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Abstract. This paper introduces a new two parameter generalized New XLindley distribution called
Lazri Zeghdoudi(LZ) distribution. The proposed model provides more flexibility in modeling data with
increasing hazard rate functions. Several statistical properties of the model were derived, such as shape,
moments, order statistics, stochastic ordering, Lorenz Curve, stress-strength reliability, and actuarial
measures. The unknown parameters of the new distribution were explored using several frequentest
estimation approaches. The performance of the proposed distribution is illustrated using two real datasets
from the fields of interactive data analysis and finance.
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1. Introduction

Numerous applied domains, including engineering, finance, and medicine, depend heavily on
modeling and longevity data analysis. Many lifespan distributions have been used to model these kinds
of data. The assumed probability model or distributions have a significant impact on the effectiveness
of the procedures used in a statistical investigation. As a result, a great deal of effort has gone into
developing large classes of traditional probability distributions and useful statistical methods. However,
the data contradicts every one of the accepted probability models, leaving a number of important
questions unanswered. Statistical models can be used to describe and predict real-world events. In
recent years, a variety of distributions has been employed for data modeling in a variety of domains.
Recent advances have centered on establishing new families that extend well known distributions
while still allowing for a great deal of flexibility in data modeling in practice. Several distributions have
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been proposed in the statistical literature to modify lifetime data, including the Lindley, exponential,
gamma, Weibull, Zeghdoudi, Xgamma, XLindley, new XLindley, gamma Lindley, quasi, Lindley, new
quasi Lindley, two parameter Lindley distribution I, two parameter Lindley distribution II, Pseudo Lindley, and
Power XLindley distributions. In this paper, we investigate a new polynomial exponential family that
includes the distributions of XLindley and Xgamma, XLindley as well as Zeghdoudi as special instances,
to introduce a new family of single-parameter continuous distributions. The existing literature on
modeling survival data, biological sciences, and actuarial sciences will benefit from this new family of
distributions.

In this study, a flexible extension of the XLindley distribution is introduced. The new distribution
was derived using two parameters polynomial exponential family(see Belili et al.(2023)), with the
probability density function is expressed as

f(t; θ, γ) = b(θ, γ) (a0 (θ, γ) + a1 (θ, γ) t) exp(−c (θ, γ) t)

where a0 (θ, γ) = γ, a1 (θ, γ) = θ, c (θ, γ) = θ
γ and b(θ, γ) = θ

2γ2
, and the resultant model is named the

“Lazri Zeghoudi(LZ)” distribution. Some important statistical properties are derived, including mode,
quantile function, moments and their associated measures, actuarial (risk) measures, and reliability
features such as survival, hazard (failure) rate, and mean residual life function. The parameters of
the proposed distribution are estimated using the maximum likelihood approach. A comprehensive
simulation study is also carried out to access the behavior-derived estimators. Two datasets are utilized
to demonstration the applicability and usefulness of the new model. It is concluded that the Lazri
Zeghoudi distribution is more flexible and efficiently analyzes both datasets as compared to competitive
continus distributions.

The paper is organized as follows. Section 2 presents a new two parameter distribution with the
study of its main properties such as: shape, survival function and failure rate, quantile function,
moments, moment generating function, order statistics, stochastic ordering, Lorenz Curve, stress-
strength reliability and actuarial measures. Then, estimation of the parameter is discussed in Section 3.
Simulation study and applications are developed in Sections 4 and 5. Some concluding remarks are
given in Section 6.

2. Main Results

2.1. The shape of the LZ distribution. AssumeX is a random variable with values in the range ]0,∞[,
and the distribution ofX depends on indeterminate parameters θ and γ with values in the range ]0,∞[.
The density function of the LZ distribution, given by

f(x; θ, γ) =


θ

2γ2
(γ + θx) exp

(
− θ
γx
)

x, θ, γ > 0

0 otherwise
(1)
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The behavior of fLZ (x) at x = 0 and x =∞ , respectively, is given by

lim
x→0

f(x) =
θ

2γ
,

lim
x→∞

f(x) = 0.

The derivative with respect to x of Eq. (1) is given by
d

dx
f(x) = − θ3

2γ3
x exp

(
− θ
γ
x

)
< 0, (2)

then f(x) is decreasing
and the second derivative of LZ distribution is

d2

dx2
f(x) =

θ3

2γ4
(θx− γ) exp

(
− θ
γ
x

)
(3)

with d2

dx2
f(x) < 0, x < γ

θ and d2

dx2
f(x) > 0, x > γ

θ .

2.2. Survival function and failure rate. The cumulative distribution function of the L-Z distribution is

F (x; θ, γ) = 1−
[
1 +

θ

2γ
x

]
exp

(
− θ
γ
x

)
(4)

The survival function of the new distribution is given by

S (x) = 1− F (x) =

[
1 +

θ

2γ
x

]
exp

(
− θ
γ
x

)
(5)

The hazard function associated with LZ distribution is

h (x) =
f(x)

1− F (x)
=

θ(γ + θx)

γ(2γ + θx)
, x > 0, θ, γ > 0. (6)

The behavior of hLZ (x) at x = 0 and x =∞ , respectively, is given by

lim
x→0

h(x) =
θ

2γ
,

lim
x→∞

h(x) =
θ

γ
.

Proposition 1. The HRT hLZ(x) of the LZ distribution is: Increasing

Proof.

Ψ(x) = − f́(x)
f(x) = θ2

γ
x

(γ+θx)

The first derivative of Ψ(x) is
Ψ́(t) = θ2

γ
γ

(γ+θx)2
> 0

It follows from Theorem (b) of Glaser (1980) that the failure rate is increasing.
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2.3. The quantile function of LZ distribution. FX is continuous and strictly increasing, so the quantile
function of X is QX(u) = F−1

X (u) ; 0 < u < 1: In the following theorem, we give an explicit expression
for QX in terms of the LambertW function. For more details on Lambert W function, we refer the
reader to Jodra(2010).

Theorem 2. The quantile function of the LZ distribution is defined as follows

xu = F−1
X (u) = −γ

θ

[
2 +W−1

[
2 (u− 1) e−2

]]
. (7)

where W−1(·) denotes the negative branch of the Lambert W function. ( W (z)e(W (z)) = z, where z is a
complex number)

Proof.

For any fixed θ, γ > 0, let u ∈ (0, 1). We have to solve the equation FX(x) = u with respect to x, for
x > 0.We have to solve the following equation

−(2 +
θ

γ
x)e
−
(
θ
γ
x
)

= 2 (u− 1)

Multiplying by e−2 both sides, we obtain:

−(2 +
θ

γ
x)e
−
(

2+ θ
γ
x
)

= 2 (u− 1) e−2

we see that −(2 + θ
γx) is the Lambert W function of the real argument 2 (u− 1) e−2. Thus, we have

LambertW
(
2 (u− 1) e−2

)
= −(2 +

θ

γ
x) (8)

Moreover , for any, θ, γ > 0 and x > 0 it is immediate that (2 + θ
γx) > 1 and it can also be checked

that−(2 + θ
γx)e

−
(

2+ θ
γ
x
)

= 2 (u− 1) e−2 ∈ (−1
e , 0) since u ∈ (0, 1) .There for,by taking into account the

properties of the negative branch of the Lambert W function, equation (2.8) becomes

LambertW
(
−1, 2 (u− 1) e−2

)
= −(2 +

θ

γ
x)

Again, solving for x, we get

QX (u) = xu = −γ
θ

[
2 +W−1

[
2 (u− 1) e−2

]]
. Setting u = 0.25, 0.50, and 0.75 in (2.4), the three quartiles of the LZD can be obtained.
F−1
X (0.25) = −γ

θ

[
2 +W−1

[
2
(

1
4 − 1

)
e−2
]]

= −γ
θ (−0.518)

F−1
X (0.5) = −γ

θ

[
2 +W−1

[
2
(

1
2 − 1

)
e−2
]]

= −γ
θ (−1.1461)

F−1
X (0.75) = −γ

θ

[
2 +W−1

[
2
(

3
4 − 1

)
e−2
]]

= −γ
θ (−2.1055)
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Table 1 shows some quantiles of the LZ distribution, which have been calculated from the closed
form expression for QX given in Theorem 2.2.

u θ = 0.1, γ = 0.5 θ = 0.5, γ = 0.2 θ = 1, γ = 2 θ = 2, γ = 1.5 θ = 5, γ = 5

0.01 0.1 0.008 0.04 0.0150 0.0200

0.05 0.5007 0.0401 0.2003 0.0751 0.1001

0.1 1.0061 0.0805 0.4025 0.1509 0.2012

0.2 2.0468 0.1637 0.8187 0.3070 0.4094

0.25 2.59 0.2072 1.036 0.3885 0.518

0.3 3.1541 0.2523 1.2617 0.4731 0.6308

0.4 4.3653 0.3492 1.7461 0.6548 0.8731

0.5 5.731 0.4585 2.2924 0.8596 1.1462

0.6 7.3310 0.5865 2.9324 1.0997 1.4662

0.75 10.5273 0.8422 4.2109 1.5791 2.1055

0.8 11.9864 0.9589 4.7946 1.798 2.3973

0.99 29.9512 2.3961 11.9805 4.4927 5.9902

Table 1. Some quantiles values of the LZ distribution

2.4. Moment generating function. The moment generating function of aX ∼ LZ (θ) random variable

is given as

MX (t) = E
(
etX
)

=

∫ ∞
0

etxf (x) dx

=
θ

2γ2

∫ ∞
0

etx(γ + θx)e
− θ
γ
x
dx

=
θ

2γ2

∫ ∞
0

(γ + θx)e
(t− θ

γ
)x
dx

=
θ

2γ2

[∫ ∞
0

γe
(t− θ

γ
)x
dx+

∫ ∞
0

θxe
(t− θ

γ
)x
dx

]
=

θ

2

(
2θ − γt

(γt− θ)2

)
(9)

2.5. Characteristic function. The moment characteristic function of a X ∼ LZ (θ) random variable is
given by

ΦX (it) =
θ

2

(
2θ − γit

(γit− θ)2

)
2.6. Moments. The rthmoment about the origin of the LZ distribution can be obtained as:

µ′r = E(Xr) =

∫ ∞
0

x(r)f(x)dx =
(r + 1)! + r!

2

(γ
θ

)r
In particular, we have

E (X ) =
3

2

γ

θ
(10)
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E
(
X2
)

=
8

2

(γ
θ

)2
(11)

The variance the LZ distribution is

V ar(X) =
7

4

(γ
θ

)2

The coefficient of variation β is :

β =

√
V ar(X)

E (X )
=

√
7

3

The skewness and the kurtosis for the LZ distribution are respectively expressed as

γ1 =
E
(
X

3
)

(V ar(X))
3
2

=
120
3
√

7

γ2 =
E
(
X

4
)

(V ar(X))2
=

1152

98

Theorem 3. Let X ∼ LZ (θ, γ) . ThenMedian(X) < E(X)

Proof.

Let x0.5 = Median(X) and µ = E(X), µ = 3
2
γ
θ , F (x0.5) = 0.5.

It is easy to see that the theorem holds by the following substitution in the cdf in equation (2.2)

F (µ) = 1− 7

4
e−

3
2

Note that 0.5 < 1− 7
4e
− 3

2 .Finally, since F (x) is an increasing function in x > 0 for all θ > 0, we have
x0.5 < µ.

2.7. Information measure and asymptotic behaviour of LZ distribution. Entropy is the quantity of
uncertainty or randomness in a system. It is an information measure for non-negative s 6= 1. The Rény
Entropy for LZ distributed random variable X is

Rs(x) =
1

1− s
log


∞∫

0

fs(x)dx


where s > 0 and s 6= 1.

Rs(x) =
1

1− s
log

∞∫
0

(
θ

2γ

(
1 +

θ

γ
x

)
e

(
− θ
γ
x
))s

dx

=
1

1− s
log

∞∫
0

θs

2sγs

(
1 +

θ

γ
x

)s
e

(
− θ
γ
sx

)
dx

using binomial expansion, we find
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θs

2sγs

∞∫
0

(
1 +

θ

γ
x

)s
e

(
− θs
γ
x
)
dx =

θs

2sγs

∞∑
j=0

s!

j!(s− j)!

∞∫
0

(
θ

γ
x

)j
e

(
− θs
γ
x
)
dx

=
θs

2sγs

∞∑
j=0

s!

j!(s− j)!

(
θ

γ

)j
Γ (j + 1)

(
θs

γ

)−j−1

Now, the Rényi entropy for the LZ model is determined as follows

Rs(x) =
1

1− s
log

 θs+1

2sγs+1

∞∑
j=0

s!

(s− j)!sj+1

 .

2.8. Distribution of the order statistics. Suppose X1, X2, ....., Xn is a random sample of X(r); (r =

1, 2, ...., n) are the rth order statistics obtained by arranging Xr in ascending order of magnitude
X1 ≤ X2 ≤ ... ≤ Xr and X1 = min(X1, X2, ....., Xr), Xr = max(X1, X2, .., Xr) then the probability
density function of the rth order statistics is given by

fr:n(x; θ) =
n!

(r − 1)! (n− r)!
fLZ(x; θ, γ) [FLZ(x; θ, γ)]r−1 [1− FLZ(x; θ, γ)]n−r

where f(.) and F (.) are the pdf and cdf of Lazri-Zegh distribution respectively. Hence, we have

fr:n(x; θ) =
n!

(r − 1)! (n− r)!
θ

2γ2
(θx+ γ) e

− θ
γ
x
[
1−

(
1 +

θ

2γ
x

)
e
− θ
γ
x
]r−1

[ (
1 +

θ

2γ
x

)
e
− θ
γ
x
]n−r

The pdf of the largest order statistics is obtained by setting r = n

fn;n(x; θ) =
nθ

2γ2
(θx+ γ) e

− θ
γ
x
[
1−

(
1 +

θ

2γ
x

)
e
− θ
γ
x
]n−1

The pdf of the smallest order statistics is obtained by setting r = 1

f1:n(x; θ) =
nθ

2γ2
(θx+ γ)

(
1 +

θ

2γ
x

)n−1

e
− θ
γ
nx

2.9. Stochastic ordering of LZ distribution. The stochastic ordering of a non-negative continuous
random variable is a vital tool for comparing the behavior of system components. A random variable
X is said to be smaller than another random variable Y in the Stochastic order (X ≤st Y ) if Fx(x) ≥

FY (x) ∀x Hazard rate order (X ≤hr Y ) if hx(x) ≥ hy(x) ∀x Mean residual life order (X ≤mrl Y ) if
mX(x) ≥ my(y) ∀x Likelihood ratio order X ≤lr Y if fX(x)

fY (x) decreases in x. This implies that

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ X ≤mrl Y

Theorem 4. Let X ∼ LZ(θ1) and Y ∼ LZ(θ2). If θ1 � θ2 and γ1 = γ2 then X ≤lr Y hence X ≤hr
Y,X ≤mrl Y and X ≤st Y
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Proof.
fX(x)
fY (x) =

θ1
2γ21

(γ1+θ1x) exp
(
− θ1
γ1
x
)

θ2
2γ22

(γ2+θ2x) exp
(
− θ2
γ2
x
) =

θ1γ22
θ2γ21

(γ1+θ1x)
(γ2+θ2x)e

(
θ2
γ2
− θ1
γ1

)
x

Taking natural log of the ratio will yield
ln fX(x)

fY (x) = ln
(
θ1γ22
θ2γ21

)
+ ln

(
γ1+θ1x
γ2+θ2x

)
+
(
θ2
γ2
− θ1

γ1

)
x

Differentiating the natural logarithm of the ratio with respect to x yields
d
dx ln fX(x)

fY (x) = θ1γ2−θ1γ1
(γ1+θ1x)(γ2+θ2x) +

(
θ2γ1−θ1γ2

γ1γ2

)
If θ1 ≥ θ2 and γ1 = γ2 , we have d

dx ln
(
fX(x)
fY (x)

)
≤ 0 . This means that X ≤lr Y .

2.10. Lorenz Curve. LetX be a random variable pdf f(x) and the cdf F (x),the Lorenz curve L is given
by

L(F (x)) =

x∫
−∞

tf(t)dt

E(X)

whereE(X) denotes the average.The Lorenz curveL(F )may then be plotted as a function parametric
in x: L(x) vsF (x).In other contexts, the quantity computed here is known as size-biased distribution; it
also has an important role in renewal theory

We have it for LZD
x∫

0

tf(t)dt =
3γ

2θ
− 1

2θγ
e
− θ
γ
x (

3γ2 + 3θγx+ θ2x2
)

We obtain the Lorenz curve for the LZD as follows

L(p) = 1− (1− p)

(
θ2

3γx
2 + θx+ γ

)
(

1 + θ
2γx
)

where x = F−1(p) with F (.) given by (2.4).

2.11. Stress-Strength reliability. We examine the Stress-Strength Reliability of LZ distribution. The
stress-strength reliability measures the life of a component that possesses random strength X and
subjected to random stress Y.

Theorem 5. Suppose X and Y are independent random variables denoting strength and stress of a component.
We assume further that X and Y follow LZ distribution with pdf given in equation (2.1), with parameter θ1 and
θ2 respectively. Then, the stress-strength reliability is obtained as follows

R = P (Y < X) = 1− θ1

4γ

[
(2γ + θ2) (2θ1 + θ2)

(θ1 + θ2)2

]
.

Proof.

We have

R = P (Y < X) =

∫ ∞
0

P (Y < X/X = x)fX(x)dx
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=

∫ ∞
0

f(x, θ1, γ)F (x, θ2, γ)dx

=
θ1

2γ2

∫ ∞
0

(γ + θ1x) e

(
− θ1
γ
x
)(

1−
(

1 +
θ2

2γ
x

)
e

(
− θ2
γ
x
))

dx

= 1− θ1

4γ

[
(2γ + θ2) (2θ1 + θ2)

(θ1 + θ2)2

]
.

2.12. The quantile function or value at risk of the LZ distribution. The quantile function of the LZ
distribution is defined as follows

V aR = xu = F−1
X (u) = −γ

θ

[
2 +W−1

[
2 (u− 1) e−2

]]
. (12)

whereW−1(·) denotes the negative branch of the LambertW function.

Definition 1. Risk managers use value at risk (VaR) to measure and control the level of risk exposure. The
mathematical definition is

V aR = inf {x ∈ R, P (X > x ≤ 1− p)} ,

where p ∈ (0, 1) is the level. The formula tells us what the maximum loss we can expect tomorrow, with normal
market conditions, or what amount of loss we should not exceed with a given level of probability, thus VaR is also
known as a quantile risk measure and is defined as V aR = F−1(p) for a continuous distribution is.

2.13. Mean excess function. For a claim amount random variable X , the mean excess or residual life
function is the expected payment per claim on a policy with a fixed amount deductible of x, where
claims with amounts less than or equal to x is thoroughly ignored. It is defined for the LZ distribution
as follows

e(x) = E (X − x/X > x) =
1

1− F (x)

∫ ∞
x

(1− F (u))du,

where ∫ ∞
x

(1− F (u))du =

∫ ∞
x

(
1 +

θ

2γ
u

)
e
− θ
γ
u
du =

(3γ + θx)

2θ
e
− θ
γ
x
.

Then, we have

e(x) =
γ (3γ + θx)

θ (2γ + θx)
.

2.14. Limited expected value function. The limited expected value function L of a claim size variable
X , or of the corresponding c.d.f F (x), is defined as follows

L(u) = E {min (X,u)} =

∫ u

0
xf(x)dx+ u(1− F (u)), u > 0.

The value of the function L at point x is equal to the expectation of the c.d.f F (x) truncated at this
point. Given a policy limit or deductible from a reinsurance perspective, say u, a limited loss random
variable is defined as follows
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XΛu = min (X,u) =

 X, X ≤ u

u, X > u

The limited expected value function is defined as the expectation of the limited which is calculated
as follows

E (XΛu) =

∫ u

0
xf(x)dx+ u(1− F (u))

= m1(u) + u (1− F (u))

where

m1(u) =

∫ u

0
xf(x)dx =

3γ

2θ
− e−

θ
γ
u
(
θ

2γ
u2 +

3

2
u+

3γ

2θ

)
Then, we have

E (XΛu) =
3γ

2θ
−
(

1

2
u+

3γ

2θ

)
e
− θ
γ
u

2.15. Tail value at risk. The tail value at risk (TV aR) also known as the tail conditional expectation is
a risk measure associated with the general value at risk. TV aRmeasures the expectation of the losses
beyond V aR. The TV aR is defined for the LZ distribution as follows

TV aR = E (X/X > V aR) =
1

1− p

∫ ∞
V aR

xf(x)dx

Where ∫ ∞
V aR

xf(x)dx =
θ

2γ2

∫ ∞
V aR

x (γ + θx) exp

(
− θ
γ
x

)
dx

=
θ

2γ2

(
V aR2 +

3γ

θ
V aR+

3γ2

θ2

)
e
− θ
γ
V aR

Then, we have

TV aR =
θ

2γ2 (1− p)

(
V aR2 +

3γ

θ
V aR+

3γ2

θ2

)
e
− θ
γ
V aR

Although it virtually always represents a loss, V aR is conventionally reported as a positive number.

2.16. Tail variance. Tail variance (TV ) measures losses’ conditional variance, given that they exceed
V aR at a given probability P . TV is defined for the LZ distribution as follows

TV = E
(
X2/X > V aR

)
− (TV aR)2 =

1

1− p

∫ ∞
V aR

x2f(x)dx− (TV aR)2

Where

1

1− p

∫ ∞
V aR

x2f(x)dx =
θ

2γ (1− p)

(
V aR3 +

4γ

θ
V aR2 +

8γ2

θ2 V aR+
8γ3

θ3

)
e
− θ
γ
V aR
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Then, we have

TV =
θ

2γ (1− p)

(
V aR3 +

4γ

θ
V aR2 +

8γ2

θ2 V aR+
8γ3

θ3

)
e
− θ
γ
V aR

− θ2

4γ4 (1− p)2

(
V aR2 +

3γ

θ
V aR+

3γ2

θ2

)2

e
− 2θ
γ
V aR

3. Estimation Methods

3.1. Maximum Likelihood Estimates (MLE). Let x1, x2, . . . , xn be a random sample of size n from
the PDF of LZ model. A sorted random sample from the suggested distribution is x1:n, x2:n, . . . , xn:n.
The ln-likelihood function, ln l(xi; θ, γ) is:

ln l(x; θ, γ) = n ln θ − n ln 2− 2n ln γ +
∑

ln (θxi + γ)− θ

γ

∑
xi

The derivatives of ln l(x; θ, γ) with respect to θ and γ are:
d ln l(x; θ, γ)

dθ
=

n

θ
+
∑ xi

(θxi + γ)
− 1

γ

∑
xi

d ln l(x; θ, γ)

dγ
= −2n

γ
+
∑ 1

(θxi + γ)
+

θ

γ2

∑
xi

The MLE is implemented using Newton-Raphson’s numerical iterative method since it has no closed-
form solution.

3.2. Least-Squares Estimate (OLSE). Another major technique that is employed in lieu of MLE is the
conventional least-squares estimate (OLSE) by minimizing the following formula

O =

n∑
i=1

[
F (xi:n)− i

n+ 1

]2

.

3.3. Anderson Darling Estimate (ADE). Anderson Darling estimate (ADE) is another key technique
that is employed in place of MLE by minimizing the following formula

A = −n− 1

n

n∑
i=1

(2i− 1)[logF (xi:n) + logS(xi:n)].

4. Simulation Study

For this purpose, 5000 trials were used to estimate MLE, OLSE and ADE, and estimate the mean
square errors (MSEs), for the sample size n = 20, 40, 60, 100, and 200.The MSEs is derived using the
following equalities

MSE
(
θ̂, γ̂
)

=
1

5000

5000∑
i=1

((
θ̂, γ̂
)
− (θ, γ)

)2
.
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n MLE MSE OLSE MSE ADE MSE

θ̂ γ̂ θ̂ γ̂ θ̂ γ̂ θ̂ γ̂ θ̂ γ̂ θ̂ γ̂

20 0.5108 0.1039 0.0004 0.0011 0.5212 0.1122 0.0007 0.0016 0.5109 0.1038 0.0004 0.0011

40 0.5095 0.1028 0.0003 0.0008 0.5132 0.1099 0.0005 0.0012 0.5096 0.1021 0.0003 0.0008

60 0.5077 0.1019 0.0002 0.0006 0.5105 0.1057 0.0003 0.0008 0.5077 0.1019 0.0002 0.0006

100 0.5052 0.1010 0.0001 0.0003 0.5098 0.1043 0.0001 0.0005 0.5051 0.1012 0.0001 0.0003

300 0.5036 0.1006 0.0001 0.0001 0.5045 0.104 0.0001 0.0001 0.5035 0.1005 0.0001 0.0001

Table 2: Simulation values using MLE ,OLSE and ADE methods and MSE for (θ, γ) = (0.5, 0.1)

n MLE MSE OLSE MSE ADE MSE

θ̂ γ̂ θ̂ γ̂ θ̂ γ̂ θ̂ γ̂ θ̂ γ̂ θ̂ γ̂

20 0.5285 0.9279 0.0014 0.0012 0.5298 0.9388 0.0017 0.0015 0.5267 0.927 0.0013 0.0011

40 0.5177 0.9157 0.0012 0.0010 0.5205 0.9198 0.0014 0.0012 0.5155 0.9151 0.0012 0.0010

60 0.5154 0.9128 0.0009 0.0008 0.5178 0.9145 0.0010 0.0009 0.5142 0.9125 0.0008 0.0008

100 0.5076 0.9036 0.0005 0.0005 0.5096 0.9089 0.0007 0.0006 0.5031 0.9033 0.0005 0.0005

300 0.5026 0.9024 0.0003 0.0003 0.5042 0.9051 0.0004 0.0003 0.5024 0.9022 0.0003 0.0003

Table 3: Simulation values using MLE, OLSE and ADE methods and MSE for (θ, γ) = (0.5, 0.9)

n MLE MSE OLSE MSE ADE MSE

θ̂ γ̂ θ̂ γ̂ θ̂ γ̂ θ̂ γ̂ θ̂ γ̂ θ̂ γ̂

20 1.0128 0.4946 0.0062 0.0051 1.0281 0.4935 0.0075 0.006 1.0127 0.4945 0.0061 0.0051

40 1.0086 0.4989 0.0051 0.0038 1.0192 0.4958 0.0062 0.0047 1.0085 0.4988 0.0050 0.0038

60 1.0078 0.5006 0.0035 0.0026 1.0098 0.5001 0.0046 0.0032 1.0076 0.5005 0.0035 0.0026

100 1.0037 0.5015 0.0018 0.0013 1.0055 0.5005 0.0026 0.0021 1.0035 0.5014 0.0018 0.0013

300 1.0008 0.5038 0.0012 0.0010 1.0018 0.5017 0.0015 0.0014 1.0006 0.5035 0.0012 0.0010

Table 4: Simulation values using MLE ,OLSE and ADE methods and MSE for (θ, γ) = (1, 0.5)

n MLE MSE OLSE MSE ADE MSE

θ̂ γ̂ θ̂ γ̂ θ̂ γ̂ θ̂ γ̂ θ̂ γ̂ θ̂ γ̂

20 2.0132 3.0119 0.0142 0.0121 2.0145 3.0124 0.0146 0.0124 2.0130 3.0117 0.0141 0.0120

40 2.0121 3.0113 0.0121 0.0108 2.0133 3.0116 0.0124 0.0109 2.0120 3.0111 0.0120 0.0106

60 2.0110 3.0107 0.0105 0.0096 2.0118 3.0104 0.0107 0.0098 2.0110 3.0105 0.0102 0.0094

100 2.0102 3.0102 0.0098 0.0053 2.0107 3.0101 0.0099 0.0055 2.0101 3.0101 0.0095 0.0051

300 2.0065 3.0058 0.0062 0.0022 2.0071 3.006 0.0066 0.0024 2.0062 3.0055 0.0060 0.0020

Table 5: Simulation values using MLE ,OLSE and ADE methods and MSE for (θ, γ) = (2, 3)

Remark 1. The simulation findings are given in Tables 2-4. It is observed that the MLE and ADE methods are
good then OLSE method. Also, all methods are asymptotically unbiased as the sample size increases. Its is also
seen that the MSEs are approaching zero with an increase in sample size.
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5. Applications

In this section, two datasets from various disciplines are utilized for application purposes. These
datasets are based on “Finance Data (Ratio)” and “Interactive Data Analysis”. The proposed distribution
is compared with some famous count models available in literature such two-parameter L1, gamma
Lindley, quasi Lindley, new quasi Lindley, two parameter L2, Pseudo Lindley, Xlindley and Power XLindley
distributions.

The parameters of all competitive distributions are estimated using the ML estimation method.
For comparison and identification of the best-fitted model, we used the following information and
goodness-of-fit criteria, maximum log-likelihood, AIC, BIC, and AICC.

The first data set contains Finance Data (Ratio) counts from https://data.world › datasets › finance. Table
6 shows the parameter estimates and goodness-of-fit metrics for all fitted distributions. The suggested
distribution matches this data set fairly well, as seen in Table 6.

Data set 1: Finance Data (Ratio) 0.09784662, 0.1002, 0.09420406, 0.09563, 0.11433458, 0.1164,

0.10697413, 0.1085, 0.08633513, 0.08743, 0.11151292, 0.1132, 0.09633629, 0.09831, 0.07243469, 0.07431,

0.08905936, 0.09026.

Model θ γ AIC BIC −2L AICC

two-parameter L1 12.02589 0.000562286 48.71469 46.93395 52.71469 47.91469
gamma Lindley 2.476847 0.0007199642 258.3068 256.5261 262.3068 257.5068
quasi Lindley 27.0735 0.0004977422 173.1456 171.3649 177.1456 172.3456
new quasi Lindley 12.07276 48.41638 44.86238 43.08163 48.86238 44.06238
two parameter L2 4.097152 0.0009746497 48.49152 46.71077 52.49152 47.69152
Pseudo Lindley 10.4013 77.09507 43.84285 42.06211 47.84285 43.04285
Xlindley 10.34574 / 45.84092 44.95055 47.84092 45.59092
Power XLindley 474.6577 2.646587 77.07403 75.29328 81.07403 76.27403
Lazri Zeghdoudi 1.625896 0.09805427 32.39848 30.61773 36.39848 31.59848
Table 6: Parameter estimates and model comparison characteristics for the first data set
The second data set is interactive data analysis given in Table 7 taken from McNeil, D. R. (1977).

Table 7 displays the MLEs for all fitted models. The LZ distribution is proven to produce more efficient
fits than competitor distributions.

Data set 2:
3.93, 5.31, 7.24, 9.64, 12.90, 17.10, 23.20, 31.40, 39.80, 50.20, 62.90, 76.00, 92.00, 105.70, 122.80, 131.70,

151.30, 179.30, 203.20.
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Model θ γ AIC BIC −2L AICC

two-parameter L1 0.02166821 44.2597 203.7026 205.5914 199.7026 204.4526
gamma Lindley 0.01797983 0.02366775 203.6523 205.54126 199.6523 204.4023
quasi Lindley 0.04057428 0.2043486 336.5028 338.3917 332.5028 337.2528
new quasi Lindley 0.02478781 0.001029806 204.5499 206.4388 200.5499 205.2999
two parameter L2 0.01801368 0.006201614 203.2340 205.1228 199.234 203.9840
Pseudo Lindley 0.0194321 0.031274 < 1 - - - -
Xlindley 0.02790613 - 206.9240 207.8684 204.9240 207.1593
Power XLindley 1.055696 0.1935496 251.3029 253.1917 247.3029 252.0529
Lazri Zeghdoudi 0.02778157 1.314093 203.2332 205.1221 199.2332 203.9831
Table 7: Parameter estimates and model comparison characteristics for the second data set

6. Conclusion

In this article, we introduced and studied Lazri Zeghoudi (LZ) distribution. The LZ distribution is
an important model that can be utilized to analyzed overdispersed datasets. Aside from distribution
function and PMF other important mathematical properties were derived such as moments and related
measurements, reliability characteristics, and two risk or actuarial measures. The LZ distribution was
compared to the two-parameter L1, gamma Lindley, quasi Lindley, new quasi Lindley, two parameter
L2, Pseudo Lindley, Xlindley and Power XLindley distributions on two datasets from distinct areas.
The results demonstrate that the LZ distribution outperforms the competition.

Appendix
Distribution Density

two-parameter L1 θ2(γ+x)e−θx

γθ+1

gamma Lindley θ2((γ + γθ − θ)x+ 1)e−θx

γ(1 + θ)

quasi Lindley θ(γ+xθ)e−θx

γ+1

new quasi Lindley θ2(θ+γx)e−θx

γ+θ2

two parameter L2 θ2

θ+γ (1 + γx)e−θx

Pseudo Lindley θ(γ−1+θx)e−θx

γ

Xlindley θ2(2+θ+x)
(1+θ)2

e−θx

Power XLindley αθ2(2+θ+xα)xα−1

(1+θ)2
e−θx

α
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