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Abstract. A Vee graph is formed by attaching two grid graphs at their endpoints. The graph can be
associatedwith degree-basedmatrices including degree subtraction and degree square subtractionmatrices.
This research is devoted to determining the energy of the Vee graph. The first steps in this paper are to
present the degree of every vertex and the general formula of the characteristic polynomial of the particular
matrix. The result is that the obtained energies are always an even integer and hyperenergetic. Moreover,
we highlight the relationship between the energy and its spectral radius: the energy is always twice its
spectral radius.
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1. Introduction

Let Pn be the path graph on n vertices. From path graph Pn and Pm, we are able to construct the
grid graph of m,n vertices, with the cartesian product between Pn to Pm. Therefore, we have (Pn×Pm).
The Vee graph is built from grid graph (P2 × Pn) and P2 × Pn+1 which are attached at their endpoints.

The Vee graph further can be associated with the adjacency matrix. This matrix is square and we
can determine the eigenvalues of the graph. The summation of the absolute eigenvalues is the energy
of a graph. Gutman [9] pioneered the energy definition in 1978. It has been shown that the energy is
not equal to an odd integer [10] and is never equal to its square root [11].

Apart from the adjacency matrix, research on graph matrices continues to expand involving the
degree of vertices. Another graph matrix was introduced by [4], it was the degree subtraction (DS)

matrix. Furthermore, [6] studiedDS-eigenvalues and DS-energy of regular graphs. In 2022, a new
graphmatrix definitionwas put forward byMacha and Shinde [5], named the degree square subtraction
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matrix of a graph. Energy studies have been carried out by several authors. Romdhini and Nawawi [16]
formulated the degree subtraction energy of commuting graphs for dihedral groups. Romdhini et
al. presented the Wiener-Hosoya [17] and Sombor [18] energies and discussed the degree square
subtraction energy [19]. The algebraic discussion also can be found in [20]. Therefore, this study
aims to analyze the degree subtraction and degree square subtraction energies of Vee graph and its
properties.

This paper is organized as follows. Section 2 presents several existing results relevant to our study. In
Section 3, we provide the method to determine the characteristic polynomial of a matrix. The degree of
every vertex in the Vee graph is presented in Section 4. The degree subtraction energy and the spectral
properties of the Vee graph are presented in Section 5, followed by the degree square subtraction energy
in 6. An example of computation is shown in Section 7. We summarize the findings of this study in
Section 8.

2. Preliminaries

In this part, we begin with the definition of the Vee graph. Let Pn be the path graph on n vertices.

Definition 2.1. A graph obtained from two Grid graphs (P2 × Pn) and (P2 × Pn+1)which are attached
at the ends is called a Vee graph, and denoted by Vn.

Graph Vn has 4(n+ 1) vertices that labelled as s0, s1, . . . , s2n and t0, t1, . . . , t2n+2 and figured by the
following:

Figure 1. Vee Graph, Vn.

Furthermore, Vn can be associated with graph matrices as given below:
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Definition 2.2. [4] The degree subtraction matrix of order 4(n+ 1)× 4(n+ 1) associated with Vn is
given by DSt(Vn) = (dspq)whose (p, q)-th entry

dspq =

 dvp − dvq , if vp 6= vq

0, if vp = vq.

Definition 2.3. [5] The degree square subtraction matrix of order 4(n+ 1)× 4(n+ 1) associated with
Vn is given by DSS(Vn) = (dsspq) whose (p, q)-th entry

dsspq =

 d2vp − d
2
vq , if vp 6= vq

0, if vp = vq.

The spectrum of DS(Vn), denoted by SpecDS(Vn), is defined as

SpecDS(Vn) =

 λ1 λ2 . . . λn

k1 k2 . . . kn

 ,

where λ1, λ2, . . . , λn are eigenvalues (not necessarily distinct) of DS(Vn)with k1, k2, . . . , kn are their
respective multiplicities. The degree subtraction energy of Vn is given by

EDS(Vn) =
n∑
i=1

|λi| ,

and the degree subtraction spectral radius of Vn is

ρDS(Vn) = max{|λ| : λ ∈ SpecDS(Vn)}.

The above notations can also be applied for DSS(Vn).
Hereafter, a hyperenergetic graph occurs when the energy of a graph with n vertices exceeds the

energy of a complete graph with 4n + 4 vertices, K4n+4 [23]. Since Vn has 4n + 4, then we have the
following definition

Definition 2.4. A 4n4 vertex graph Vn is hyperenergetic if E(Vn) > 2(4n+ 3).

3. Characteristic Polynomial

Theorem 3.1. If (4n+ 4)× (4n+ 4) matrix

M =


0 aJ1×5 bJ1×(4n−2)

aJ5×1 c(J − I)5 dJ5×(4n−2)

bJ1×(4n−2) dJ(4n−2)×5 e(J − I)4n−2

 ,

where a, b, c, d, e are real numbers, then characteristic polynomial ofM is

PM (µ) = µ4n+2(µ2 + (4n− 2)(b2 + 5c2) + 5a2).
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Proof.

M =


0 aJ1×5 bJ1×(4n−2)

aJ5×1 c(J − I)5 dJ5×(4n−2)

bJ1×(4n−2) dJ(4n−2)×5 e(J − I)4n−2

 ,

The characteristic polynomial ofM is

PM (µ) =

∣∣∣∣∣∣∣∣∣
µ −aJ1×5 −bJ1×(4n−2)

−aJ5×1 (µ+ c)I5 − cJ5 −dJ5×(4n−2)

−bJ1×(4n−2) −dJ(4n−2)×5 (µ+ e)I4n−2 − eJ4n−2

∣∣∣∣∣∣∣∣∣ . (3.1)

The row and column operations apply to Equation 3.1 as follows:
(1) R1+i −→ R1+i −R1, for i = 1, 2, 3, 4, 5.
(2) R7+i −→ R7+i −R7, for i = 1, 2, . . . , 4n− 2.
(3) C2 −→ C2 + C3 + C4 + C5 + C6.
(4) C7 −→ C7 + C8 + . . .+ C4n+4.
(5) C1 −→ C1 − b

µC7

(6) C2 −→ C2 +
5c
µ C7

We can write Equation 3.1 as

PM (µ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ2+b2(4n−2)
µ

−5aµ−5bc(4n−2)
µ −aJ1×4 −b(4n− 2) −bJ1×(4n−3)

−bc(4n−2)+aµ
µ

µ2+5c2(4n−2)
µ 01×4 5c cJ1×(4n−3)

04×1 04×1 µI4 04×1 04×4

0 0 01×4 µ 0

0J(4n−3)×1 0J(4n−3)×1 0J(4n−3)×4 0J(4n−3)×1 µI4n−3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.2)

Then

PM (µ) = µ4n+2(µ2 + (4n− 2)(b2 + 5c2) + 5a2).

�

4. Degree of a Vertex

In this section, we present the degree of a vertex in Vn which is beneficial in the next section.

Theorem 4.1. Let Vn be the Vee graph, then

(1) The degree of si in Vn, denoted as deg(si), is given by

deg(si) =


2, ∀i = 0, 2n;

4, ∀i = n;

3, otherwise.
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(2) The degree of tj in Vn, denoted as deg(tj), is given by

deg(tj) =

 2, ∀j = 0, n+ 1, 2n+ 2;

3, otherwise.

Proof. Given that Vee graph Vn has 4(n + 1) vertices and 2(3n + 2) edges. The set of vertices of Vee
graph (V (Vn)) is

V (Vn) = {si|i = 0, 1, 2, . . . , 2n} ∪ {tj |j = 0, 1, 2, . . . , 2n+ 2}.

Now we can divide into two cases as follows.
Case 1. Degree of vertices in set {si|i = 0, 1, 2, . . . , 2n}

• Vertex s0 has degree 2;
• Vertices s1, s2, . . . sn−1 have degree 3;
• Vertex sn has degree 4;
• Vertices sn+1, sn+2 . . . , s2n−1 have degree 3;
• Vertex s2n has degree 2;

The total degree of vertices si is

Total deg(si) = 2 + (n− 1)(3) + 4 + (n− 1)(3) + 2

= 2 + 3n− 3 + 4 + 3n− 3 + 2

= 6n+ 2

Case 2. Degree of vertices in set {tj |j = 0, 1, 2, . . . , 2n+ 2}

• Vertex t0 has degree 2;
• Vertices t1, t2, . . . tn have degree 3;
• Vertex tn+1 has degree 2;
• Vertices tn+2, tn+3 . . . , t2n+1 have degree 3;
• Vertex t2n+2 has degree 2;

The total degree of vertices si is

Total deg(tj) = 2 + (n)(3) + 2 + (n)(3) + 2

= 2 + 3n+ 2 + 3n+ 2

= 6n+ 6

Based on Case 1 and 2, we get the total degree of all vertices in graph Vn is

Total deg(V (Vn)) = Total deg(si) + Total deg(tj)

= (6n+ 2) + (6n+ 6)
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= 12n+ 8

Now we prove that the total degree of all vertices in graph Vn is equal to twice the number of edges in
graph Vn.

Total deg(V (Vn)) = 12n+ 8

= 2(6n+ 4)

= 2(2(3n+ 2))

= 2|E(Vn)|

So, we can conclude that the Theorem 4.1 holds for graph Vn. �

5. Degree Subtraction Energy

Theorem 5.1. Let Vn be the Vee graph. Then the characteristic polynomial of Vn associated with the degree

subtraction matrix is

PDS(Vn)(µ) = µ4n+2(µ2 + 24n+ 8).

Proof. Based on Theorem 4.1 and Definition 2.2, we can construct the degree subtraction matrix of Vn
as follows:

sn s0 s2n t0 tn+1 t2n+2 s1 . . . sn−1 sn+1 . . . s2n−1 t1 . . . tn tn+2 . . . t2n+1



sn 0 2 2 2 2 2 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

s0 −2 0 0 0 0 0 −1 . . . −1 −1 . . . −1 −1 . . . −1 −1 . . . −1

s2n −2 0 0 0 0 0 −1 . . . −1 −1 . . . −1 −1 . . . −1 −1 . . . −1

t0 −2 0 0 0 0 0 −1 . . . −1 −1 . . . −1 −1 . . . −1 −1 . . . −1

tn+1 −2 0 0 0 0 0 −1 . . . −1 −1 . . . −1 −1 . . . −1 −1 . . . −1

t2n+2 −2 0 0 0 0 0 −1 . . . −1 −1 . . . −1 −1 . . . −1 −1 . . . −1

s1 −1 1 1 1 1 1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

...
... . . .

...
...

...
...

sn−1 −1 1 1 1 1 1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

sn+1 −1 1 1 1 1 1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

...
... . . .

...
...

...
...

s2n−1 −1 1 1 1 1 1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

t1 −1 1 1 1 1 1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

...
... . . .

...
...

...
...

tn −1 1 1 1 1 1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

tn+2 −1 1 1 1 1 1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

...
... . . .

...
...

...
...

t2n+1 −1 1 1 1 1 1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

We simplify the matrix to the block matrices as follows:

DS(Vn) =


0 2J1×5 J1×(4n−2)

−2J5×1 05 −J5×(4n−2)

−J1×(4n−2) J(4n−2)×5 04n−2

 ,
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The characteristic polynomial of DS(Vn) is

PDS(Vn)(µ) =

∣∣∣∣∣∣∣∣∣
µ −2J1×5 −J1×(4n−2)

2J5×1 µI5 J5×(4n−2)

J1×(4n−2) −J(4n−2)×5 µI4n−2

∣∣∣∣∣∣∣∣∣ .
By Theorem 3.1 with a = 2 and b = c = 1, then we have

PDS(Vn)(µ) = µ4n+2(µ2 + 24n+ 8).

�

Theorem 5.2. Let Vn be the Vee graph, then the DS-spectral radius for Vn is

ρDS(Vn) = 2
√
6n+ 2.

Proof. The formula of PDS(Vn)(µ) of Theorem 5.1 result the eigenvalues for Vn. We have µ1 = 0 of
multiplicity 4n+ 2, µ2,3 = ±2i

√
6n+ 2 of multiplicity 1, respectively. Hence, the DS-spectrum for Vn

is as follows

SpecDS(Vn) =
{(

2i
√
6n+ 2

)1
, (0)4n+2,

(
−2i
√
6n+ 2

)1}
.

Now for i = 1, 2, 3, the maximum of |λi| is the DS-spectral radius of Vn,

ρDS(Vn) = 2
√
6n+ 2.

�

Theorem 5.3. Let Vn be the Vee graph, then the DS-energy for Vn is

EDS(Vn) = 4
√
6n+ 2.

Proof. From theDS-spectrum in Theorem 5.2, we can calculate theDS-energy for Vn. By the definition
of energy, we obtain

EDS(Vn) =(4n+ 2)|0|+ (1)
∣∣2i√6n+ 2

∣∣+ (1)
∣∣−2i√6n+ 2

∣∣
=4
√
6n+ 2.

�

6. Degree Square Subtraction Energy

In this part, we present the degree square subtraction matrix of the Vee graph.

Theorem 6.1. Let Vn be the Vee graph. Then the characteristic polynomial of Vn associated with the degree

square subtraction matrix is
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PDSS(Vn)(µ) = µ4n+2(µ2 + 696n+ 372).

Proof. Based on Theorem 4.1 and Definition 2.3, we can construct the degree subtraction matrix of Vn,
DSS(Vn) as follows:

sn s0 s2n t0 tn+1 t2n+2 s1 . . . sn−1 sn+1 . . . s2n−1 t1 . . . tn tn+2 . . . t2n+1



sn 0 12 12 12 12 12 7 . . . 7 7 . . . 7 7 . . . 7 7 . . . 7

s0 −12 0 0 0 0 0 −5 . . . −5 −5 . . . −5 −5 . . . −5 −5 . . . −5

s2n −12 0 0 0 0 0 −5 . . . −5 −5 . . . −5 −5 . . . −5 −5 . . . −5

t0 −12 0 0 0 0 0 −5 . . . −5 −5 . . . −5 −5 . . . −5 −5 . . . −5

tn+1 −12 0 0 0 0 0 −5 . . . −5 −5 . . . −5 −5 . . . −5 −5 . . . −5

t2n+2 −12 0 0 0 0 0 −5 . . . −5 −5 . . . −5 −5 . . . −5 −5 . . . −5

s1 −7 5 5 5 5 5 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

...
... . . .

...
...

...
...

sn−1 −7 5 5 5 5 5 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

sn+1 −7 5 5 5 5 5 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

...
... . . .

...
...

...
...

s2n−1 −7 5 5 5 5 5 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

t1 −7 5 5 5 5 5 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

...
... . . .

...
...

...
...

tn −7 5 5 5 5 5 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

tn+2 −7 5 5 5 5 5 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

...
... . . .

...
...

...
...

t2n+1 −7 5 5 5 5 5 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

We simplify the matrix to the block matrices as follows:

DSS(Vn) =


0 12J1×5 7J1×(4n−2)

−12J5×1 05 −5J5×(4n−2)

−7J1×(4n−2) 5J(4n−2)×5 04n−2

 ,

The characteristic polynomial of DSS(Vn) is

PDSS(Vn)(µ) =

∣∣∣∣∣∣∣∣∣
µ −12J1×5 −7J1×(4n−2)

12J5×1 µI5 5J5×(4n−2)

7J1×(4n−2) −5J(4n−2)×5 µI4n−2

∣∣∣∣∣∣∣∣∣ .
By Theorem 3.1 with a = 12, b = 7, and c = 5, then we have

PDSS(Vn)(µ) = µ4n+2(µ2 + 696n+ 372).

�

Theorem 6.2. Let Vn be the Vee graph, then the DSS-spectral radius for Vn is

ρDSS(Vn) = 2
√
6n− 2.
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Proof. The formula of PDSS(Vn)(µ) of Theorem 6.1 result the eigenvalues for Vn. We have µ1 = 0 of
multiplicity 4n+ 2, µ2,3 = ±2i

√
174n+ 93 of multiplicity 1, respectively. Hence, the DSS-spectrum

for Vn is as follows

SpecDSS(Vn) =
{(

2i
√
174n+ 93

)1
, (0)4n+2,

(
−2i
√
174n+ 93

)1}
.

Now for i = 1, 2, 3, the maximum of |λi| is the DSS-spectral radius of Vn,

ρDSS(Vn) = 2
√
174n+ 93.

�

Theorem 6.3. Let Vn be the Vee graph, then the DSS-energy for Vn is

EDSS(Vn) = 4
√
174n+ 93.

Proof. From the DSS-spectrum in Theorem 6.2, we can calculate the DSS-energy for Vn. By the
definition of energy, we obtain

EDSS(Vn) =(4n+ 2)|0|+ (1)
∣∣2i√174n+ 93

∣∣+ (1)
∣∣−2i√174n+ 93

∣∣
=4
√
174n+ 93.

�

7. Example

Let us take n = 1, then we have V1 with 8 vertices as seen in Figure 2.

Figure 2. Vee Graph, V1



Asia Pac. J. Math. 2025 12:5 10 of 12

The DS and DSS-matrices of V1 are as follows, respectively.

DS(V1) =



0 2 2 2 2 2 1 1

−2 0 0 0 0 0 −1 −1

−2 0 0 0 0 0 −1 −1

−2 0 0 0 0 0 −1 −1

−2 0 0 0 0 0 −1 −1

−2 0 0 0 0 0 −1 −1

−1 1 1 1 1 1 0 0

−1 1 1 1 1 1 0 0


and

DSS(V1) =



0 12 12 12 12 12 7 7

−12 0 0 0 0 0 −5 −5

−12 0 0 0 0 0 −5 −5

−12 0 0 0 0 0 −5 −5

−12 0 0 0 0 0 −5 −5

−12 0 0 0 0 0 −5 −5

−7 5 5 5 5 5 0 0

−7 5 5 5 5 5 0 0



.

The characteristic polynomials of both matrices are

PDS(V1)(µ) = µ4n+2(µ2 + 32) and PDSS(V1)(µ) = µ4n+2(µ2 + 1068).

It is confirmed by Maple that the spectrum of Vn is

SpecDS(V1) =

{(
4i
√
2
)1
, (0)4n+2,

(
−4i
√
2
)1}

, and

SpecDSS(V1) =

{(
2i
√
267
)1
, (0)4n+2,

(
−2i
√
267
)1}

.

Then the spectral radius of V1 regarding both matrices is as follows.

ρDS(V1) = 4
√
2 and ρDSS(V1) = 2

√
267.

Eventually, we can write the energy of V1 is

EDS(V1) = 8
√
2 = 2 · ρDS(V1) and EDSS(V1) = 4

√
267 = 2 · ρDSS(V1).
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8. Discussions

Based on Theorem 5.2, 5.3, 6.2, and 6.3, we get the following facts:

Corollary 8.1. Let Vn be the Vee graph, then

(1) EDS(Vn) = 2 · ρDS(Vn),

(2) EDSS(Vn) = 2 · ρDSS(Vn).

Corollary 8.2. Let Vn be the Vee graph, then the DS and DSS-energies of Vn are always an even integer.

Corollary 8.3. Let Vn be the Vee graph, then Vn is hyperenergetic corresponding to DS and DSS-matrices.
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