θ1 , (2)

1

θ2 − 1

[
1−

∑
s

(pt(y))θ2

]
, (3)

where 0 ≤ θ1 ≤ 1, 1 6= θ2 ≥ 0, pt(.) is the probability mass function.
Researchers have recently shown a great deal of interest in the latent heat of phase transition

material (PTM), which stores thermal energy. An MCDM challenge is choosing the best material for an
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engineering application among two or more alternative materials based on two or more characteristics
or criteria (see, for example, [11], [13], and [14]).

This paper aims to apply MOORA and COPRAS methods of MCDM technique by obtaining the
criteria weights based on non-probabilistic and probabilistic entropy, fractional entropy, and Tsallis
entropy to suggest a methodical assessment technique for choosing the optimal PTM for a latent heat
energy thermal unit storage. The rest of the paper is formed as: In Section 2, the steps of getting
the weights of non-probabilistic and probabilistic entropy, fractional entropy, and Tsallis entropy
are presented. In Section 3, the MOORA and COPRAS techniques are illustrated. A systematic
assessment model for the selection process utilizing the provided methodologies, as well as a problem
of classification for data of diabetes using recognition of patterns, are provided in Section 4.

2. Utilizing the entropy extensions, calculate the weights

In this section, we will use the entropy extensions in their probabilistic and non-probabilistic to
calculate the weights. MCDM was used to choose the best solution from the set of solutions S =

{S1, S2, ..., Sr} based on the set of criteria T = {T1, T2, ..., Tt}. In which, each crirerion Tj is assigned
with a weight wj , j = 1, 2, ..., t, so that∑(wj) = 1. A MCDM problem was presented by the matrix
[ηij ]r×t:

Weight (w) w1 w2 · · · wt

Alternatives/Criteria T1 T2 · · · Tt

∆1 η11 η12 · · · η1t

∆2 η21 η22 · · · η2t
... ... ... . . . ...

∆r ηr1 ηr2 · · · ηrt

Total Weighted Score
∑t

j=1wjη1j
∑t

j=1wjη2j · · ·
∑t

j=1wjηrj

where ηij ∈ R+, i = 1, 2, ..., r, j = 1, 2, ..., t. Using the provided value, the entropy extension techniques
determine the weight for each criterion based on how important the criteria are both within and
between. The weights acquired will be used for the COPRAS and MOORAMCDM techniques.

2.1. Non-probabilistic entropy extensions. In this subsection, we will use the fuzzy entropy to obtain
the weights; see [1], [6], and [9]. The process below should be used to calculate objective weight using
entropy extensions.
Step 1: Determining the amounts of ptij with i = 1, 2, ..., r and j = 1, 2, ..., t utilizing

ptij =
ηij

r +
∑r

i=1 ηij
, (4)
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with noting that this choice makes ptij ∈ [0, 1], but prevent it from the probability attribute.
Step 2: Using j = 1, 2, ..., t, the measurement entropy enj of each criteria Tj is computed under the
same conditions in (1). Therefore, we can use the entropy or its extensions, which are given as:

(1) We can use the entropy function in (1) (WithM = 1
r ) as

enj = −1

r

[
r∑
i=1

ptij ln ptij + (1− ptij) ln(1− ptij)

]
. (5)

(2) For the fractional entropy function given in (2), we can obtain a familiar form that satisfies the
same conditions in (1). Then, we have

enj =
1

r

[
r∑
i=1

ptij(− ln ptij)
θ1 + (1− ptij)(− ln(1− ptij))θ1

]

=
1

r

[
r∑
i=1

Fr(θ1)

]
,

(6)

where Fr(θ1) = ptij(− ln ptij)
θ1 + (1− ptij)(− ln(1− ptij))θ1 .

(3) For the Tsallis function given in (3), we can obtain a familiar form that satisfies the same
conditions in (1). Then, we have

enj =
1

r(θ2 − 1)

[
r∑
i=1

1− (ptij)
θ2 − (1− ptij)θ2

]

=
1

r

[
r∑
i=1

Ts(θ2)

]
,

(7)

where Ts(θ2) = 1
(θ2−1)1− (ptij)

θ2 − (1− ptij)θ2 .
The average quantity of information resulting from fuzziness may be understood as those entropies.
Figures 1 and 2 show the plot of Fr(θ1) and Ts(θ2) for 1000 simulated data set over [0, 0.5] and [0.5, 1]

with different values of θ1 and θ2, and we can see the satisfaction of the conditions of the measure of
fuzziness (The plots over [0, 0.5] increases and over [0.5, 1] decreases).

Figure 1. Plot of Fr(θ1) for 1000 simulated data set over [0, 0.5] (Left) and [0.5, 1] (Right).
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Figure 2. Plot of Ts(θ2) for 1000 simulated data set over [0, 0.5] (Left) and [0.5, 1] (Right).

Step 3: Since the normalized maximal entropy is assigned to 1, then we can use the expression 1− enj
to determine the weights. Then, using j = 1, 2, ..., t, the weight wj for every criteria Tj is determined
by

wj =
1− enj∑t
j=1 1− enj

. (8)

2.2. Probabilistic entropy extensions. In this subsection, we will use the entropy to obtain the weights;
see [8] and [1]. The process below should be used to calculate objectiveweight using entropy extensions.
Step 1: Determining the amounts of ptij with i = 1, 2, ..., r and j = 1, 2, ..., t utilizing the softmax
function:

ptij =
eηij∑r
i=1 e

ηij
, (9)

with noting that this choice make ptij ∈ [0, 1], but keep the probability attribute.
Step 2: Since ptij can serve as a probability distribution, then we can use the original entropy function
and their extensions to compute enj of each criterion Tj , j = 1, 2, ..., t.

(1) Since the maximal entropy is achieved for the uniform distribution of the set of r alternatives
(i.e., ptij = 1

r ). Then, for the Shannon entropy, we have

Maxen = −
r∑
i=1

1

r
ln

1

r
= ln r.

The entropy function can then be normalized by comparing it to its maximum (to guarantee
that each value falls between 0 and 1) as

enj =
−
∑r

i=1 ptij ln ptij
Maxen

=
−1

ln r

r∑
i=1

ptij ln ptij . (10)
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(2) For the fractional entropy function given in (2), its maximum attained for the uniform distribu-
tion of the set of r alternatives (i.e., ptij = 1

r ). Then, we have

Maxfen =

r∑
i=1

1

r

(
− ln

1

r

)θ1
= (ln r)θ1 .

The fractional entropy function can then be normalized by comparing it to its maximum as

enj =

∑r
i=1 ptij(− ln ptij)

θ1

Maxfen
=

1

(ln r)θ1

r∑
i=1

ptij(− ln ptij)
θ1 , (11)

where 0 ≤ θ1 ≤ 1.
(3) For the Tsallis function given in (3), its maximum attained for the uniform distribution of the

set of r alternatives (i.e., ptij = 1
r ). Then, we have

MaxTs =
1

θ2 − 1

1−
r∑
j=1

(
1

r

)θ2 =
1

θ2 − 1

(
1− (r)1−θ2

)
.

The Tsallis entropy function can then be normalized by comparing it to its maximum as

enj =
1

θ2−1
(
1−

∑r
i=1(ptij)

θ2
)

MaxTs
=

(
1−

∑r
i=1(ptij)

θ2
)

(1− (r)1−θ2)
, (12)

where 1 6= θ2 ≥ 0, t 6= 1.
Step 3: Using j = 1, 2, ..., t, the weight wj for every criteria Tj is determined by

wj =
1− enj∑t
j=1 1− enj

. (13)

Start

Formulation of decision matrix.

Normalization of decision matrix.

Assignment of weight to each response.

Formation of weighted normalized matrix.

Calculation of objectives to be maximized and minimized.

Ranking of responses (Optimization).

End

Figure 3. Steps in MOORA and COPRAS methods.
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3. The MOORA and COPRAS techniques

In this section, we will show the steps to implement the techniques of MOORA and COPRAS
procedures. The flow of the experiment is depicted in Figure 3.

3.1. MOORA technique. Brauers and Zavadskas originally presented the MOORA approach in
2004 [3]. In a production setting, complicated decision issues with competing objectives can be
effectively resolved by using this multi-objective optimization approach. The following stages are part
of the MOORA technique:
Step 1: Using i = 1, 2, ..., r and j = 1, 2, ..., t, the standardized matrix is calculated by

Y = [yij ]r×twhere yij =
ηij√∑r
i=1(ηij)

2
. (14)

Note that The square root of the sum of each alternative performance index is the most robust option
among the several options for the denominator of the normalization ratio, according to Brauers and
Zavadskas [3].
Step 2: After standardizing with the weight W = [Wij ]r×t for i = 1, 2, ..., r and j = 1, 2, ..., t, the
decision matrix is calculated by

Wij = wj × yij , (15)

where wj is the weights obtained from (8) or (13).
Step 3: For every i = 1, 2, ..., r, let β be the set of all non-benefit criteria (objectives to be minimized)
and α be the set of benefit criteria (objectives to be maximized). Consequently, we identify the two
expressions:

Bi =
1

| α |
∑
j∈α

Wij , (16)

NBi =
1

| β |
∑
j∈β

Wij . (17)

Step 4: Using i = 1, 2, ..., r to determine each alternative’s priority value

Di = Bi −NBi. (18)

Step 5: Ordering the alternatives ∆k > ∆i if Dk > Di for all i, k = 1, 2, ..., r. The best option may then
be identified by looking for the greatest of all Di assessment values:

∆∗ =

{
∆i | max

i
Di

}
. (19)

As well as, we can calculate the performance index value for each alternative

Pi =
Di

DMax
. (20)

The finest option is the one that has 1 degree. The alternatives are ranked from big to small.
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3.2. COPRAS technique. In 1994, the COPRAS approach was originally presented [29]. The following
is the presentation of the steps.
Step 1: Using i = 1, 2, ..., r and j = 1, 2, ..., t, the standardized matrix is calculated by

Y ∗ =
[
y∗ij
]
r×twhere y∗ij =

ηij∑r
i=1 ηij

, (21)

which is the Voogd ratio (Voogd [24]).
Step 2: After standardizing with the weight W ∗ =

[
W ∗ij

]
r×t

for i = 1, 2, ..., r and j = 1, 2, ..., t, the
decision matrix is calculated by

W ∗ij = wj × y∗ij , (22)

where wj is the weights obtained from (8) or (13).
Step 3: For every i = 1, 2, ..., r, let β be the set of all non-benefit criteria (objectives to be minimized)
and α be the set of benefit criteria (objectives to be maximized). Consequently, we identify the two
expressions:

B∗i =
∑
j∈α

W ∗ij , (23)

NB∗i =
∑
j∈β

W ∗ij . (24)

Step 4: Using i = 1, 2, ..., r to determine each alternative’s priority value

D∗i = B∗i +

∑r
k=1NB

∗
k

NB∗i
∑r

k=1
1

NB∗
k

. (25)

Step 5: Ordering the alternatives ∆k > ∆i if D∗k > D∗i for all i, k = 1, 2, ..., r. The best option may then
be identified by looking for the greatest of all D∗i assessment values:

∆∗ =

{
∆i | max

i
D∗i

}
. (26)

As well as, we can calculate the performance index value for each alternative

P ∗i =
D∗i
D∗Max

. (27)

The finest option is the one that has 1 degree. The alternatives are ranked from big to small.

4. Application

This part includes a case study, details on the materials, their characteristics, and the relative weights
of the assessment criteria. This case study was utilized by Rathod and Kanzaria [17] and Zakeri et
al. [28] to determine the optimal PTM for solar energy storage. Nine substitutes, including calcium
hexahydrate chloride, acid stearic, p116, RT 60, wax paraffin RT 30, n-docosane, n-octadecane, n-
nonadecane, and n-eicosane, are thought to be PTM, see Table 1.
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The cost’s objective value, in this instance, is qualitative in nature; that is, a numeric value is not
accessible. A fuzzy conversion scale with ranked value judgment is used to translate them into
quantitative value. Using fuzzy logic, an eleven-point scale is taken into consideration to reflect the
material selection requirements on a qualitative scale. Table 2 displays the same information. The
intended data of the criterion with fuzzy score is displayed in Table 3, which is a decision matrix. We
have used the equations from (4) to (13), to obtain non-probabilistic and probabilistic entropy and
its extensions decision matrix and their weights in Table 4. Moreover, in Tables 5, 6 and 7, we have
calculated the weighted normalized non-probabilistic and probabilistic entropy and its extensions
decision matrix using the MOORA and COPRAS techniques, which described in the equations (14),
(15) and (21), (22) respectively.

Rathod and Kanzaria [17] used the TOPSIS (Technique for Order Performance by Similarity to
Ideal Solution) method in this case study, where the weights of the criterion are determined using an
analytical hierarchy process approach. In the TOPSIS method,B+

i denotes the separation of each option
from the positive-ideal solution, and NB−i denotes the separation from the negative ideal solution,
where i = 1, 2, ..., r. The following is an expression for the relative proximity to the ideal solution:

Ri =
NB−i

B+
i +NB−i

,

We compared the different procedures with the TOPSIS method. The analysis results and ranking
based on entropy, fractional entropy (θ1 = 0.1), and Tsallis entropy (θ2 = 1.5) are shown in Tables
8, 9 and 10. Moreover, the comparison of ranks impacted by the weights assigned to the criterion by
non-probabilistic and probabilistic entropy, fractional entropy, and Tsallis entropy in MOORA and
COPRAS methods, besides TOPSIS method, are displayed in Figures 4 and 5. We can see that all the
techniques show that after taking into account six criteria, it is determined that the material labeled
as alternative ∆1, or calcium hexahydrate chloride, is the first best option for the specified design
application under the provided conditions. Moreover, the technique based on Tsallis entropy gives the
same ranks for non-probabilistic and probabilistic MOORA or COPRAS procedures. Also, the ranks of
both MOORA and COPRAS methods based on non-probabilistic entropy and Tsallis entropy are the
same. Furthermore, we show the Spearman rank correlation coefficient between TOPSIS and the other
methods in Figure 6. We can see that the probabilistic entropy MOORA and COPRAS are the highly
correlated with TOPSIS method.
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Table 1. Properties of PCMs for solar energy devices.

Material selection criteria
PTM Heat Latent Density Heat Specific (solid) Heat Specific (liquid) Conductivity Thermal Cost

(T1) (T2) (T3) (T4) (T5) (T6)
Calcium Hexahydrate Chloride 169.98 1560.0 1.4600 2.1300 1.0900 Very low
(∆1)
Acid Stearic 186.50 903.00 2.8300 2.3800 0.1800 Very high
(∆2)
p116 190.00 830.00 2.1000 2.1000 0.2100 Low
(∆3)
RT 60 214.40 850.00 0.9000 0.9000 0.2000 Very low
(∆4)
Wax Paraffin RT 30 206.00 789.00 1.8000 2.4000 0.1800 Low
(∆5)
n-Docosane 194.60 785.00 1.9300 2.3800 0.2200 Low
(∆6)
n-Octadecane 245.00 773.22 0.3767 2.2670 0.1400 Low
(∆7)
n-Nonadecane 222.00 775.80 1.7189 1.9210 0.1420 High
(∆8)
n-Eicosane 247.00 776.33 0.7467 2.3770 0.1380 Low
(∆9)

Table 2. Linguistic terms turn into fuzzy scores using an 11-point rating system. [18]

Term Linguistic Score Crisp

Low Exceptionally 0.045
Low Extremely 0.135
Low Very 0.255
Low 0.335
Average Below 0.410
Average 0.500
Average Above 0.590
High 0.665
High Very 0.745
High Extremely 0.865
High Exceptionally 0.955
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Table 3. Scores for the criteria’s objective data (decision matrix).

T1 T2 T3 T4 T5 T6

Max Max Max Max Max Min
∆1 169.98 1560.0 1.4600 2.1300 1.0900 0.255
∆2 186.50 903.00 2.8300 2.3800 0.1800 0.745
∆3 190.00 830.00 2.1000 2.1000 0.2100 0.335
∆4 214.40 850.00 0.9000 0.9000 0.2000 0.255
∆5 206.00 789.00 1.8000 2.4000 0.1800 0.335
∆6 194.60 785.00 1.9300 2.3800 0.2200 0.335
∆7 245.00 773.22 0.3767 2.2670 0.1400 0.335
∆8 222.00 775.80 1.7189 1.9210 0.1420 0.665
∆9 247.00 776.33 0.7467 2.3770 0.1380 0.335

Table 4. Non-probabilistic and probabilistic entropy and its extensions decision matrix
and their weights wj , j = 1, 2, ..., t.

Non-probabilistic Probabilistic
T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

∆1 0.000428836 0.000202556 0.0417388 0.0423246 0.104364 0.0238576 0 1 0.0797958 0.106619 0.237549 0.0947367
∆2 0.000470514 0.000117249 0.0809046 0.0472923 0.0172344 0.0697016 0 0 0.314024 0.136902 0.0956191 0.15464
∆3 0.000479344 0.00010777 0.0600352 0.0417285 0.0201068 0.0313423 0 0 0.151331 0.103468 0.0985311 0.102627
∆4 0.000540902 0.000110367 0.0257294 0.0178836 0.0191494 0.0238576 0 0 0.0455801 0.0311641 0.0975507 0.0947367
∆5 0.00051971 0.000102446 0.0514587 0.0476897 0.0172344 0.0313423 0 0 0.112109 0.139668 0.0956191 0.102627
∆6 0.000490949 0.000101927 0.0551752 0.0472923 0.0210643 0.0313423 0 0 0.127673 0.136902 0.0995214 0.102627
∆7 0.000618102 0.000100397 0.0107692 0.0450469 0.0134046 0.0313423 0.119203 0 0.027009 0.122274 0.0918698 0.102627
∆8 0.000560076 0.000100732 0.0491402 0.0381716 0.0135961 0.0622168 0 0 0.103376 0.0865105 0.0920537 0.142751
∆9 0.000623147 0.000100801 0.0213468 0.0472326 0.0132131 0.0313423 0.880797 0 0.0391019 0.136492 0.0916863 0.102627
Entropy: wj 0.185113 0.185732 0.153386 0.153986 0.164928 0.156854 0.416057 0.499032 0.0541038 0.0126834 0.0145073 0.00361651
Fractional: wj , θ1 = 0.1 0.238553 0.268664 0.116832 0.115598 0.139414 0.120939 0.175887 0.803502 0.013387 0.0025728 0.00379848 0.000853029
wj , θ1 = 0.5 0.195987 0.198655 0.146314 0.146684 0.161853 0.150506 0.377201 0.56213 0.0390371 0.00820388 0.0108717 0.0025557
wj , θ1 = 0.9 0.185214 0.185815 0.153254 0.153915 0.164975 0.156826 0.412912 0.505669 0.0519716 0.0119208 0.0140629 0.00346388
Tsallis: wj , θ2 = 0.5 0.207884 0.213104 0.139034 0.138743 0.157891 0.143344 0.186857 0.192315 0.157292 0.15478 0.154682 0.154074
wj , θ2 = 1.5 0.177696 0.177911 0.158346 0.15907 0.166007 0.16097 0.159855 0.157024 0.169964 0.171033 0.170915 0.17121
wj , θ2 = 2 0.174824 0.174967 0.160421 0.161072 0.166214 0.162502 0.157988 0.153456 0.171329 0.172423 0.172249 0.172556
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Table 5. The weighed normalized non-probabilistic and probabilistic entropy decision matrix.
Non-probabilistic (MOORA) Probabilistic (MOORA)

T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

∆1 0.0499789 0.104405 0.0439363 0.0510216 0.149591 0.0307819 0.112332 0.280519 0.0154976 0.00420249 0.0131583 0.000709724
∆2 0.0548362 0.0604344 0.0851643 0.05701 0.0247032 0.0899314 0.123249 0.162378 0.0300399 0.00469573 0.00217292 0.00207351
∆3 0.0558653 0.0555488 0.0631961 0.050303 0.0288204 0.040439 0.125562 0.149251 0.0222911 0.0041433 0.00253508 0.000932382
∆4 0.0630396 0.0568873 0.027084 0.0215584 0.027448 0.0307819 0.141687 0.152847 0.00955334 0.0017757 0.00241436 0.000709724
∆5 0.0605698 0.0528048 0.0541681 0.0574891 0.0247032 0.040439 0.136136 0.141878 0.0191067 0.00473519 0.00217292 0.000932382
∆6 0.0572179 0.0525371 0.0580802 0.05701 0.0301928 0.040439 0.128602 0.141159 0.0204866 0.00469573 0.0026558 0.000932382
∆7 0.0720369 0.0517487 0.0113362 0.0543032 0.0192136 0.040439 0.161909 0.13904 0.0039986 0.00447279 0.00169005 0.000932382
∆8 0.0652742 0.0519214 0.0517275 0.0460152 0.0194881 0.0802744 0.146709 0.139504 0.0182458 0.00379013 0.0017142 0.00185085
∆9 0.0726249 0.0519568 0.0224707 0.0569382 0.0189391 0.040439 0.163231 0.1396 0.00792609 0.00468982 0.00166591 0.000932382

Non-probabilistic (COPRAS) Probabilistic (COPRAS)
T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

∆1 0.0167773 0.036027 0.0161549 0.0173954 0.0719087 0.011126 0.0377084 0.0967987 0.0056983 0.00143281 0.00632519 0.000256526
∆2 0.0184079 0.0208541 0.0313139 0.0194372 0.0118748 0.0325053 0.0413732 0.0560316 0.0110453 0.00160098 0.00104453 0.000749458
∆3 0.0187533 0.0191682 0.0232365 0.0171504 0.013854 0.0146165 0.0421497 0.0515019 0.00819619 0.00141263 0.00121861 0.000337005
∆4 0.0211616 0.0196301 0.00995849 0.00735019 0.0131943 0.011126 0.0475626 0.0527429 0.00351265 0.000605412 0.00116059 0.000256526
∆5 0.0203325 0.0182213 0.019917 0.0196005 0.0118748 0.0146165 0.0456991 0.0489578 0.0070253 0.00161443 0.00104453 0.000337005
∆6 0.0192073 0.018129 0.0213554 0.0194372 0.0145137 0.0146165 0.0431702 0.0487096 0.00753269 0.00160098 0.00127664 0.000337005
∆7 0.0241819 0.0178569 0.00416818 0.0185143 0.00923599 0.0146165 0.0543509 0.0479787 0.00147024 0.00152497 0.00081241 0.000337005
∆8 0.0219118 0.0179165 0.0190196 0.0156886 0.00936793 0.0290148 0.0492486 0.0481388 0.00670877 0.00129222 0.000824016 0.000668979
∆9 0.0243793 0.0179287 0.00826222 0.0194127 0.00910404 0.0146165 0.0547946 0.0481716 0.00291433 0.00159896 0.000800804 0.000337005

Table 6. The weighed normalized non-probabilistic and probabilistic fractional entropy
decision matrix, θ1 = 0.1.

Non-probabilistic (MOORA) Probabilistic (MOORA)
T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

∆1 0.0644072 0.151024 0.0334657 0.0383019 0.12645 0.0237338 0.0474879 0.45167 0.00383461 0.000852465 0.00344525 0.000167403
∆2 0.0706668 0.0874194 0.0648685 0.0427974 0.0208816 0.0693398 0.0521031 0.261448 0.00743285 0.00095252 0.000568941 0.000489079
∆3 0.071993 0.0803523 0.0481356 0.0377625 0.0243618 0.0311796 0.0530809 0.240312 0.00551554 0.000840459 0.000663764 0.000219921
∆4 0.0812384 0.0822885 0.0206295 0.0161839 0.0232017 0.0237338 0.0598976 0.246102 0.0023638 0.000360197 0.000632156 0.000167403
∆5 0.0780556 0.0763831 0.0412591 0.0431571 0.0208816 0.0311796 0.0575509 0.228441 0.00472761 0.000960524 0.000568941 0.000219921
∆6 0.073736 0.0759958 0.0442389 0.0427974 0.0255219 0.0311796 0.054366 0.227283 0.00506904 0.00095252 0.000695372 0.000219921
∆7 0.0928331 0.0748554 0.00863461 0.0407655 0.0162412 0.0311796 0.0684465 0.223872 0.000989383 0.000907295 0.000442509 0.000219921
∆8 0.0841181 0.0751052 0.0394001 0.0345437 0.0164732 0.0618939 0.0620209 0.224619 0.0045146 0.00076882 0.000448831 0.000436561
∆9 0.0935909 0.0751565 0.0171156 0.0427435 0.0160092 0.0311796 0.0690052 0.224773 0.00196117 0.000951319 0.000436188 0.000219921

Non-probabilistic (COPRAS) Probabilistic (COPRAS)
T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

∆1 0.0216207 0.0521137 0.012305 0.0130588 0.0607844 0.00857844 0.0159411 0.155858 0.00140994 0.000290642 0.00165614 0.0000605069
∆2 0.023722 0.0301658 0.0238514 0.0145915 0.0100378 0.0250625 0.0174904 0.0902177 0.00273297 0.000324755 0.00027349 0.000176775
∆3 0.0241672 0.0277271 0.0176989 0.0128748 0.0117108 0.0112697 0.0178186 0.0829243 0.002028 0.000286548 0.000319072 0.0000794895
∆4 0.0272708 0.0283953 0.00758525 0.00551779 0.0111531 0.00857844 0.0201069 0.0849225 0.000869143 0.000122806 0.000303878 0.0000605069
∆5 0.0262023 0.0263575 0.0151705 0.0147141 0.0100378 0.0112697 0.0193191 0.0788281 0.00173829 0.000327484 0.00027349 0.0000794895
∆6 0.0247523 0.0262239 0.0162661 0.0145915 0.0122684 0.0112697 0.01825 0.0784284 0.00186383 0.000324755 0.000334266 0.0000794895
∆7 0.0311629 0.0258303 0.00317485 0.0138987 0.00780717 0.0112697 0.0229767 0.0772515 0.000363785 0.000309336 0.000212715 0.0000794895
∆8 0.0282374 0.0259165 0.014487 0.0117774 0.0079187 0.0223712 0.0208197 0.0775093 0.00165997 0.000262124 0.000215753 0.000157793
∆9 0.0314173 0.0259342 0.00629323 0.0145731 0.00769564 0.0112697 0.0231642 0.0775622 0.000721099 0.000324346 0.000209676 0.0000794895
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Table 7. The weighed normalized non-probabilistic and probabilistic Tsallis entropy
decision matrix, θ2 = 1.5.

Non-probabilistic (MOORA) Probabilistic (MOORA)
T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

∆1 0.0479764 0.100009 0.0453569 0.052706 0.150569 0.0315897 0.0431593 0.0882673 0.0486848 0.0566697 0.155021 0.0335992
∆2 0.0526391 0.0578896 0.0879178 0.0588922 0.0248647 0.0922915 0.0473539 0.0510932 0.0943685 0.0633211 0.0255999 0.0981624
∆3 0.053627 0.0532097 0.0652394 0.0519637 0.0290088 0.0415002 0.0482426 0.0469627 0.0700261 0.0558716 0.0298665 0.0441402
∆4 0.0605138 0.0544919 0.0279597 0.0222702 0.0276274 0.0315897 0.0544379 0.0480943 0.0300112 0.023945 0.0284443 0.0335992
∆5 0.0581429 0.0505813 0.0559195 0.0593871 0.0248647 0.0415002 0.0523051 0.0446429 0.0600223 0.0638532 0.0255999 0.0441402
∆6 0.0549253 0.0503249 0.0599581 0.0588922 0.0303902 0.0415002 0.0494105 0.0444165 0.0643573 0.0633211 0.0312887 0.0441402
∆7 0.0691506 0.0495697 0.0117027 0.0560961 0.0193392 0.0415002 0.0622075 0.04375 0.0125613 0.0603147 0.019911 0.0441402
∆8 0.0626589 0.0497351 0.0534 0.0475344 0.0196155 0.082381 0.0563676 0.043896 0.057318 0.0511092 0.0201955 0.0876215
∆9 0.0697151 0.049769 0.0231973 0.058818 0.0190629 0.0415002 0.0627153 0.043926 0.0248993 0.0632413 0.0196266 0.0441402

Non-probabilistic (COPRAS) Probabilistic (COPRAS)
T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

∆1 0.0161051 0.03451 0.0166772 0.0179698 0.0723789 0.0114179 0.0144881 0.0304584 0.0179008 0.0193212 0.0745189 0.0121443
∆2 0.0176703 0.019976 0.0323264 0.0200789 0.0119525 0.0333583 0.0158961 0.0176307 0.0346982 0.0215889 0.0123059 0.0354803
∆3 0.0180019 0.0183611 0.0239878 0.0177167 0.0139446 0.015 0.0161944 0.0162054 0.0257478 0.019049 0.0143569 0.0159542
∆4 0.0203138 0.0188035 0.0102805 0.00759285 0.0132805 0.0114179 0.0182742 0.0165959 0.0110348 0.00816387 0.0136732 0.0121443
∆5 0.0195179 0.0174541 0.0205609 0.0202476 0.0119525 0.015 0.0175582 0.0154049 0.0220695 0.0217703 0.0123059 0.0159542
∆6 0.0184378 0.0173656 0.0220459 0.0200789 0.0146086 0.015 0.0165865 0.0153268 0.0236634 0.0215889 0.0150405 0.0159542
∆7 0.023213 0.017105 0.00430295 0.0191256 0.00929637 0.015 0.0208823 0.0150968 0.00461866 0.0205639 0.00957124 0.0159542
∆8 0.0210338 0.0171621 0.0196346 0.0162065 0.00942918 0.0297762 0.0189219 0.0151472 0.0210752 0.0174253 0.00970797 0.0316703
∆9 0.0234025 0.0171738 0.00852936 0.0200536 0.00916356 0.015 0.0210528 0.0151575 0.00915517 0.0215617 0.00943451 0.0159542

Table 8. The analysis results and ranking based on entropy.

Non-probabilistic (MOORA) Probabilistic (MOORA) The TOPSIS method
Bi NBi Pi Ranking Bi NBi Pi Ranking B+

i NB−i Ri Ranking
∆1 0.0797866 0.0307819 1 1 0.0851419 0.000709724 1 1 0.0617 0.1745 0.7390 1
∆2 0.070537 0.0899314 -0.395766 8 0.0806338 0.00207351 0.930455 2 0.1714 0.0328 0.1605 8
∆3 0.0634334 0.040439 0.469228 3 0.0759456 0.000932382 0.888443 8 0.1668 0.0299 0.1522 9
∆4 0.0490043 0.0307819 0.37185 5 0.0770694 0.000709724 0.90439 5 0.1656 0.0382 0.1875 5
∆5 0.0624337 0.040439 0.448829 4 0.0760072 0.000932382 0.889172 7 0.1697 0.0357 0.1740 6
∆6 0.0637595 0.040439 0.475883 2 0.0743997 0.000932382 0.870134 9 0.1651 0.0324 0.1639 7
∆7 0.0521596 0.040439 0.239174 7 0.0777777 0.000932382 0.910143 4 0.1752 0.0600 0.2552 3
∆8 0.0586066 0.0802744 -0.442157 9 0.077491 0.00185085 0.895869 6 0.1747 0.0437 0.2000 4
∆9 0.0557324 0.040439 0.312082 6 0.0792781 0.000932382 0.927913 3 0.1749 0.0618 0.2612 2

Non-probabilistic (COPRAS) Probabilistic (COPRAS) The TOPSIS method
Bi NBi Pi Ranking Bi NBi Pi Ranking B+

i NB−i Ri Ranking
∆1 0.158263 0.011126 1 1 0.147963 0.000256526 1 1 0.0617 0.1745 0.7390 1
∆2 0.101888 0.0325053 0.604065 4 0.111096 0.000749458 0.749309 2 0.1714 0.0328 0.1605 8
∆3 0.0921624 0.0146165 0.605899 3 0.104479 0.000337005 0.706319 7 0.1656 0.0382 0.1875 5
∆4 0.0712947 0.011126 0.522878 7 0.105584 0.000256526 0.71465 6 0.1656 0.0382 0.1875 5
∆5 0.0899462 0.0146165 0.593741 5 0.104341 0.000337005 0.705391 8 0.1697 0.0357 0.1740 6
∆6 0.0926426 0.0146165 0.608534 2 0.10229 0.000337005 0.69158 9 0.1651 0.0324 0.1639 7
∆7 0.0739573 0.0146165 0.506024 9 0.106137 0.000337005 0.717484 4 0.1752 0.0600 0.2552 3
∆8 0.0839044 0.0290148 0.51083 8 0.106212 0.000668979 0.716582 5 0.1747 0.0437 0.2000 4
∆9 0.079087 0.0146165 0.534166 6 0.10828 0.000337005 0.731914 3 0.1749 0.0618 0.2612 2
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Table 9. The analysis results and ranking based on fractional entropy, θ1 = 0.1.
Non-probabilistic (MOORA) Probabilistic (MOORA) The TOPSIS method

Bi NBi Pi Ranking Bi NBi Pi Ranking B+
i NB−i Ri Ranking

∆1 0.0827296 0.0237338 1 1 0.101458 0.000167403 1 1 0.0617 0.1745 0.7390 1
∆2 0.0716584 0.0693398 0.0393018 8 0.0806263 0.000489079 0.79116 2 0.1714 0.0328 0.1605 8
∆3 0.0656513 0.0311796 0.584307 2 0.0751031 0.000219921 0.73929 4 0.1668 0.0299 0.1522 9
∆4 0.0558855 0.0237338 0.544984 5 0.0773391 0.000167403 0.761883 3 0.1656 0.0382 0.1875 5
∆5 0.0649341 0.0311796 0.57215 4 0.0730622 0.000219921 0.719141 7 0.1697 0.0357 0.1740 6
∆6 0.0655725 0.0311796 0.582972 3 0.0720915 0.000219921 0.709557 9 0.1651 0.0324 0.1639 7
∆7 0.0583324 0.0311796 0.46025 7 0.0736645 0.000219921 0.725086 6 0.1752 0.0600 0.2552 3
∆8 0.0624101 0.0618939 0.00874949 9 0.0730931 0.000436561 0.717307 8 0.1747 0.0437 0.2000 4
∆9 0.0611539 0.0311796 0.508075 6 0.0742816 0.000219921 0.73118 5 0.1749 0.0618 0.2612 2

Non-probabilistic (COPRAS) Probabilistic (COPRAS) The TOPSIS method
Bi NBi Pi Ranking Bi NBi Pi Ranking B+

i NB−i Ri Ranking
∆1 0.159882 0.00857844 1 1 0.175156 0.0000605069 1 1 0.0617 0.1745 0.7390 1
∆2 0.102368 0.0250625 0.609345 2 0.111039 0.000176775 0.633729 2 0.1714 0.0328 0.1605 8
∆3 0.0941788 0.0112697 0.606917 3 0.103377 0.0000794895 0.590326 4 0.1668 0.0299 0.1522 9
∆4 0.0799221 0.00857844 0.551787 7 0.106325 0.0000605069 0.607326 3 0.1656 0.0382 0.1875 5
∆5 0.0924822 0.0112697 0.597406 5 0.100486 0.0000794895 0.573838 7 0.1697 0.0357 0.1740 6
∆6 0.0941022 0.0112697 0.606487 4 0.0992013 0.0000794895 0.566506 9 0.1651 0.0324 0.1639 7
∆7 0.081874 0.0112697 0.537943 8 0.101114 0.0000794895 0.577418 6 0.1752 0.0600 0.2552 3
∆8 0.0883371 0.0223712 0.534967 9 0.100467 0.000157793 0.573444 8 0.1747 0.0437 0.2000 4
∆9 0.0859135 0.0112697 0.560586 6 0.101982 0.0000794895 0.582367 5 0.1749 0.0618 0.2612 2

Table 10. The analysis results and ranking based on Tsallis entropy, θ2 = 1.5.
Non-probabilistic (MOORA) Probabilistic (MOORA) The TOPSIS method

Bi NBi Pi Ranking Bi NBi Pi Ranking B+
i NB−i Ri Ranking

∆1 0.0793235 0.0315897 1 1 0.0783605 0.0335992 1 1 0.0617 0.1745 0.7390 1
∆2 0.0705509 0.0922915 -0.455456 8 0.0704341 0.0981624 -0.619471 8 0.1714 0.0328 0.1605 8
∆3 0.0632621 0.0415002 0.455902 3 0.0627424 0.0441402 0.415587 3 0.1668 0.0299 0.1522 9
∆4 0.0482158 0.0315897 0.348308 5 0.0462332 0.0335992 0.282252 5 0.1656 0.0382 0.1875 5
∆5 0.0622239 0.0415002 0.434151 4 0.0616059 0.0441402 0.390196 4 0.1697 0.0357 0.1740 6
∆6 0.0636227 0.0415002 0.463455 2 0.0631986 0.0441402 0.425779 2 0.1651 0.0324 0.1639 7
∆7 0.0514646 0.0415002 0.208748 7 0.0496861 0.0441402 0.123901 7 0.1752 0.0600 0.2552 3
∆8 0.058236 0.082381 -0.505827 9 0.0572216 0.0876215 -0.679157 9 0.1747 0.0437 0.2000 4
∆9 0.0551406 0.0415002 0.285759 6 0.0536021 0.0441402 0.211387 6 0.1749 0.0618 0.2612 2

Non-probabilistic (COPRAS) Probabilistic (COPRAS) The TOPSIS method
Bi NBi Pi Ranking Bi NBi Pi Ranking B+

i NB−i Ri Ranking
∆1 0.157641 0.0114179 1 1 0.156687 0.0121443 1 1 0.0617 0.1745 0.7390 1
∆2 0.102004 0.0333583 0.605860 4 0.10212 0.0354803 0.607392 4 0.1714 0.0328 0.1605 8
∆3 0.092012 0.0150000 0.607680 3 0.0915535 0.0159542 0.609658 3 0.1668 0.0299 0.1522 9
∆4 0.0702711 0.0114179 0.520698 7 0.0677419 0.0121443 0.513692 7 0.1656 0.0382 0.1875 5
∆5 0.089733 0.0150000 0.595178 5 0.0891088 0.0159542 0.596291 5 0.1697 0.0357 0.1740 6
∆6 0.0925367 0.0150000 0.610559 2 0.0922062 0.0159542 0.613226 2 0.1651 0.0324 0.1639 7
∆7 0.0730429 0.0150000 0.503618 9 0.0707329 0.0159542 0.495821 9 0.1752 0.0600 0.2552 3
∆8 0.0834662 0.0297762 0.509730 8 0.0822776 0.0316703 0.504806 8 0.1747 0.0437 0.2000 4
∆9 0.0783228 0.0150000 0.532583 6 0.0763617 0.0159542 0.526596 6 0.1749 0.0618 0.2612 2
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Figure 4. Comparative evaluation of ranks of MOORA and TOPSIS methods.

Figure 5. Comparative evaluation of ranks of COPRAS and TOPSIS methods.

Figure 6. Correlation between TOPSIS and other methods.
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4.1. Principal component analysis technique. In this subsection, we will discuss the Principal Com-
ponent Analysis (PCA) technique under the case study that utilized by Rathod and Kanzaria [17].
By splitting a dataset into a collection of uncorrelated components while keeping the majority of the
variance, PCA is a statistical method for reducing a dataset’s dimensionality. It does this by converting
the original variables into principle components (PCs), that serve as linear combinations of the basic
variables and a fresh set of uncorrelated variables. The flow of this technique is depicted in Figure 7.
Numerous scholarly works have addressed this process; for instance, [30] and [4].

Start

Standardization of decision matrix.

Covariance Matrix Computation.

Eigenvalue and Eigenvector Decomposition.

Selection of Principal Components.

Projection (The original data is transformed into the new PCs).

End

Figure 7. Key Steps in PCA.

The amount of variation that each PC captures is displayed in the PCA output summary. The
proportion of variance indicates the percentage of the data’s overall volatility that each PC can account
for. Since the significant positive or negative values show criteria closely related with the PC, loadings
indicate the influence of each criterion Tj , j = 1, 2, ..., t, to every PC. Each option ∆i, i = 1, 2, ..., r, is
represented by its PCA score in the new PC space. The coordinates of each option along the PCs (e.g.,
PC1, PC2) serve as its representation. Alternatives that are near one another share comparable traits.

Both loadings (criteria) and scores (alternatives) are displayed in the biplot. The following points
provide a summary of the biplot’s interpretation:

(1) The two most significant principal components are shown by the axes (PC1 on the x-axis and
PC2 on the y-axis, for example).

(2) A point’s value in the PC space becomes more extreme the further it is from the origin.
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(3) Every red arrow denotes the criteria, and every blue point indicates an alternative.
(4) The criterion values of alternatives that are near to one another are comparable.
(5) The arrow’s direction indicates how much the criteria affects the PCs; that is, if a criterion

points in the same direction as a PC axis, it makes a significant contribution to that component.
A criteria affects both components if it distinguishes between two PCs.

(6) Criteria that significantly impact the distribution of alternatives are indicated by longer arrows.
(7) The degree to which an alternative aligns with the criterion is shown by the projection of that

alternative’s point onto the criterion arrow.
Tables 11, 12 and 13 show the PCA results. In Table 11, the percentage of variance that each PC

accounts for is displayed by the proportion of variance. For example, PC1 explains 43.89% of the
variance, and PC2 explains 33.06%. Therefore, the first two PCs account for the majority (76.95%) of
the variance. Thus, a two-dimensional representation captures most of the data’s structure. Figure
8 shows the PCA bipolt which visualize the results in Tables 12 and 13. The best alternative for a
maximization problem is ∆7, which has the highest score in PC1 (PC1 = 1.592), making it the best
choice. In a minimization problem, the best alternative is ∆1 with a score of PC1 = −3.83.

Table 11. Importance of Principal Components.

Component PC1 PC2 PC3 PC4 PC5 PC6
Standard Deviation 1.6228 1.4083 0.9424 0.6923 0.0971 0.0791
Proportion of Variance 0.4389 0.3306 0.1480 0.0799 0.0016 0.0010
Cumulative Proportion 0.4389 0.7695 0.9175 0.9974 0.9990 1.0000

Table 12. PCA Loadings (Contribution of Variables to PCs).

Variable PC1 PC2 PC3 PC4 PC5 PC6
T1 0.5373 0.2381 0.2360 -0.3924 -0.6472 -0.1615
T2 -0.5700 0.1909 0.0769 -0.3634 -0.3129 0.6346
T3 -0.2395 -0.6232 -0.1946 0.2925 -0.6386 -0.1515
T4 -0.0429 -0.3378 0.9270 0.1073 0.0980 0.0605
T5 -0.5655 0.2330 0.1358 -0.2522 0.0028 -0.7375
T6 0.0864 -0.5917 -0.1510 -0.7439 0.2564 -0.0256
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Table 13. PCA Scores for Alternatives.

Alternative PC1 PC2 PC3 PC4 PC5 PC6
∆1 -3.8296 1.2943 0.4290 -0.4689 -0.0040 -0.0129
∆2 -0.5511 -2.6748 -0.3072 -0.4936 0.0000 0.1228
∆3 -0.3153 -0.5133 -0.2930 0.9073 -0.0320 0.0155
∆4 0.6031 1.8135 -2.0270 0.1270 -0.0109 0.0384
∆5 0.2264 -0.3887 0.4839 0.7042 -0.0617 -0.0152
∆6 -0.1104 -0.5567 0.3261 0.8925 0.1107 -0.0800
∆7 1.5920 1.1822 0.9172 -0.3990 0.1661 0.0690
∆8 0.8818 -0.9766 -0.5830 -1.0049 0.0068 -0.1470
∆9 1.5031 0.8201 1.0540 -0.2646 -0.1750 0.0095

Figure 8. The PCA biplot.
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4.2. Classification with pattern recognition. In this subsection, the probabilistic informational mea-
surements (entropy, fractional entropy, and Tsallis entropy) in the issues of classification involving
recognition of the pattern will be covered. Uncertainty measurements are a useful tool for classification
challenges; for example, you may observe [2] and [20]. In 145 non-fat people, Reaven and Miller [19]
examined the relationship involving insulin and blood chemistry markers of glucose tolerances. More-
over, the 145 observations are calculate into 76 in Normal group, 36 in Chemical diabetic group, and 33
in Overt diabetic group. Figure 9 shows the visualize of the correlation between the five variables.

Figure 9. Correlation matrix heatmap between the variables.

To create an interval number model, we choose 30 samples for each classification of the data and
then find a sample that has both the highest and lowest values, as shown in Table 14(a). Each potential
entry in the dataset is shown as an anonymous test sample. Assuming the Normal group is the source
of the chosen singleton data sample (1.04, 90, 356, 199, 108) (A singleton is a value that appears just
once in a dataset).

Table 14. (a) The interval numbers of the given groups. (b) Probability distributions
based on the interval numbers.

(i) Item relwt glufast glutest instest sspg
Normal [0.74, 1.2] [74, 112] [269, 418] [81, 267] [29, 273]

Chemical Diabetic [0.83, 1.2] [75, 114] [413, 643] [109, 748] [60, 300]
Overt Diabetic [0.74, 1.2] [120, 353] [538, 1520] [10, 460] [150, 458]

(ii) Item relwt glufast glutest instest sspg
P(Normal) 0.319438 0.497341 0.766072 0.609048 0.452434

P(Chemical Diabetic) 0.361124 0.467 0.186743 0.122842 0.373827
P(Overt Diabetic) 0.319438 0.0356591 0.0471852 0.268109 0.173739



Asia Pac. J. Math. 2025 12:43 21 of 25

Next, we use the method of Kang et al. [12], which is based on the similarity between interval
numbers, to generate five different probability distributions. The two ranges I1 = [α1, α2] and I2 =

[β1, β2] are taken into consideration. Next, we determine the separation across the ranges I1 and I2 by

0(I1, I2) =

[(
α1 + α2

2

)
−
(
β1 + β2

2

)]2
+

1

3

[(
α1 − α2

2

)2

+

(
β1 − β2

2

)2
]
. (28)

Additionally, their resemblance Simy(X,Y ) is described as

Simy(I1, I2) =
1

1 + ψ 0(I1, I2)
, (29)

where ψ is the coefficient of supporting; setting ψ to 5 is an example of how to use it. We use the
intervals specified in Table 14(a) for interval I1; for interval I2, we generate the provided probability
distributions using individual values from the chosen sample. Each of the five assessed characteristics
yields three similarity values, as indicated in Table 14(b). Our entropy measure, fractional entropy
measure (with θ1 = 0.5), and Tsallis entropy measure (with θ2 = 2) are then assessed for these
probability distributions, which are listed in Table 15(a). Next, in the case of glufast for the entropy
(E), fractional entropy FEθ1 , and Tsallis entropy measures TEθ2 , the process yields, respectively,

Ω1(glufast) =
e−E(glufast)

e−E(relwt) + e−E(glufast) + e−E(glutest) + e−E(instest) + e−E(sspg)
,

Ω2(glufast) =
e−FEθ1 (glufast)

e−FEθ1 (relwt) + e−FEθ1 (glufast) + e−FEθ1 (glutest) + e−FEθ1 (instest) + e−FEθ1 (sspg)
,

Ω3(glufast) =
e−TEθ2 (glufast)

e−TEθ2 (relwt) + e−TEθ2 (glufast) + e−TEθ2 (glutest) + e−TEθ2 (instest) + e−TEθ2 (sspg)
.

Table 15. (a)Measures of entropy, fractional entropy, and Tsallis entropy (b) theweights
Ωi, i = 1, 2, 3, corresponding to the five attributes.

(a) Item relwt glufast glutest instest sspg
Entropy 1.0969 0.821847 0.661589 0.912512 1.03074

Fractional: θ1 = 0.1 1.00916 0.974476 0.920597 0.975654 0.999032
θ1 = 0.5 1.04694 0.888264 0.719818 0.914366 1.00359
θ1 = 0.9 1.08666 0.830878 0.659426 0.906505 1.0232

Tsallis: θ2 = 0.5 1.46263 1.15487 1.04923 1.29739 1.40173
θ2 = 1.5 0.843805 0.646788 0.477087 0.685619 0.789395
θ2 = 2 0.665508 0.533291 0.376035 0.542087 0.625372
(b) Item Ωi(relwt) Ωi(glufast) Ωi(glutest) Ωi(instest) Ωi(sspg)

Entropy 0.163055 0.214677 0.251991 0.19607 0.174207
Fractional: θ1 = 0.1 0.193344 0.200167 0.211247 0.199931 0.195311

θ1 = 0.5 0.174064 0.203996 0.241423 0.198741 0.181776
θ1 = 0.9 0.164274 0.212154 0.251833 0.196702 0.175037

Tsallis: θ2 = 0.5 0.163539 0.222473 0.247261 0.192921 0.173806
θ2 = 1.5 0.169835 0.206819 0.245071 0.198942 0.179332
θ2 = 2 0.17701 0.202032 0.236437 0.200262 0.184259
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The weighted values Ωi, i = 1, 2, 3, corresponding to the five attributes, are outlined in Table 15(b).
Therefore, the final probability distribution of the entropy measure is given by:

P(Normal) = 0.55013, P(Chemical Diabetic) = 0.295404, P(Overt Diabetic) = 0.154466.

For fractional entropy measure with θ1 = 0.1,

P(Normal) = 0.533276, P(Chemical Diabetic) = 0.30032, P(Overt Diabetic) = 0.30032,

and θ1 = 0.5,

P(Normal) = 0.54529, P(Chemical Diabetic) = 0.295576, P(Overt Diabetic) = 0.159134,

and θ1 = 0.9,

P(Normal) = 0.549904, P(Chemical Diabetic) = 0.295024, P(Overt Diabetic) = 0.155072.

For Tsallis entropy measure with θ2 = 0.5,

P(Normal) = 0.548439, P(Chemical Diabetic) = 0.297799, P(Overt Diabetic) = 0.153762,

and θ2 = 1.5,

P(Normal) = 0.547155, P(Chemical Diabetic) = 0.295159, P(Overt Diabetic) = 0.157686,

and θ2 = 2,

P(Normal) = 0.543484, P(Chemical Diabetic) = 0.295906, P(Overt Diabetic) = 0.16061.

Subsequently, it was determined that the selected sample belongs to the Normal group, which has the
highest probability. Consequently, in this instance, an accurate conclusion was reached. Using this

Table 16. The recognition rates of different approaches.

Approach Normal Chemical Diabetic Overt Diabetic Overall
Entropy approach 100% 55.5% 60.6% 72.03%
Fractional entropy approach 100% 44.4% 33.3% 59.23%
Tsallis entropy approach 100% 44.4% 33.3% 59.23%

approach, we looked at all 145 samples, including 33 in the overt diabetic group, 36 in the chemical
diabetic group, and 76 in the normal group, for the entropy method, fractional entropy method across
various values of θ1, and Tsallis entropy method across various values of θ2. Table 16 shows the
recognition rates as the entropy approach gives 72.03%. Meanwhile, the fractional entropy and Tsallis
entropy approaches give 59.23. In comparison to the other two approaches, the entropy strategy clearly
performs somewhat better.
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Conclusion

Effective use of the latent heat thermal energy storage system results from the proper selection of the
phase change material. Depending on their background or the material’s accessibility, the majority of
researchers employ PTM in the specific application. However, in a PTM selection challenge, a number of
options need to be taken into account and assessed using a wide range of competing criteria. Therefore,
to increase the quality of decisions, an efficient assessment method is necessary. In order to solve the
PTM selection problem, the current study suggests two MCDM techniques: MOORA and COPRAS.
Both approaches provide weights to the criteria employed in PTM selection using non-probabilistic
and probabilistic entropy, fractional entropy, and Tsallis entropy. As can be seen, all of the methods
demonstrate that, after considering six criteria, calcium hexahydrate chloride, also known as alternative
∆1, is the first best choice for the given design application under the given conditions. This is also the
outcome of the TOPSIS technique, which was employed by Rathod and Kanzaria [17] for the same
case study. Furthermore, the Tsallis entropy-based approach yields the same rankings for probabilistic
and non-probabilistic MOORA or COPRAS processes. Additionally, the rankings of the COPRAS and
MOORA techniques based on Tsallis entropy and non-probabilistic entropy are identical. Finally, we
used the PCA technique to analyze the data in the case study, and it indicates that the alternatives with
a high PC1 score likely perform well on the maximization criteria, while alternatives with a low PC1

score perform better on the minimization criterion. Additionally, a classification challenge involving
pattern recognition for diabetes data using the entropy method, fractional entropy method across
various values of θ1, and Tsallis entropy method across various values of θ2 is presented. We can see
that the entropy method performs better than the other two methods.
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