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Abstract. Solving nonlinear advection-diffusion equations efficiently is one of the challenging tasks in
computational mathematics. These equations are commonly used to model transport phenomena such as
fluid flow, heat transfer, and pollutant dispersion. Finite difference methods are widely applied for solving
these equations. However, their application in multi-dimensional mathematical problems involves high
computational complexity. To address this issue, this paper investigates the computational efficiency of
the quarter-sweep finite difference approximation combined with the Thomas algorithm. The proposed
numerical method utilises the quarter-sweep strategy to significantly reduce the number of computations
required per iteration while maintaining numerical accuracy. Through extensive numerical experiments,
the computational performance of the proposed method is carefully assessed by comparing it with the
standard implicit finite difference method. The experimental results show that the proposed numerical
method achieves higher computational efficiency while maintaining comparable numerical accuracy when
it is compared to the standard implicit finite difference method. The reduction in computational load
makes the proposed method particularly beneficial for large-scale simulations. The contribution of this
research is the integration of the quarter-sweep strategy with the Thomas algorithm which offers an
alternative numerical solution strategy for solving nonlinear advection-diffusion equations. This research
has potential implications in fields such as fluid dynamics, environmental modelling, and engineering
applications. Despite its advantages, this research is limited to one-dimensional problems. Future work
will focus on extending the numerical solution strategy to higher-dimensional problems. The findings of
this research contribute to the ongoing efforts in developing efficient and scalable numerical methods for
solving nonlinear partial differential equations.
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1. Introduction

The nonlinear advection-diffusion equation (NADE) is a commonly used parabolic partial differential
equation to model the transport of substances such as solutes and pollutants in fluid flow. It combines
advection process, which describes the movement of particles due to fluid flow, and diffusion process,
which describes the random spreading of particles from regions of higher to lower concentration. This
equation has broad applications in fluid dynamics, heat transfer, environmental science, and pollutant
dispersion modelling [1–5].

Solving the NADE is a challenging task for several reasons. One of the main challenges is the
nonlinear nature of the equation. This nature can develop shock solutions that complicate numerical
approaches [6]. Additionally, many existing methods that solve the NADE can maintain the theoretical
findings but require significant computational resources [7]. Guaranteeing numerical stability is
also critical because inappropriate time steps or parameter values can lead to inaccurate or divergent
solutions [3, 5, 6].

Based on our review on the finite difference methods for NADE. We found that several studies used
high-order compact finite difference methods to improve the accuracy of NADE solutions. For example,
Mohebbi and Dehghan [8] proposed a fourth-order compact finite difference method for solving
the one-dimensional advection–diffusion equations. Their method achieved fourth-order accuracy
in both time and space while solving the problems. Then, Gurarslan [9] developed a sixth-order
compact finite difference method and demonstrated higher accuracy in solving advection-diffusion
equations. To reduce computational times, Gurarslan [9] used the combination of the method of lines
and the fourth-order Runge-Kutta method. On the other hand, the implicit finite difference method
such as Crank-Nicolson method is commonly combined with spline-based techniques to handle the
temporal and spatial components of advection-diffusion equations. The Crank-Nicolson method can
guarantee unconditional stability, while B-spline collocation methods can achieve greater accuracy in
approximating spatial derivatives [7, 10].

Although finite difference methods can produce highly accurate solutions, they are computationally
intensive, and this problem becomes more severe in multi-dimensional applications. Motivated by
literature that often focuses on improving the accuracy of NADE solutions, but reports less on computa-
tional efficiency, this paper proposes an efficient numerical method for solving theNADE. The proposed
method combines the quarter-sweep computational strategy with the Thomas algorithm. Previous
research has highlighted the efficiency of the quarter-sweep strategy in reducing computational load
without compromising solution accuracy [11–15].

Therefore, we integrate the quarter-sweep strategy, for the first time, with the Thomas algorithm to
efficiently solve the large systems of equations that arise from the implicit finite difference discretization
of the NADE. This paper is organized as follows. Section 2 describes the mathematical problem that
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we aim to solve. Section 3 discusses the formulation of the proposed numerical method to solve the
mathematical problem. Section 4 provides the convergence analysis of the formulated approximation
equation. Section 5 presents the numerical experiments set up together with results and discussions.
Finally, the conclusion and future work are stated in Section 6.

2. Mathematical Problem

The general form of an advection diffusion equation can be written as [16]:
∂v

∂t
= α

∂2v

∂x2
− β ∂v

∂x
+ f, x ∈ (0, L), t ∈ (0, T ), (1)

where v stands for the vorticity, α is the advection velocity or phase speed function, β is the viscosity or
diffusion function, and f is the known source function with variables x and t. Based on Equation 1,
α and β can be assigned positive numbers to get linear advection-diffusion equations. When β is a
nonlinear form, β = β(v), Equation 1 becomes the main equation that we aim to solve, which is the
nonlinear advection-diffusion equation (NADE). Additionally, the boundary and initial conditions
must be specified for well-posedness. Thus, this paper focuses on the following boundary and initial
conditions, v(0, t) = v0, v(L, t) = vL, and v(x, 0) = v0 for the domain x ∈ (0, L).

3. Proposed Numerical Method

The quarter-sweep strategy is a computational strategy that updates only a subset of the grid points
in each iteration, which reduces the computational complexity compared to full-sweep and half-sweep
methods [11–15]. For the NADE form as in Equation 1, the solution domain is discretized using finite
differences, and the equation is approximated at these grid points. As a result, each grid point can be
approximated using v(ph, nk) = vnp .

To derive the quarter-sweep finite difference operators, let us consider the Taylor expansions as
follows.

vn−1
p = vnp − k

∂

∂t
vnp +

k2

2

∂2

∂t2
vnp + · · · , (2)

vnp+4 = vnp + 4h
∂

∂x
vnp + 16h2 ∂

2

∂x2
vnp + · · · , (3)

and
vnp−4 = vnp − 4h

∂

∂x
vnp + 16h2 ∂

2

∂x2
vnp + · · · . (4)

Combining and rearranging terms based on Equations 2, 3, and 4, the quarter-sweep finite difference
operators can be derived into

∂v

∂t
=
vnp − vn−1

p

k
, (5)

∂v

∂x
=
vnp+4 − vnp−4

8h
, (6)
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and
∂2v

∂x2
=
vnp+4 − 2vnp + vnp−4

16h2
, (7)

where p = 4, 8, . . . ,M − 4, n = 1, 2, . . . , N , h = L/M , and k = T/N , such thatM,N ∈ Z+. Substituting
Equations 5, 6, and 7 into Equation 1 yields a quarter-sweep finite difference approximation to NADE,
given by,

G(vnp ) = vnp − c1

(
vnp+4 − 2vnp + vnp−4

)

+c2

(
vnp+4 − vnp−4

)
− vn−1

p + f, (8)

where c1 = αk
16h2

and c2 = βk
8h .

The computation of NADE solutions based on Equation 8 can be facilitated using the computational
grid shown in Figure 1.

Figure 1. Computational grid for a quarter-sweep finite difference approximation.

As illustrated in Figure 1, the approximate solutions of Equation 1 are obtained iteratively by
sequentially computing three distinct groups of points: black dots, white dots, and triangles. The
computation begins with iterations of the black dots. Once the values at the black dots are determined,
the values at the triangle points and white dots are obtained using linear interpolations. To compute the
group of black dots, as shown in Figure 1, a system of nonlinear equations corresponding to Equation 8,
which applied to the domain x ∈ (0, L), t ∈ (0, T ), can be derived as,

F (Ω) = 0, (9)

where
F (.) =

(
Gn4 , . . . , G

n
M−4

)T
,

and
Ω =

(
vn4 , . . . , v

n
M−4

)
.

Then, using the second-order Newton method, a system of linear equations can be derived from
Equation 9 as,

JF (Ω) ·∆Ω = −F (Ω), (10)
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where

JF (Ω) =



∂Gn
4

∂vn4

∂Gn
4

∂vn8
· · · ∂Gn

4
∂vnM−4

∂Gn
8

∂vn4

∂Gn
8

∂vn8
· · · ∂Gn

8
∂vnM−4... ... ...

∂Gn
M−4

∂vn4

∂Gn
M−4

∂vn8
· · · ∂Gn

M−4

∂vnM−4


,

and
∆Ω = Ω(i) − Ω(i−1), i = 1, 2, . . . .

Since the computation of Equation 10 involves many grid points, the computational complexity
increases and requires more resources. This issue becomes significant when solving higher nonlinearity
and multi-dimensional problems. Therefore, to reduce computational complexity, we propose the
Thomas algorithm for the iteration process of the solution. Thomas algorithm for solving Equation 10
can be developed as follows. Suppose Equation 10 is tridiagonal with equations of the form

ap ∆Ωp−4 + bp ∆Ωp + dp ∆Ωp+4 = Gp, (11)

for p = 4, 8, . . . ,M − 4, where

ap =
∂G

∂vnp−4

= −c1 − c2 + c′2(vnp+4 − vnp−4),

bp =
∂G

∂vnp
= 1 + 2c1,

and
dp =

∂G

∂vnp+4

= −c1 + c2 + c′2(vnp+4 − vnp−4).

In our algorithm, the forward elimination phase involves

b′p =


bp, p = 4,

bp − apcp−4

b′p−4
, p = 8, . . . ,M − 4,

(12)

and

G′p =


Gp

b′p
, p = 4,

Gp −
apG′p−4

b′p
, p = 8, . . . ,M − 4.

(13)

After the forward elimination, we perform back substitution to solve for all ∆Ω using

∆Ω′ =

G
′
p, p = M − 4,

G′p −
cp∆Ω′p+4

b′p
, p = M − 8, . . . , 8, 4.

(14)

After each iteration, the solution vector is updated using

Ω(i) = Ω(i−1) + ∆Ω, i = 1, 2, . . . . (15)
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This process is repeated until the convergence criteria are satisfied, which is

‖Ω(i) − Ω(i−1)‖ < ε = 1.0−10. (16)

4. Convergence Analysis

Before the proposed method is used for the numerical experiment, we conducted a convergence
analysis of the quarter-sweep finite difference approximation (Equation 8) using the Lax Equivalence
Theorem. According to this theorem, a numerical scheme is convergent if it is consistent and stable.
Therefore, we provide the proofs of consistency, stability and convergence of our method as follows.

Theorem 1. The quarter-sweep finite difference approximation to NADE is consistent if the trun-
cation error approaches zero as both the space and time step sizes approach zero.

Proof. Suppose that the quarter-sweep finite difference approximation to NADE has the form,

vnp − c1(vnp+4 − 2vnp + vnp−4) + c2(vnp+4 − vnp−4)− vn−1
p + f = 0, (17)

with Taylor series expansions given by

vn−1
p = vnp − k

∂vnp
∂t

+
k2

2

∂2vnp
∂t2

+O(k3), (18)

vnp+4 = vnp + 4h
∂vnp
∂x

+ 16h2
∂2vnp
∂x2

+O(h3), (19)

and
vnp−4 = vnp − 4h

∂vnp
∂x

+ 16h2
∂2vnp
∂x2

+O(h3). (20)

Substituting Equations 18, 19, and 20 into Equation 17 gives

vnp − c1

[(
vnp + 4h

∂vnp
∂x

+ 16h2
∂2vnp
∂x2

)
− 2vnp +

(
vnp − 4h

∂vnp
∂x

+ 16h2
∂2vnp
∂x2

)]

+c2

[(
vnp + 4h

∂vnp
∂x

+ 16h2
∂2vnp
∂x2

)
−

(
vnp − 4h

∂vnp
∂x

+ 16h2
∂2vnp
∂x2

)]

−

(
vnp − k

∂vnp
∂t

+
k2

2

∂2vnp
∂t2

)
+ f = 0 (21)

and after simplifying Equation 21, we have

k
∂vnp
∂t
− 32c1h

2
∂2vnp
∂x2

+ 8c2h
∂vnp
∂x

+O(h3, k2) = 0. (22)

Equation 22 shows that as the space step size h and the time step size k approach zero, the truncation
error approaches zero. Thus, the quarter-sweep finite difference approximation to NADE is proven
consistent.
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Theorem 2. The quarter-sweep finite difference approximation to NADE is unconditionally stable for
any space step size h, time step size k, value of source function f , and wave number w.

Proof. Suppose the quarter-sweep finite difference approximation to NADE is given by

vnp − c1(vnp+4 − 2vnp + vnp−4) + c2(vnp+4 − vnp−4)− vn−1
p + f = 0, (23)

and by von Neumann analysis, we have

vnp = ξneiwph, (24)

where ξn is the amplification factor at time level n, i =
√
−1, and w is the wave number.

Substituting Equation 24 into Equation 23, we have

ξneiwph − c1(ξneiw(p+4)h − 2ξneiwph + ξneiw(p−4)h)

+c2(ξneiw(p+4)h − ξneiw(p−4)h)− ξn−1eiwph + f = 0. (25)

Factoring out ξneiwph from Equation 25, we obtain

1− c1(e4iwh − 2 + e−4iwh) + c2(e4iwh − e−4iwh)− ξ−1 + f = 0. (26)

Using the identities e4iwh+e−4iwh = 2 cos(4wh) and e4iwh−e−4iwh = 2i sin(4wh), rearrange Equation 26
to yield

ξ =
1

1− 2c1(cos(4wh)− 1) + 2ic2 sin(4wh) + f
. (27)

Since the von Neumann stability criterion is

|ξ| ≤ 1, (28)

the quarter-sweep finite difference approximation to NADE is thus unconditionally stable.
Given Theorems 1 and 2, the Lax Equivalence Theorem assures convergence of our quarter-sweep

finite difference approximation to NADE. This theorem asserts that if a linear finite-difference scheme
for a well-posed initial-value problem is consistent and stable, it is guaranteed to be convergent.
Consequently, as both h and k approach zero, the numerical solution vnp converges to the exact solution.

5. Numerical Experiments

To assess the performance of the proposed method, which can be labelled as the quarter-sweep
Thomas algorithm (QST), we conducted numerical experiments on two test problems with known
exact solutions. The solution domain was discretized into five different sizes of grid (8192, 16384, 32768,
65536, 131072), and the time steps were 0.01, 0.001, 0.0001, 0.00001, and 0.000001. The purpose of
experimenting the proposed method using varied sizes of grid and time step is to numerically display
the accuracy, stability, and convergence of the numerical solution.
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Then, we compared the results of the proposed method with the standard implicit finite difference
method with Thomas algorithm (ST). The performance metrics used in this research are the number
of iterations per time level (Iteration), computational time in seconds (Time) and maximum absolute
error (MAE). The following are the two test problems of NADE used in our experiment [16].

Test Problem 1.
∂v

∂t
=
∂2v

∂x2
− x∂v

∂x
+ F (x, t), x ∈ (0, 1), t > 0, (29)

with an exact solution
v(x, t) = tanh

(
xe−t

4

)
. (30)

Test Problem 2.
∂v

∂t
=
∂2v

∂x2
− 1

2
v2 ∂v

∂x
+ F (v), x ∈ (0, 1), t ∈ (0, 1), (31)

with an exact solution
v(x, t) =

√
1

2
− 1

2
tanh

(
t

4
+
x

2

)
. (32)

The results of the extensive numerical experiment are tabulated in Tables 1 and 2. Then, the graphs
of approximate solutions by the proposed method against the exact solutions are presented in Figures
2 and 3.

Table 1. Performance comparison after solving test problem 1.
M k Iteration Time (ST) Time (QST) MAE
8192 10−3 3 0.12 0.12 6.419e-3

10−4 3 1.20 0.97 6.419e-3
10−5 3 11.66 9.37 6.419e-3
10−6 3 108.78 90.34 6.419e-3
10−7 3 1083.43 900.33 6.419e-3

16384 10−3 3 0.22 0.17 6.419e-3
10−4 3 2.27 1.74 6.419e-3
10−5 3 20.77 16.96 6.419e-3
10−6 3 203.44 164.53 6.419e-3
10−7 3 2032.28 1631.91 6.419e-3

32768 10−3 5 0.61 0.33 6.419e-3
10−4 3 4.03 3.25 6.419e-3
10−5 3 40.30 32.60 6.419e-3
10−6 3 398.32 318.26 6.419e-3
10−7 3 3971.90 3169.03 6.419e-3

65536 10−3 5 1.26 0.67 6.419e-3
10−4 5 12.17 6.73 6.419e-3
10−5 3 81.53 66.84 6.419e-3
10−6 3 818.26 657.63 6.419e-3
10−7 3 8073.38 6537.69 6.419e-3

131072 10−3 5 2.48 2.10 6.419e-3
10−4 5 24.63 15.10 6.419e-3
10−5 3 168.66 150.49 6.419e-3
10−6 3 1661.46 1500.96 6.419e-3
10−7 3 17478.68 15096.43 6.419e-3
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Table 2. Performance comparison after solving test problem 2.
M k Iteration Time (ST) Time (QST) MAE
8192 10−3 7 0.40 0.33 1.708e-2

10−4 5 2.95 2.54 1.708e-2
10−5 5 29.63 25.27 1.708e-2
10−6 5 281.42 238.04 1.708e-2
10−7 5 2885.42 2419.84 1.708e-2

16384 10−3 7 0.77 0.65 1.708e-2
10−4 5 5.81 5.05 1.708e-2
10−5 5 57.47 47.96 1.708e-2
10−6 5 553.07 472.56 1.708e-2
10−7 5 5505.96 4725.93 1.708e-2

32768 10−3 7 1.54 1.31 1.708e-2
10−4 5 11.55 10.00 1.708e-2
10−5 5 111.18 98.21 1.708e-2
10−6 5 1092.40 945.84 1.708e-2
10−7 5 11237.55 9807.42 1.708e-2

65536 10−3 7 3.04 2.61 1.708e-2
10−4 5 23.04 21.13 1.708e-2
10−5 5 237.47 189.83 1.708e-2
10−6 5 2184.33 1884.34 1.708e-2
10−7 5 21815.16 18519.79 1.708e-2

131072 10−3 7 5.99 5.52 1.708e-2
10−4 5 47.31 39.42 1.708e-2
10−5 5 470.47 385.95 1.708e-2
10−6 5 4314.82 3871.37 1.708e-2
10−7 5 45371.53 38419.17 1.708e-2

Figure 2. Comparison of approximate and exact solutions of test problem 1.
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Figure 3. Comparison of approximate and exact solutions of test problem 2.

Based on Tables 1 and 2, it can be observed that the MAE values are consistent across all grid sizes
and time steps for both ST and QST methods. This result indicates that both methods achieve the same
level of accuracy regardless of grid size or time step. Additionally, this consistency in MAE suggests
that the accuracy of the numerical solutions is not significantly impacted by either method or the grid
and time step sizes within the tested ranges.

Furthermore, the number of iterations required by both methods to solve the system of equations
at each time level remains relatively stable across different grid sizes and time steps. The number
of iterations required to solve test problem 1 is mostly 3 per time level, with some instances at 5.
Meanwhile, test problem 2 mostly required 5 iterations per time level, with a few cases needing 7. This
stability in the number of iterations per time level indicates that both methods converge quickly, with
the QST method slightly reducing the iteration count compared to the ST method.

In terms of computational time, the QST method consistently required less computation time than
the ST method across all configurations. The difference in computation time becomes more significant
when the grid size is larger, and the time step is smaller. In other words, this performance improvement
scales with larger grid sizes and smaller time steps, with QST consistently achieving faster results
by reducing computational load. Overall, the QST method demonstrates clear efficiency benefits in
reducing computational time across all configurations without compromising accuracy. This efficiency
becomes more pronounced as the grid size increases and the time steps become smaller.
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6. Conclusion

This paper presented the quarter-sweep finite difference approximation combined with the Thomas
algorithm as an efficient numerical method for solving NADEs. The proposed quarter-sweep Thomas
method significantly reduced computational time when solving large systems of equations, especially
when the grid size or resolution is high. Despite the reduced computation time, the proposed method
maintained the same level of accuracy across various configurations. The performance advantage of the
proposedmethod increased as the grid and time resolutions increased, indicating its scalability formore
complex problems. This research suggests that the proposed method would be highly advantageous in
multi-dimensional or high-resolution applications where computational efficiency is critical. Future
work will focus on extending this method to higher dimensions and exploring its applicability to more
complex nonlinear equations.
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