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AsstrACT. Nonlinear ordinary differential equations have been increasingly gaining interest in modeling
complex dynamical systems. While existing models focus on the linear approach in approximating the exact
solution, a more complex model would require deeper insights into system behavior through approximating
using a non-linear approach. This paper explores the recently proposed quadratic approximations using
the second-order terms from the Taylor series expansion to the extended SEIR COVID-19 model. The
results revealed the existence of an approximate solution to the model and we have demonstrated that
the system solution converges to the disease-free equilibrium. This study suggests that of the nonlinear
models, quadratic approximations offer an interesting result representing the dynamics of a model and
encourage further studies into its applications to approximate the solutions of other models represented by
a system of nonlinear ordinary differential equations.
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1. INTRODUCTION

Nonlinear ordinary differential equations are important in modeling complex systems where the in-
teractions and dependencies exhibit nonlinear behavior. There are several studies in various disciplines
introducing models represented by systems of nonlinear ordinary differential equations.

Researchers have explored different social issues using mathematical models providing insights
into their underlying dynamics. Some studies investigated the spread of moral corruption among
adolescents [ 1], modeling of divorce epidemic [?] and teenage pregnancy [3]. Mathematical modeling
has also been applied in tourism sustainability [4]. These studies demonstrate how mathematical

modeling helps in understanding address social issues. Numerous researchers have also incorporated

DOI: 10.28924/ APJM /12-45

©2025 Asia Pacific Journal of Mathematics


https://doi.org/10.28924/APJM/12-45

Asia Pac. J. Math. 2025 12:45 20of 19

nonlinear ordinary differential equations to model the spread of infectious diseases providing insights
into the transmission patterns. Some studies examined the dynamics of Ebola Zaire Virus [5] while
others investigated the spread of HIV/AIDS [6], transmission of tuberculosis [7] and the most recent is
the transmission of the COVID-19 pandemic.

Several mathematical models of COVID-19 have been created, of which a susceptible-infected-
removed (SIR) model attempted to evaluate how well a particular approach a modeling technique
would work for the analysis of the COVID-19 pandemic, its disease spread, population changes over
time, and important parameters that govern the spread of the infection in different societies [8]. A
model of COVID-19 virus propagation in island countries was proposed with special emphasis on the
Philippines using movement in the region and local transmission [9]. Another mathematical model
aimed at understanding the dynamics of COVID-19 in the Philippines considering the impact of contact
tracing and vaccination during the era of severe pandemic effects such as quarantines, testing, and
tracing [ 10].

These studies involve systems of nonlinear ordinary differential equations. The nonlinear terms
make it hard to find the exact solution of the system. Linear approximations are a common approach
for solving nonlinear models such as Jacobian matrix [ 11] and perturbation techniques [12] but they
often fail to capture the full complexity of these systems. On the other hand, nonlinear approximations
provide a more precise approximation compared to other estimating methods, which is why it is an
appealing research area. Some studies have looked into alternate techniques such as the variational
iteration method [13] and the Adomian decomposition method [14]. Another study explored quadratic
approximations using the second-order terms from the Taylor series expansion which demonstrate the
existence of nonzero real solutions and offer interesting results in approximating solutions of a system
of nonlinear ordinary differential equations [15].

This paper focuses on applying quadratic approximations using the second-order terms from the
Taylor series expansion to solve an extended SIR model represented by a system of nonlinear ordinary
differential equations. We aim to investigate the consistency of this method to find the approximate
solution of a real-world epidemiological model.

The structure of this paper is organized as follows: Section 2 presents the extended SIR COVID-19
model and approximation of this system using quadratic approximations. Section 3 concludes the

paper with a summary of our findings and a discussion of their wider implications.

2. Tue ExTeNDED S EI R MODEL AND THE QUADRATIC APPROXIMATIONS

We use the COVID-19 model, in which the impact of contact tracing, testing, and vaccination is
considered [10]. This model is an extension of the SEIR model with nine compartments: Susceptible

individuals S, Exposed individuals £, Exposed and tested individuals E;, Exposed and contact traced
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individuals E., Critical and severe infected individuals I., Moderate and mild infected individuals I,,,,
Asymptomatic infected individuals I,, Recovered individuals R, and Vaccinated individuals V. The
SE(E4E.)I(I.1y1,)RV model is given by

= ON —(asE+v+p)S

= (asS+aV)E—(Bat B+ p)E

= BaE+~vE. — (0c+ 0m + 04 + 1) Eg

= BeE—(v+np)E

= UcEd+¢Im_(pc+5+M)Ic (1)

R

4,

A

4
dh
b
dt
with the positive initial conditions:

= omEi— (pm + 0+ 1) In
= 04Bq— (pa+ 1) I
= pcle + pmdm + pala — pR
= vS—(E+p)V

S(0) =So > 0,E(0) = Ey >0, E4(0) = Eqo > 0, E.(0) = Eg > 0,1.(0) = Iog > 0,

1;(0) = I;mo > 0,14(0) = Ioo > 0, R(0) = Ry > 0,V (0) = Vp > 0.
The parameters of the model are the following: the birth rate , vaccination rate v of S, transmission
rate o from S to E from contact with F, transmission rate o, from V' to E from contact with E, testing
rate 34 of E/, contact tracing rate 3. of E, testing rate v of E,, incubation rate o of E, to I., incubation
rate o, of E; to I,;,, incubation rate o, of Ej; to I, transfer rate ¢ from I, to I., recovery rate p. of E,,
recovery rate p,, of E,,, recovery rate p, of E,, induced death rate § by COVID-19 and natural death
rate p.

Nonlinear approximations of nonlinear ordinary differential equations became an interesting study. A
study explored quadratic approximations, focusing on the inclusion of the second-order terms from the
Taylor series expansion [15]. This approximation demonstrated the existence of nonzero real solutions
for systems of ordinary differential equations. It was applied to some systems of nonlinear ordinary
differential equations involving two or three variables which demonstrated a better approximation of
solutions of the systems. Hence, it becomes more interesting to approximate the solution of a system of
nonlinear differential equations with more than three variables.

We consider the following theorem which can be used in the following proofs of the succeeding

section.

Theorem 2.1. The system of differential equations involving quadratic terms
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dzq
_ n 72
Cflt = Z]‘:l ay;ry
i) n 2
e ' 9
dt Z‘jfl J J

dz,
_ n 2

has a nonzero real solution whenever the system of equations

Siiayi+y o= 0
a2y +y2 = 0
[ 2 angys +yn = 0

has a nonzero real solution.

A1 A2 An

Here, (z1,29,...,2,) = | —, —,..., — | is a nonzero real solution to the system of differential
it ¢ Y

equations involving quadratic terms since (y1,y2, ..., ¥Yn) = (A1, A2,..., Ay) is nonzero.

3. APPROXIMATION OF SE(EE.)I(I.Iy1,) RV MODEL

We focus on approximating the solution of the formulated extended SIR model which is the
SE(E4E.)I(I.In1,)RV model using the quadratic approximations. Then we will show that there

exists a solution of the approximate system converges to the actual disease-free equilibrium point.

Theorem 3.1. The system (1) has an approximate solution

Ver +a 0NN —ver ON
g+ = €1 _ e
( (v+p)t \F €1+V+u
p(v+p)v/es )
Et = +
<< 0 ON TN — ) Gt Bt V)
N e3—(0c+0m+0a+1)(Bad3+70]) — ez N
E; = ( 0c+0m+0a+u) +./e3 es
e4_Bc ’Y+M
Ef = —e
( vﬂt) W) !
Vs~ (pe T3+ (03T VD) — /&5 ’
Ir = - - 5] —¢6s
‘ (pe+d+p)t Ve ) e
2
m(pm ++1)A3 — /s
I+ = Ves—am(p _
" ( (pm + o+ p)t e ) T
2
—0q a+/1/))\2 \/—
oo (Yomaw )
¢ ( (pa+p)t Ve ) e
2
— J(PNEF P NE+ pa A2
Rt - (\/es u(p +put6+p ?) - \/@+@> ey
2
— (vpu(v+p)A3 — a,buNA3) — \/eg OvN
vt \/69 (vu(v B
( i ++/e9 €9+M(V+M)
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where

and

A1
A2
A3
A4
As
A6
A7
A8

A9

€1

€2
€3

€4

€6

@
N

€8

€9

ON
V+;L’
0,

(0c + T + 00 + 1) (BaXs +7AD),
Be(y + p)A3,

(e + 0+ p) (A3 + 9AF),
Tm(pm + &+ 1)A3,

oa(pa + 1)A3,

L(PA2 + pmAE + pard),
OvN

u(v+p)’

\

vV V. V V V V V V

Vel + asNA3 — \Jer

V+p
p(v + p)y/ex

pasON + a,0vN — p(v + 1) (Ba + Be + 1)
Ves = (0c+0m + 04 + 1) (Bad3 +77]) — Ves

Oct0m+0qa+
Ves =By + WA — e

Y+ u
\/65 - (p(1+5+ﬂ)(00/\5+¢)‘g) — \/%
pe+0+p
V'es — 0m(pm + &+ )AE — \/eg
Pmt @+ p
Ver —aalpa + 1A — Ver
Pa + {4

\/68 — W(peAZ + pnA§ + paAF) — Ves

I
Veg — (vp(v + )X} — a,vNX3) — /ey

I

Proof. We approximate the solution of the model using the Taylor series expansion and focusing on its

quadratic terms.

Notice that every second partial derivative with respect to each variable is zero. So we proceed to the

changing of variables involving arbitrary constants.

We let the following:
ON
1 = S—V+H+€1, z=vVE+ey z3=+E;+e;
24 = VE:+ ey, 25 =VI.+e5, 26 =+In+eg
OvN
2y = \/Ia+€7, 28:\/R+€8, 29:\/V—/w+€9
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We convert the system in terms of z; for¢ = 1,2,...,9. Then we get

d
dza 1 ., ON 2 ovN N\ 2
ddt = [(as (21 + DT 81) + (29 + w+ ) €9> (Ba + Be JF#)) (23 62):|
Z.
—tg = i [Ba(z3 — e2) +v(25 — e4) — (0c + Om + 00 + p) (25 — e3)]
e C RO ECEanIE )
T2 = oo [0 —ea) + 60 — o) — (oo + 5+ )(3E — es)] (2)
% = i [om (23 —e3) — (pm + ¢ + 1) (28 — e6)]
ﬁ = oo [oa(e — ea) = (oo + )2 — )]
ﬁ = 2 [pe(28 — es) + pm (25 — €6) + pa(2] — e7) — p(23 — es)]
ﬁ = L v 22 GN — € — (o 22 — € 22 01}7]\] — €
dt 2z9[ (1+V+u 1) (o (z2 2)+H)<9+M(V+u) 9)]
dz; ) L .
Set d—; =0fori=1,2,...,9. Then we solve the equilibrium point.
0
i[@Nf(as(zgfeg)Jrqu,u) (zf#»%fel)] = 0
L as (22 oON —e oy | 22 v N —e — 23 —e =0
BT [( s ( I+ P 1) + ay ( 5+ O 9> (5d+6c+u)>( 2 2)]
i [Ba(z3 — e2) + (2] — ea) — (0c + om + 0o + p)(23 — e3)] =0
5o [Be(3 = e2) = (7 + (&5 = ea)] = 0
Z4
i [0c(23 — €a) + B(=2 — €6) — (pe + 6 + ) (=2 — e3)] =0
5o [om(E = ca) = (o + 0+ )2 — <o) =0
5o [0a(53 — e3) = (pa + W2 — en)] =0
z7
i [pe(22 — e5) + pm (25 — €6) + pa(2F — e7) — p(zg — es)] =0
L1/ 22 oN —e — (ap(22 — e 22 vV —e —
() - (2 )] = o

From the second equation, we get

1 ., ON . OuN 2 B
> 29 = ,/€2
From the first equation,

1

|V - e+ (4 2 )| =0

— 21 = /€1
From the fourth equation,

1

o [Be(z3 —e2) — (v +p)(25 —eq)] =0

—— 24 = \/a

From the third equation,
1 2 2 2
o [Bd(zz —e2) + (25 —eq) — (oc+om + 00 + p)(25 — 63)] =0
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From the sixth equation,

2126 (o2 — €3) — (pm + &+ W)(22 — )] =0
— Zg = \/%

From the fifth equation,
1

2725 [O'C(Zg - 63) + ¢(Z(2; - 66) - (pc +0+ ,U«)(Z?, - 65)] =0

From the seventh equation,

1
22 [Ua(Z:»Q, —e3) — (pa + 1) (2% — 67)] =0
From the eighth equation,
1
7 [pc(28 — e5) + pm (2§ — e6) + pa(23 — e7) — (25 —es)] =0
— ZS = \/§

From the ninth equation,

1 9 ON 9 9 OvN 7 _
229 [V <Zl M 61) ((zz = e2) 1) <Zg T

= 29 = .,/€9
The equilibrium point of the new system is ( /€1, /€2, . . ., /€9).
Let z = (21, 22,...,29) and e = (\/e1, /€2, ..., /€9).
We form an equation by collecting the quadratic terms of the Taylor series expansion for each equation
in the system.

1 ON
Let Fi(z) = 2 ON — (as(25 — e2) + v + ) (z% +— = elﬂ.

V4
Now,
0*F ON _
W%l(z) = —as(25 — e2) <V+M — €1> 2] 34 (v + p)erzg 3
— 82F1 (6 v +p
023 "7 \Jer
and )
8 Fl QN -1
0= (1 (55 -a) )
— 82F1 (8) _ OJSQN
037 (v+p)/a

Then the estimate quadratic equation of F}(z) is given by

2 2
Gile) = 5 | e = Ve + 5 ; (@2 - V)|
= G = - Ay - e vy
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Let Fy(2) = i [(a <zf + N

- 61> + ay <z§ + bvN eQ) — (Ba + Be +H)> (25 — 62)}«

v+p n(v + p) B
Now,
O%F. _
Bz ()=l — ez
0’y
— _ = 0
aZ% (6) 9
82F2 s ON OvN
TZ%(Z) = —e2z, [as (zl + vt —a1> + oy <29 + w+ ) —59> — (Ba + Be +,u)}
0’ F,y 1 [asON  a,0vN
f— _— _ — —
G (0 =~ [ S L — (Bt ok )
and ,
0°F: _
8232 (2) = (22 — €225 )
0’y
— =0
623 (6)

Then the estimate quadratic equation of F(z) is given by

Gal2) = [38;2 (€)(e1 = VD) + GOz = VE) + Gt )0 = vED)®
1 asON a,0vN

— G =[S P ()] 2 - V@)

Let F3(z) = 213 [Ba(23 — e2) + v(2% — e4) — (0c + O + 04 + 1) (23 — €3)].

Now,
ng(z) = Baz3
O*F; Ba
e =
82’% (e) ?37
82F3 2 -3 2 -3 -3
W(z) = Ba(25 —e2)z5 " + (25 —ea)z3 ° + (0c + Om + 04 + p)e325
3
0%y Oc+om+ o+ 1
> 72(6) =
023 ves
and ,
0°F3 1
Tzi(z) = 7?3
82F3 Y
— =
(92’2 (e) e

Then the estimate quadratic equation of F3(z) is given by

Gale) = iﬁaFU( - Va) + SR e - v+ SR — Ve

= G = e v+ T g ) e — V)
Let Fy(2) = 214 [Be(22 — €2) — (7 + W) (22 — ea)].
Now, )
%f%‘*(z) = Bezy "
— 8;24 (e) = \fa
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and )
O°F. _ _ _
Wg(z) = BCZ%Z4 3 506224 3 + (7 + M)€4Z4 3
O*F)y Y+ p
= 92 (e) = NG
Then the estimate quadratic equation of Fy(z) is given by
1 [0*F, 0*F,
Ga(2) = 5 | 5 (@) (22 — vez) + 5 (e) (24 — fea)?
2| 0z5 0z
_ Be B 90 YU 2
1
Let F5(z) = G [oc(23 — e3) + d(2¢ — es) — (pe + 6 + p) (22 — e5)].
Now,
0*F; _
o ()=
. 0% L (c) = O
RN
0*Fy _ 2 -3 2 -3 B -3
ng(z) =0c(23 — 63)25 + ¢(z5 — 66)25 + (pe+ 0+ M)€525
2
F; c
. 8825(6):p +d+p
5 Ves
and )
a F5 —1
ng(z) = ¢z
0%Fx b

Then the estimate quadratic equation of F5(z) is given by

_1[0°F; 0*Fs 9*F;

Gs(z) = 5 92 (e)(z3 — v/e3)® + 922 (e)(z5 — Ves)* + 822 (e)(z6 — /e6)?
Oc e+ 9
== Gs(z) = 2\/%(237\/5)2+%(257\/g)2+Qj%(zﬁ-f\/;ﬁ)z
1
Let Fo(2) = 5= [ — e3) = (o + 6+ ) — €0)]
Now,
0?Fy _
ng('z) = Oz
— 32F6 (6) . Om
03~ Ve
and 52
F
8226 (Z) = Um(Z§ - 63)26_3 + (pm +o+ N)6626_3
6
L, . pmt+o+p
- 922 (e) = Ve
Then the estimate quadratic equation of F(z) is given by
1 [9%F, O*F,
Go(2) = 5 | 57 (€)(s = v/ea)* + — 5 (e) (a6 — V&)
2| 0z 0%
m m + ¢+
= Ge(z) = 23%(23 — \/%)2 + [)2\;;6'“(26 — \/%)2



Asia Pac. J. Math. 2025 12:45

10 of 19
1

Let F7(z) = 3o [0a(23 — €3) = (pa + 1) (2% — e7)].
Now,

82F7 —1

82% (Z) = UGZ?

N 32F7( Oa
e ey

82% Jer

and
0% F;

W(z) = Ua(%% - 63)27_3 + (pa + p)erzy
i

82F7(€ _pa+/’L
ERANC

Then the estimate quadratic equation of F7(z) is given by

2
Grl) = 3 | 3 €)= v +

G7(Z) =

0*F;
8,2%
Oq _ 2, Pat b

1
Let Fi(2) = 5~ [pe(23 = e5) + pn(f — e6) + pule = e7) — p(f —ex)].
Now,

—

Gk

0*Fyg .
ng(z) = Pc?g
0% F,
— 28 Pc 7
0z5 ves
82F8 —1
0 " es
PFs,
7 (9 = pess
8 F8 pa
— ng (e) NG
and
0% Fy _ _
——5-(2) = pel28 — €5)25 > + pm(25 — €6) 25"
0z
+ pa(z$ — 67)2’8_3 + /L68Z8_3
32F8( @
03" Ve

Then the estimate quadratic equation of F%(z) is given by

a? , , 0 2?
Gs(2) = 5 [ S (s — Ve + S0 ()6 = VER)? + S (0) (a1 — yor)? +
5 6 7
Pec _ 2 Pm 2 Pa 2 I
— Gs(z) QM(ZE) Ves)© + 72\/a(za —e6)? + 2\/@(27 —en)? +

8% Fy

2
0zg

3

() (27 — yfer)?

(e)(z8 — es)*

2@(28 - Vee)?
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Let
B 1 9 ON
F9<z>—2zg{v (Zl vt 61)
OvN
— (aylz5 —e + 22 —¢ ):|
(ow(25 — €2) u)(g pv+p
Now,
0?Fy —
92 ) =V 1
. 82F9( _ v
023 Ves'
@(z)— « (z —i—( OvN . )z_)
023 o\ pv+p) )7
= 82F9( )=— Ll
0 7 T vy
and 2
o . OvN
9% Fy Iz

=

Then the estimate quadratic equation of Fy(z) is given by

6o = 3 [%9(@)(% —VE + G - V) + ) e - \F)}
- Y 21 — +/e Q_M 2o — J3)2 1Y 2o — <Jea)2
dZi . d.m

Let x; = z; — \/e; foreach i = 1,2,...,9. Observe that FTET

. Thus, the system of differential

equations of quadratic terms becomes

dxy VA asON 9

at 2,/e1 1 2(v 4 p) /e 2

d 11 asON « 9%/]\\{»1

&2 _ s v _ 2

dl’g - Bd 2 Uc+0'm+0'a+u 2 Y 2
at <2\/a> R 2./e3 B \ag )"
% _ Be 22 + v+ W 9

dt 2er) T \2yer )

dxs . Oc 2 pet+ 0+ p 2 ¢ 2

il <2\/%> x3+< NG Ty + NG g (3)
% _ <0m>$§+<pm+¢+ﬂ %

ddt 2./ i\/%

azxy _ Oq 2 Pa T K 2

I (2ﬁ> w ( 2@)”“"7

ars Pe 9 Pm 9 Pa 2 H 2
dt <2ﬁ> i <2ﬁ) ot <2f8> e (2@) &
£ - () lromi) i ()

dt 2,e5) 1 \2ulv+p)ves ) ? \2ye)

Using Theorem 2.1, the system (3) has the solution

(1'1,1‘2, ey .%'9)

Il
Y
~|>
-
~|x
N—
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We solve for the point (A1, Ag, ..., Ag) such that

v+ p asON B
( )A _<W)A%+A1 _ 0
s0 ;

<\/15 |:10/é+]/\: ay JZ)—(Bd+BC+M):|))\g+)\2 —

d Oc+0Om+0q+ 1 -
<\/> )\% 2\/» >)\§+(2\/>)/\2+/\3 - 0
2\5}>A +(7;£>A3+A4 =0
() () () wen =

(Ca )A3+<p“+“>A2+A7 - 0
7z)ot () 8+ (oo ) 9+ (ag) s = 0
A5+

(3
2f>A <2uu+u (\F>)\§+)\9 — 0

Solve for A\, from the second equation.

Mo — p(v + p)y/ea
pasON + anvN — p(v + ) (Ba + Be + 1)

Substitute Ay and solve for A\; from the first equation.

N Vel —i—ozs@N)\% —yer
1:

v+ u

Substitute Ay and solve for A4 from the fourth equation.

Ve — Be(y + m)A3 — Jex
Y+ u

A =

Substitute Ay and A4 to the third equation. Then solve for As.

\/63 - (Uc+0m + 0,4 +,u)(6d)‘% +'7)‘121) - \/%
Octom+0g+

A3 =

Substitute A3 and solve for A\ from the sixth equation.

Vs — om(pm + & + 1)A3 — /eg
pm+ @+

Substitute A3 and A¢ to the fifth equation. Then solve for As.

Ves — (pe+ 0+ 1) (003 + ¢A2) — /e
pe+0+u

A =

As =

Substitute A3 and solve for A7 from the seventh equation.

Ar = \/67_Ua(pa+ﬂ)/\§_\/a
Pa + 1
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Substitute A5, A\¢ and A7 to the eighth equation. Then solve for As.

o \/68 - :U'(pc)\% + pm)\% + paA%) — \/%

7

Substitute A\; and A» to the ninth equation. Then solve for Ag.

So we have

A1
A2
A3
A4
As
A6
A7

A8

A9

- Ve — (wu(v + p)A? — a,fuNA3) — \/eg

7

v/ el +a39N)\% — el

v+p

p(v + p)y/ez

pasON + a,0vN — u(v + 1) (Ba + Be + 1)
Ves — (0c+ 0m + 04+ 1) (Bard +723) — e3

Oct+0m+0g+ 1
Ves = Be(y + )3 — ea

v p
Vs — (pe+ 0+ p)(0:A3 + ¢A2) — \/eg
pe+ 041
\/QG_Um(pm‘F@b“‘ﬂ))‘%_\/%
pm + O+ p
Ver —oalpa + 1)A3 — Ver
Pat 1

V'es — 1(peA2 + pmA2 + par?) — \/es

W
Veg — (vp(v + p)A — a,uNA2) — \feg

"

We change the variable back to the variables used in the original system.

Niop o
Since x; = - fori =1,2,...,9, the solution of the system (3) is given by

x1

Z2

T3

Zq

T5

Ze

T

T3

T9

Vel +ozst9N>\§ — el

(v+p)t
p(v + p)y/ez

(,quSGN + o, VN — ,u(l/ + :u)(ﬁd + ﬁc + :U’))t
Ves — (0c+ om + 04 + 1) (Bad3 +7)2) — Ves

(0c+ Om + 04 + p)t
Ve —Be(v + m)A3 — Vea

(v +p)t
Vs = (pe+ 0+ p)(0cA3 + 0X3) — Ve
(pe+ 0 + p)t
Vs — omlpm + ¢+ 1)A3 — \/es
(pm + O+ p)t
ver — aalpa + m)A3 — Ver
(pa+ 1)t
Ves — u(peX2 + pmAE + paZ) — \Jfes
ut

\/69 — (vu(v + u))\% — OzUQVN)\%) - /e

ut



Asia Pac. J. Math. 2025 12:45 14 of 19

Since z; = x; + /¢; fori =1,2,...,9, the solution of the system (2) is given by

B \/61-{—0[59]\[)\ —\/7
oo o )?
. wy + p)/es
=T (uozSQJVJrozva—M(VJru)(ﬂdJrﬁcJru))tJr\/6
b = Ve et ontoat i +aX) — ves | o
(0c + Om + 04 + )t ’
Ve =By + w3 - Ve
. (v + pt v
v \/65—(pc+5+u)(aCA§+¢A§)—\/%+\/%
y (pe+ 0+ p)t
Ve — om(pm + ¢+ A — \/es
© (pm + &+ )t t Ve
Ver —oalpa+ 1)A3 — Ver
zr = + /e
! (pa+u) ver
- c)\ + m)\ + a)\ -
b = Vel put paXe) = Ve e
- + 1)AT — a,fuNA2) —
2y = Yoo~ mlvip) . WO NN) — Vo | e

We solve for S, E, Eq4, E., I, I, 1., R and V from the following equations:

ON
zZ1 = \/S—w—Fel, 22:\/E+€27 23:\/Ed+83
2e = VE.+ ey, 25 =V Ic+es, 26 =VIn+es
OvN
zr = I+ ey, ZgZ\/R—I—eg, 29:\/V—V+69
n(v + )
So we obtain an approximate solution for the system (1).
PP Yy
+ Vel +asdNAZ — _ ON
S = ( W+ )t —|-\/7 61+V+N
2
B o= pv+p)ves _
(uaserveuN W+ m Gt Bt V)
N Ves — (0c 4 om + 00 + 1) (Badd +7A3) — /es B
Ee = ( Uc+0m+aa+u) e °
2
Bt o ves— By + )3 — B
¢ ( (v + p)t Ve “
2
— (pe A2 A2) — (/€5
[T Ves — (pe+ 6+ p) (03 + ¢ B
’ ( (pe + 0+ p)t e “
2
[T Ves — om(pm + ¢+ 1)A2 — \Ves B
m ( p7n+¢+’u) +\/§ €6
5 2
o Ver —aa(pa + A2 — \fer 7
a ( pa‘f’llz) +\/a er
Ves — p(peAE + pmAE + padd) — es ’
R = BT +yEs | —es
2
4 Ves — (vu(v + p)A} — anOuNAZ) — J/eg B OvN
\%4 = < i + eo 69+H(V+N)
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Consider the set of parameter values—adopted, estimated, and assumed—for the extended SEIR
model as outlined in [10]. These values were used to simulate the model, and they are as follows:
§=1.80x1073, a5 = 2.02x107%, a,, = 4.05x 10719, p. = 1.23x107%, p,, = 1.23x1071, p, = 1.23x 107,
0=293x107% u=156x10"%0v=29.97x10"% ¢ =5.00 x 1072, 0, = 1.60 x 1073, 0,,, = 1.29 x 1071,
0y =433 x1073,v=2.00 x 107}, B3 =4.78 x 1074, and 3, = 4.32 x 1072,

Table 1 shows the minimum required values and chosen constants e;’s and \;’s. These were deter-

mined by plugging the parameter values into the system’s equations and checking which values satisfy

the conditions. Once the values were verified, we used them to form the approximate solutions of the

model.
TabLE 1. Parameter values of the approximate solution

Parameters Range of values  Values Parameters Values
e1 > 3.19 x 106 3.20 x 106 ) 7.22 x 1076
e2 >0 1.00 x 1071 )y 2.00 x 101
es > 2.72 x 1073 1.00 x 1071 X3 —3.20 x 1072
eq > 3.46 x 1072 1.00 x 1071 N4 —3.02 x 1072
es > 7.95 x 10~* 1.00 x 1071 X5 —1.01 x 1072
eq >2.30 x 107° 1.00 x 1071 X —2.11 x 10~*
er > 5.50 x 1077 1.00 x 1071 A7 —7.09 x 1076
es > 1.96 x 10710 1.00 x 1071 )g —1.99 x 107°
eg > 2.04 x 108 2.05 x 108 \g 1.15 x 107°

With these, we can now express the approximate solution by substituting the parameter values and

constants from the table. The system looks like this:

St (70'00000722 + \/m) T 7220.854882
ET = (@ + F)

Bt = ( —0. 032167519 \/07>2 o1

EF — ( —0. 302417597 my od

- ( —0. 010114134 \/07)2 Cod

o= ( —0. 000210905 mf Cod

o ( —0. 0000070867 N \/07)2 Cod

e ( —0. 0000198551 N F) Cod

vt = (0 00000000001 + /204000000 )2 — 149326
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We can obtain different systems of approximate solutions by specifying another value for e;’s.

Here, we use N = 110500000. Consequently, the approximate solution converges to the disease-free

equilibrium as t — oco. That is,

limy oo (ST (t), EF (1), EF (8), B (1), IF (1), L1 (1), I (t), R* (), V(1))

= (S°E“EVE

OIO IO IO

crtertmsrtar

RO, V)

= (3192779,0,0,0,0,0,0,0,203850674)

This is supported with the graphical representation of the solution of the system below.

ate2784
3192783
3192782

3192781

3192780

S+

3192779

3192778

3102777

3192776

0 +
0.08 +
I I
et + +
s R
0.04
0.02
0 r m_ﬁ—a ol 0.12 0.14 0.18
0.02
-0.04
0.06
008
-0:1

203850676

2038506755

203850675

203850874.5

203850674

203850673 5

203850673

2038506725

203850672

2038506715

-05

Ficure 1. Graphical representation of the solutions of the system
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By analyzing the structure of the approximate solutions derived from the parameter values and
constants in Table 1, we observe a consistent trend toward stability over time. This behavior suggests
that the system approaches a steady state in the long run. The following theorem demonstrates that
the approximate solution of system (1) converges to the disease-free equilibrium as ¢ — co. This result
confirms that the quadratic approximation offers a reliable estimate of the system’s behavior near the
point where the disease disappears. Notably, the approximate solution near the equilibrium closely

resembles the actual disease-free state of the system.

Theorem 3.2. There exists a solution (ST, ET,E}, ES, I7, It 1.7, RT, V") of the approximate system that

crrcor-mr-a’

converges to (SY, E°, EJ, E2, I, 1D, 13, R°, V0) of the system (1). That is,

cr-cr-m’a

limy o0 (ST (2), B (t), Ef (), EX (), 1X (1), I5(1), 15 (1), R (£), V(1))
= (89 B EY, EQ, 10,10, 19, RO, V°)

crtertmsrtar

Proof. The following is a solution of the approximate system

2

+ [ Vel +a.ONX - er - ON

ST o= ( w0t + el e1+y+u

.o p + 1) Ve )2

P = (e e it G T EE -

v _ (Ve —(octomtoat+m)(BaA3 ) — Ves B
Ed - ( (Uc+0m+0a+ﬂ)t +\/a €3

2
+ _ es — Be(y + WA — Vea B
B ( (v +p)t Ve “
2
v (Ve (pe T o+ w03+ ONE) — s ~
I = ( (pe+ 0+ )t +Ves es
2
v [ Ves—omlpm + o+ WA — Ve -
o ( (o + 6 + )t e ) e
2
+ Ver —oalpa + A3 — er _
S ( (pa + p)t e v
2
[ (\/€s—u(pcA§+p;/\§+paA$)—\/% . \F> .
vE = \/egf(v,u(l/nLy))\%faUGVN)\g)f\/aﬂ_\/e» 2_6 N N
k pt ’ I
ON
Observe that as t — oo, ST(t) — D We also have ET(t), EJ (), EX(t), I7(t), L} (t), 17 (t),
OvN
R*(t) — 0ast — oo while V*(¢) — o
p(v + p)

Therefore,

limy o0 (ST (2), E¥(2), Ef (1), EF (), 17 (), I5,(1), 17 (), R (£), V(1))
= (8% E°EQED 101,10, RO, VO)

c)recr-m? tar
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4. CONCLUSION

This study highlights the importance of quadratic approximations in the analysis of the system of
nonlinear ordinary differential equations, particularly in the framework of an extended SIR COVID-19
model. We showed that there is an approximate solution and that the system solution converges to the
disease-free equilibrium by including only the second-order terms from the Taylor series expansion.
The findings suggest that quadratic approximations are a possible substitute for conventional linear
approaches since quadratic approximations can represent the dynamics of nonlinear models. This
study encourages further research into nonlinear approximation methods particularly the quadratic
approximations, especially into their application to other complex dynamical systems in various

scientific disciplines.
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