
Asia Pac. J. Math. 2025 12:48

SOME INTEGRAL FORMULAE FOR GRADIENT RICCI SOLITON
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Abstract. In this paper, We consider Ricci soliton hypersurfaces embedded in weighted manifold. Using
the weighted symmetric fuunctions σ∞k and the weighted Newton transformations T∞k [8], we give some
new Minkowski type integral formulae for Ricci soliton and gradient Ricci soliton manifolds.
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1. Introduction

In differential geometry and geometric analysis, integral formulae has been a crucial and extensively-
studied tool and has led to lots of interesting applications.

The first known integral formulae were published in 1903 by H. Minkowski [14] for compact surfaces
in three-dimensional Euclidean space.

In [11] C.C.Hsiung derived a serie of higher orderMinkwski formulae for hypersurfaces in Euclidean
space. He obtained the following result.

Theorem 1. Let x : Mn −→ Rn+1 be an isometric immersion of a compact oriented Riemannian manifoldMn

into the Euclidean space Rn+1, then we have:∫
Mn

(1 +H 〈x,N〉) dM = 0.

Where N is a unit normal vector field onMn and H is the normalized mean curvature of the hypersurfaceMn

given by

H =
1

n
traceA =

1

n
S1 =

1

n

n∑
κi,

A is the shape operator corresponding to the second fundamental form with eigenvalues κ1, ..., κn.
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This result were generalized later in Riemannian manifolds. The idea is to consider a manifold
addmiting a conformal (Killing or homothetic) vector filed, computing the divergence of certain
quantities and then applying the divergence theorem.

In 70s, Reilly established an important Minkowski type formulae in Euclidean spaces, and later in
Riemannian manifolds [17]. Surprisly, these formulae were used to obtain some rigidity results for
hypersurfaces isometrically immersed in Riemannian space.

Over time, many generalization of Minkowski integral formulae appear in literature for Riemannian
and pseudo-Riemannian cases (see for instance [4, 5, 7, 12, 13, 17])

It is interesting to know if theorem 1, can be extended to other cases, and applied to generalize the
aforementioned results.

In [1–3], the authors derived a serie of integral formulae on weighted manifolds using the weighted
elementary symmetric functions σ∞k and the weighted Newton transformations T∞k [8]. These quanti-
ties are natural generalization of the well known k−mean curvature σk and Newtons transformations
Tk, and they are defined as:

σ∞0 (u, µ) = 1,

kσ∞k (u, µ) = uσ∞k−1(u, µ) +
k−1∑
j=0

n∑
i=1

(−1)j σ∞k−1−j(u, µ)µj+1
i for 1 ≤ k ≤ n,

σ∞k (u, µ) = 0 for k > n.

(1.1)

Where u ∈ R and µ = (µ1, ..., µn) ∈ Rn. and µ1, ..., µn are the eigenvalues of shape operator A.
The weighted Newton transformations T∞k (µ0, A) associated to A are defined inductively by T∞0 (u,A) = I,

T∞k (u,A) = σ∞k (u,A)I −AT∞k−1(u,A) for k ≥ 1.
(1.2)

Where I stands for the identity on the Lie algebra of vector fields κ(M).
Recall that a weighted manifold (Mn, 〈, 〉 , dvf ), (also known in literature as manifolds with density)

is a Riemannian manifold (Mn, 〈, 〉) endowed with a weighted volume form dvf = e−fdv, where f is a
real-valued smooth function onMn, and dv is the Riemannian volume form associated with the metric
〈, 〉 .

In this work we consider a weighted manifoldMf
n+1 that is Ricci soliton. We derive a new integral

formulae for hypersurfaces embedded inMf
n+1. Recall that a Ricci soliton is a Riemannian metric

together with a vector field (M, 〈, 〉 , X) that satisfies

Ric+
1

2
LX 〈, 〉 = λ 〈, 〉 (1.3)

for some real constant λ.
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2. Preliminaries

In this paper, we fix tadopt to the convention introduced in [1] to define and study the weighted
symmetric functions and weighted Newton transformations. For more informations see [1, 3, 8].

LetMn+1
f be an (n + 1)−dimensional connected orientable weighted Riemannian manifold with

constant curvature, and 〈, 〉 and∇ will stand for its Riemannian metric and its Levi-Civita connection,
respectively.

Let ψ : Mn −→ M
n+1
f be a closed oriented hypersurface, and N be the unit normal fields which

orientMn. Denoting by∇ the Levi-Civita connection ofMn.

The Gauss and Weingarten formulae of the hypersurface are written as:

OXY = ∇XY + 〈AX,Y 〉 .N,

AX = − (OXN)ᵀ .

Where X and Y are tangent vector fields X,Y ∈ κ(Mn), κ(Mn) is the tangent bundle ofMn, and
A : κ(Mn) −→ κ(Mn) is the shape operator ofMn with respect to the gauss map N.

By the Codazzi equation, we can see that the normal component of the curvature tensor R ofMn+1
f

is given in terms of A by 〈
R(U, V )W,N

〉
=
〈(
∇VA

)
U −

(
∇UA

)
V,W

〉
,

where U, V,W ∈ κ(Mn). In particular if the ambient space has constant sectional curvature, then we
have (

∇VA
)
U =

(
∇UA

)
V.

Since A is self-adjoint and symmetric, then it is diagonalized. Denoting by µ1, ..., µnthe principal
curvatures ofMn, which are the eigenvalues of A.

Following J. Case [8] , we define the weighted elementary symmetric functions σ∞k : R× Rn −→ R

recursively by: 
σ∞0 = 1,

kσ∞k = σ∞k−1

n∑
j=0

µj +

k−1∑
i=1

n∑
j=1

(−1)i σ∞k−1−iµ
i
j for k ≥ 1.

where σ∞k = σ∞k (〈∇f,N〉 , µ1, ..., µn) and µ1, ..., µnthe principal curvatures ofMn.

In particular,
σ∞1 = Hf = σ1 +

〈
∇f,N

〉
,

is the weighted mean curvature introduced by Gromov [10].
For the nonweighted case, we have that∇f = 0, and σ∞k = σk are the classical elementary symmetric

functions defined and studied in [17].
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The weighted Newton transformations T∞k = T∞k (〈∇f,N〉 , µ1, ..., µn) are defined inductively from
A by:  T∞0 = I

T∞k = σ∞k I −AT∞k−1 for k ≥ 1

or equivalently

T∞k =
k∑
j=0

(−1)j σ∞k−jA
j

In [8], J. Case showed that T∞k satisfies the following properties:

trace(AT∞k ) = (k + 1)σ∞k+1 − 〈∇f,N〉σ∞k . (2.1)

For i ∈ {1, ..., n}we have

σ∞k,i = σ∞k − µiσ∞k−1,i,

where

σ∞k,i = σ∞k
(
u, µ1, ..., µi−1, µi+1, ..., µn

)
.

The eigenvalues of T∞k are given by σ∞k,i.
We can also proof that for k ≥ 1,we have

trace(T∞k ) = (n− k)σ∞k +
〈
∇f,N

〉
σ∞k−1. (2.2)

Definition 1. The weighted divergence of the weighted Newton transformation T∞k is defined as:

divf T
∞
k = ef div

(
e−fT∞k

)
.

An easy computation shows that

divf T
∞
k = div T∞k − T∞k (∇f)

Where

div T∞k = trace (OT∞k ) =

n∑
i=0

Oei (T∞k ) (ei)

and {e1, ..., en} is a local orthonormal frame of the tangent space ofMn :

div T∞k = T∞k−1 ◦ ∇u+

k∑
j=1

uj

j!
divTk−j ,

We finish this part by the following proposition whose proof can found in [2].
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Proposition 2. The weighted divergence of T∞k is given by

divf T
∞
0 = −∇f,

and for 1 ≤ k ≤ n:

divf T
∞
k = T∞k−1 ◦ ∇ 〈∇f,N〉+

k∑
j=1

〈∇f,N〉j

j!
div T∞k−1 − T∞k (∇f) .

In particular, ifMn+1 has constant sectional curvature, then we have

divf T
∞
k =

k−1∑
j=0

[
(−1)j σ∞k−1−jA

j ◦ ∇u
]
− T∞k (∇f) . (2.3)

3. Main Results

LetM be a Ricci soliton. That is a Riemannian manifold whose metric toghether with a vector field
X satisfies:

Ric+
1

2
LX 〈, 〉 = λ 〈, 〉 . (3.1)

for some real constant λ.
Here Ric denotes the Ricci tensor of the metric 〈, 〉 onM and LX is the Lie derivative in the direction

of X.
IfX = ∇f for some smooth function f : M −→ R, we say that (M, 〈, 〉 ,∇f) is a gradient Ricci soliton

with potential f . In this situation, the soliton equation reads:

Ric+Hess (f) = λ 〈, 〉 (3.2)

Where Hess (f) is the hessian of f.
Clearly, equations (3.1) and (3.2) can be considered as perturbations of the Einstein equation:

Ric = λ 〈, 〉

and reduce to this latter in case where X or ∇f are Killing vector fields.
Taking the trace, equations (3.1) and (3.2) becomes respectively:

S + divX = nλ.

And
S + ∆f = nλ.

The left hand part of equation (3.1) is the so called Baky-Emery Ricci curvature associated to the
weighted manifold (M, 〈, 〉 , e−fdvg

)
.
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The assertion that (M, 〈, 〉 ,∇f) is a gradient Ricci soliton amounts to saying that the Bakry-Emery
Ricci tensor Ricf of the weighted Riemannian manifold (M, 〈, 〉 , e−fdvg

) is constant. Thus Ricf is the
most natural geometric object associated to a gradient Ricci soliton.

Both equations (3.1) and (3.2) can be considered as perturbations of the Einstein equation

Ric = λ 〈, 〉

and reduce to this latter in case where X or ∇f are Killing vector fields.
LetMf

n+1 a Ricci soliton, and ϕ : Mn −→Mf
n+1 be a closed oriented hypersurface. Denoting by N

the unit normal fields which orientMn, and ∇ the Levi-Civita connection ofMn.

Before to compute our integral formulae, we need the following result.

Proposition 3. Let g be a smooth function onMn, and X be a Ricci soliton onMn, then we have

divf

(
T∞
k X>) =

〈
div (T∞

k ) , X>〉+ λtrT∞
k + 〈X,N〉 tr (AT∞

k )−
n∑

i=0

Ric (T∞
k (ei) , ei)−

〈
∇f, T∞

k (X>)
〉
. (3.3)

Where trT∞k and tr (AT∞k ) are given by (2.1) and (2.2), N is a unit vector field normal toMn and T∞k is the

weighted Newton transformations.

Proof. We have

divf

(
T∞k X>

)
= efdiv

(
e−f .T∞k (X>

)
)

= div
(
T∞k (X>

)
) + ef

〈
∇e−f , T∞k (X>)

〉
= div

(
T∞k X>

)
−
〈
∇f, T∞k (X>)

〉
Where div

(
T∞k (X>

)
) is the classical (non weighted) divergence of T∞k (X>).

On the other hand, we have

div
(
T∞k X>

)
=

n∑
i=1

〈
Oei

(
T∞k X>

)
, ei

〉
=

n∑
i=1

〈
(OeiT

∞
k ) (X>), ei

〉
+

n∑
i=1

〈
(T∞k ) (OeiX

>), ei

〉
=

n∑
i=1

〈
X>, (OeiT

∞
k ) ei

〉
+

n∑
i=1

〈
(OeiX

>), T∞k ei

〉
= 〈divT∞k , X〉+

n∑
i=1

〈
(OeiX

>), T∞k ei

〉
Where {e1, ..., en} be an orthonormal basis of TpMn.

If {e1, ..., en} is an orthonormal basis of TpM that diagonalizes A, it diagonalizes also T∞k , and we
have:

T∞k ei = σ∞k,iei.
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Therefore

2
〈
OeiX

>, T∞k ei

〉
= 〈OeiX,T∞k ei〉+

〈
OeiX,σ

∞
k,iei

〉
− 2

〈
OeiX

⊥, T∞k ei

〉
= 〈OeiX,T∞k ei〉+

〈
Oσ∞k,ieiX, ei

〉
− 2 〈X,N〉 〈OeiN,T∞k ei〉

= 〈OeiX,T∞k ei〉+
〈
OT∞k eiX, ei

〉
+ 2 〈X,N〉 〈Aei, T∞k ei〉

= LX 〈T∞k ei,ei 〉+ 2 〈X,N〉 〈(AT∞k ) ei, ei〉

= 2λ 〈T∞k ei, ei〉 − 2Ric (T∞k ei, ei) + 2 〈X,N〉 〈(AT∞k ) ei, ei〉

Hence
div
(
T∞k X>

)
= 〈divT∞k , X〉+ λtrT∞k + 〈X,N〉 tr (AT∞k )−

n∑
i=0

Ric (T∞k (ei) , ei)

Finally

divf

(
T∞k X>

)
= 〈divT∞k , X〉+ λtrT∞k + 〈X,N〉 tr (AT∞k )−

n∑
i=0

Ric (T∞k (ei) , ei)−
〈
∇f, T∞k (X>)

〉
.

This ends the proof. �

Integrate the two side of (3.3) and applying the weighted version of the divergence theorem, we
have:

Theorem 4. LetMf
n+1 be a Ricci soliton and ϕ : Mn −→Mf

n+1 be a closed oriented hypersurface. Denoting
by N the unit normal fields which orientMn. Then we have:∫

Mn

(
〈divT∞

k , X〉+ λtrT∞
k + 〈X,N〉 tr (AT∞

k )−
n∑

i=0

Ric (T∞
k (ei) , ei)−

〈
∇f, T∞

k (X>)
〉)

dvf = 0 (3.4)

3.1. Some consequences. IfMn+1 is (Non weighted ) Riemannian manifold equiped with a conformal
vector field X , then T∞k = Tk is the classical Newton transformations, and∫

Mn

(〈divT∞k , X〉+ λ (n− r)σr + 〈X,N〉 (r + 1)σr+1) dvf = 0.

If in additionMn+1 is a space form, then Tk is divergence free, and we recover the well known rth

Minkowski formula: ∫
Mn

(λ (n− r)σr + 〈X,N〉 (r + 1)σr+1) dv = 0.

For hypersurfaces with constant higher order mean curvature, we have the following lemma.

Lemma 5. Let ϕ : Mn −→ M
n+1 be a closed hypersuraces in a compact oriented manifoldMn+1. Suppose

that there exist a conformal vector field X onMn+1. If σr is constant, then

|σr| ≤
(r + 1)

(n− r)λvol(Mn)

∫
Mn

|σr+1| dv
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For k = 0, equation (3.4) becomes∫
Mn

(
nλ+ 〈X,N〉σ1 − S −

〈
∇f,X>

〉)
dvf = 0

where S denotes the scalar curvature ofMn.

For the gradient Ricci soliton, we have X = ∇f and we obtain:

Proposition 6. Under the hypothesis of the above theorem, we have for any gradient Ricci soliton:

F (〈, 〉 , f) = nλvolfM
n +

∫
Mn

〈∇f,N〉σ1dvf .

Where F (〈, 〉 , f) is the Perelman F−functional defined by [16]:

F (〈, 〉 , f) =

∫
Mn

(
S + |∇f | 2

)
dvf .
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