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Abstract. Meta-heuristics are the most widely used technics in the literature for solving optimization
problems and especially combinatorial problems. In the case of a multi-objective problem, such methods
construct an approximation of the set of all efficient solutions or Pareto front. For large-scale multi-objective
combinatorial problems, the number of efficient solutions may become very large. In order to help a
decision maker to make a choice between these solutions, an interactive procedure is developed in this
paper. Its principle consists of the use of a meta-heuristic to generate the set of optimal Pareto solutions
of the multi-objective problem. The interactive procedure is then applied to obtain the best compromise
solution(s). This paper presents a new hybrid interactive heuristic based on the pareto fitness genetic
algorithm and goal programming to solve multi-objective optimization problems. The proposed approach
integrates the global exploration capabilities of genetic algorithms and the effective management of the
multiple objectives of goal programming. An interactive process allows decision-makers to dynamically
adjust priorities and preferences, facilitating convergence towards Pareto optimal solutions aligned with
specific needs. The effectiveness of this new heuristic is illustrated through four applications.
2020 Mathematics Subject Classification. 90C59; 90C29; 90C27.
Key words and phrases. Multi-objective programming; Combinatorial optimization; Pareto Fitness Genetic
Algorithm; Simulated annealing; goal programming; interactive method.

1. Introduction

Nowadays, a company’s productivity performance often depends on more than one aspect or ob-
jective. This requires a multi-objective approach. These types of optimization problems, although
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mathematically poorly posed, most often better reflect the socio-economic reality inherent in optimiza-
tion problems and are therefore economically well posed. Many real-world applications often require
multi-objective combinatorial optimization, because the variables are discrete or binary and the various
objectives are usually contradictory but inherent to reality [11].

Multi-objective optimization problems are ubiquitous in various fields such as engineering, manage-
ment and logistics. The multi-objective optimization problems (MOOP) consist of the simultaneous
optimization of several possibly conflicting objective functions.

In the literature, metaheuristics are the most widely used technics for solving these problems. They
provide a set of optimal pareto solutions, often of very high size, requiring alternative approaches
to direct the decision-maker towards a limited set of optimal pareto solutions containing the "most
preferred" solution for the decision-maker also known as the "best compromise solution". Some
commonly used approaches are hierarchical methods, weighted sum methods, goal-programming
methods, interactive methods, etc.

• In the hierarchical approach, objectives are prioritized and optimization is done in that order.
• The weighted sum approach uses a function of aggregation to group the objectives considered
into an overall objective.
• The goal-programming approach allows for multiple goals to be managed by converting
them into goals with pre-defined target values and weights. The weights reflect the relative
importance or priority of each objective.
• In the interactive approach, the principle is to collect prior to each step of the interaction,
information from the decision-maker on his preferences for the proposed solution so that
gradually the method converges towards a compromise satisfying the intended objective.

The interactive approach has been the subject of many studies in the literature and draws our
attention in this paper. Yougbaré (2019) [18] has developed an interactive method based on the
goal-programming method and the Data Envelopment Analysis approach. The model was tested on a
resource allocation problem.

Work such as [9, 11, 14], focused on an interactive model based on the multi-objective simulated
annealing (MOSA) method which is an adaptation of simulated annealing to the multi-objective
framework. The model has been tested on several production problems such as the multi-objective
knapsack problem and the assignment problem. Formally, given a set of feasable solutions D ⊆ Rn

and f : Rn → RK K ≥ 2 objective functions, the multi-objective optimization problem is written:

(P ) max {f(x) : x ∈ D} (1)

The aim of this work is to develop an interactive multi-objective approach with a generalist status
whose process relies on an optimal Pareto set provided by a metaheuristic based on Pareto Fitness
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Genetic Algorithm (PFGA). This approach should cover problems such as:

max f(x) = (f1(x), . . . , fK(x))where x ∈ D
D = {x ∈ Rn : gs(x) ≤ 0, s = 1, . . . ,m} .

(2)

A solution x∗ ∈ D is efficient for (P ) if there does not exist any other solution x ∈ D such that:
fk(x) ≥ fk(x∗), k = 1, . . . ,K with at least one strict inequality. Then, the vector f(x∗), of values
fk(x∗), k = 1, . . . ,K is said to be non dominated in the space of objective functions. Let E(P ) denote
the set of all efficient solutions to a problemP . The Pareto front f(E(P )) is the subset of f(D) containing
Pareto optimal solutions or non-dominated solutions. It helps the decision maker for identifying the
best compromise solutions.

In mathematics, metaheuristics are known for their effectiveness in solving MOOP. In the literature,
manymetaheuristics exist but the universal metaheuristic to effectively solve any type of multi-objective
problem does not exist. There are most known existing methods solving MOOP but the evolutionary
algorithms seem to be particularly suitable for MOOP [9,12, 15, 20].

These problems often involve conflicting objectives requiring delicate compromises. Pareto fitness
genetic algorithms (PFGA) are known for their ability to effectively explore complex solution spaces
by identifying approximate Pareto fronts. At the same time, goal programming provides a structured
framework for integrating and prioritizingmultiple objectives whileminimizing deviations from targets.
However, these methods have limitations when used in isolation, particularly in terms of convergence
and taking into account the preferences of decision makers.

Several authors have been interested in the implementation of hybrid interactive methods based on
"goal programming" (GP) and/or genetic algorithms such as [2, 3, 10, 16].
To overcome these limitations, we propose a hybrid interactive heuristic combining the strengths of
PFGA and GP. This approach aims to exploit the global exploration capacity of genetic algorithms
while integrating the flexibility and structuring of programming by objectives. Interactivity is at the
heart of this heuristic, allowing decision-makers to dynamically adjust priorities and preferences based
on intermediate outcomes, thus promoting convergence towards optimal solutions better aligned with
specific needs.

2. New Method Based on Pareto Fitness Genetic Algorithm Using Polynomial Mutation and
Logarithmic Mean

This section describes a new meta heuristic used to generate the set of Pareto optimal solutions. It is
a new heuristic based on the Pareto Fitness Genetic Algorithm (PFGA) using polynomial mutation
and the logarithmic mean that we will call PFGA-LM. We will describe the main steps of this method.
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PFGA-LM is an adaptation of the Pareto FitnessGeneticAlgorithm (PFGA) for solvingmulti-objective
optimization problems. We propose to include polynomial mutation and to modify the double ranking
strategy proposed by Elaoud et al.(2007) [7] in order to improve the performance.

2.1. Algorithm PFGA-LM. The algorithm of PFGA-LM is summarized by the following steps:

Step 1: : Initializing at random a population of solutions
Step 2: While (non-Stop): – Evaluate the current population;
– Update the elitist set by coping non-dominated solutions; – Assigning rank (R) and density
value to each individual;
– Calculate the corresponding fitness;
– Set i⇐ 0;
–While (i < R): Select a solution randomly from the elitist external set, Reintroduce the selected
solution to the next population, i⇐ i+ 1;
– While (i < Population size): Select two different parents, Perform crossover, Introduce
children into the next population, i = i+ 2, Perform mutation on one randomly selected child.

2.2. Assigning rank. The double ranking strategy is to assign to xi a shadow rank value R′(xi) repre-
senting the number of solutions xj that dominate xi in the current population denoted Pc. Formally,
R′(xi) is obtained by:

R′(xi) = |xj ∈ Pc/xi ≺ xj |, ∀xi ∈ Pc. (3)

where xi ≺ xj means that xj dominates xi.
An individual’s rank R(xi) is then defined by the following relation :

R(xi) = R′(xi) +
∑

xj∈Pc/xi≺xj

R′(xj), ∀xi ∈ Pc. (4)

In this paper, we use the double ranking strategy proposed in [7].

2.3. Population adaptation density. The principle of the population adaptation density estimation
strategy consists in cutting the decision space into cells of identical sizes for each objective. We propose a
new strategy than the one proposed in [7]. Elaoud et al. [7], refer to a population where each individual
occupies 1/N of the objective space measure. The cell widthWdi in each objective dimension imay be
calculated with the following formula 5:

Wdi =
fMi − fmi

k
√
N

, i = 1, . . . , k. (5)

where fMi = maxx∈X fi(x) and fmi = minx∈X fi(x).

This case is optimal for the objective space where the objective functions are linear. For non-linear
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objectives, the choice of cell size should take into account other principles. To remedy this, we have
proposed another choice of cell size in case fmi > 0, i = 1, . . . , k by the following formula 6:

Wdi =Mln

(
fmi , f

M
i

)
, i = 1, . . . , k. (6)

where

Mln(a, b) =

 a, if a = b

b−a
ln b−ln a otherwise.

(7)

for a > 0, b > 0 and ln designs the logarithm base e. Our principle takes into account the fact that:
• on the one hand, it underestimates the actual distance between the points corresponding to fMi
et fmi . It corresponds to the deviation of the orthogonal projections of those points. Therefore,
cell size is in turn underestimate;
• on the other hand, the distribution of the solutions obtained by a method is evaluated on the
Pareto front and not on the axes of objective functions. Thus, the distance between two points
corresponds to that of these points on the Pareto front and not on the axes of the objective
functions.

We denote nci the number of cells for fi and nci is defined by:
(1) if fMi − fmi ≤Wdi we take nci = 1 ;
(2) otherwise let 1

ln (fMi )− ln (fmi )
= ai + ri such that ai is integer and ri ∈ [0, 1] we take

nci =

ai if ri = 0,

ai + 1 otherwise.

2.4. Fitness assignment. The fitness assignment proposed in [7] is used and the fitness of an individual
is

f(xi) =
1

exp(R(xi)) ∗D(xi)
, (8)

where D(xi) denotes the density value of solution xi. If xi is a non-dominated solution, R(xi) = 0 and
so exp(R(xi)) = 1.

Selection. In this paper, we use the selection method proposed in [7]. The authors propose a bi-
nary stochastic sampling without replacement, which selects two different parents from the current
population as follows:

• Summing the fitness of all population members having an acceptable rank (we name this
summation as the total fitness).
• Normalizing the fitness of each considered individual by dividing it by the total fitness.
• Generate a random number (R1) between 0 and 1.
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• The first selected individual i is whose normalized fitness, added to the preceding individual,
is greater or equal to (R1).
• Generate a second random number (R2) between 0 and 1 private from the interval between
the added normalized fitness of the individual i− 1 and the added normalized fitness of the
individual i.
• The second selected individual is whose normalized fitness, added to the preceding individual,
is greater or equal to (R2).

The main particularity of this method is that it is based on polynomial mutation.

2.5. Update the elitist set. Just like in [6,7], a set is created and updated at each step to maintain elitist
solutions in the algorithm process. This set gives at the end the final Pareto front.
During the evolutionary process, a small random numberR (R = 1 or 2) of elitist external set solutions
are also randomly selected.

2.6. Polynomial mutation. During the evolution process of a genetic algorithm, there are several
candidates of mutation types. It should be noted that the type of mutation used is not specified in [7].
Given that the polynomial mutation testifies to the precision and stability for the methods that use
it and that for a significant number of problems [1,8], we opted for the polynomial mutation in this
method.
Considering x a solution to be muted, r an actual number such as r ∈ [0; 1]:

• xl lower bound of x ;
• xu upper bound of x ;
• pm the probability of mutation of the algorithm ;
• δ1 =

x− xl
xu − xl

, the standard variance (normalized) of the x solution with its lower bound xl ;

• δ2 =
xu − x
xu − xl

, the standard variance (normalized) of the x solution with its upper bound xu ;
• η a natural integer denoting the distribution index.

2.7. Approximation of the optimal pareto front. We propose to include polynomial mutation and to
modify the double ranking strategy proposed in [7] into the Pareto Fitness Genetic Algorithm (PFGA)
in order to improve the performance.

3. New Heuristic for Multi-Objective Optimization Problem

In this section, we describe the different phases of the new heuristic Multi-Objective Optimization
Problem (H-MOOP)
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3.1. initialization. We start by determining an approximation of the optimal Pareto front. From this
optimal Pareto front, the nadir point and the ideal point are determined. These points are determined
from the optimal Pareto front.

3.2. Determination of the goal solution. The method we have developed is also based on the work of
Yougbaré in [18] and Teghem et al. in [14].

• Yougbaré in [18] has developed an interactive model based on the goal-programming method
using jointly the multi-criteria decision aid character of the DEA (Data Envelopment Analysis)
method. The model was tested on a resource allocation problem;
• Teghem et al. [14] have developed an interactive heuristic based on themulti-objective simulated
annealing (MOSA) method. This method was then effectively tested on several production
problems such as the multi-objective backpack problem, the multi-objective assignment prob-
lem and the multi-objective scheduling problem.

The goal solution is a kind of compromise solution that takes into account the aspirations and judgments
of the decision-maker in relation to the various criteria, taking into account the ideal and nadir points of
the multi-objective problem. We will recall the model 9 proposed by Yougbaré in [18] to characterize a
target solution. This characterization takes into account the information provided by the decision-maker
and a subset of satisfactory optimal Pareto solutions.

maxs∈E(P ) =
∑

rd∈Kd γrd(s) + ε
∑

r∈Kd tr(s)

γrd(s)yrd,d −
∑J+1

j=1 δjyrd,j = 0, ∀rd ∈ Kd∑J+1
j=1 δjyr,j − tr = yr,d ∀r /∈ Kd∑J+1
j=1 δj = 1, δj ≥ 0, j = 1; ...; J

γrd > 1, ∀rd ∈ Kd

tr ≥ 0 ∀r /∈ Kd

(9)

where
• J = |E(P )| ;
• ε > 0 is positive real small enough ;
• δj refers to the importance of the jth solution j ;
• γ and t respectively designate directional factors of the research for the objectives concerned by
the improvement and for those not concerned ;
• y is the common solution so a part of the set f(E(P ));
• yrd is the value of y for the objective frd , rd ∈ Kd ;
• yr is the value of y for the objective fr, r /∈ Kd ;
• yrd,j s the value of the jth component of the vector frd .
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We are adapting the model 9 to obtain a new model 10 following:
q= maxy∈Lm

∑
rd∈Kd γrd(y)

γrd(y)yrd,d −
1

J + 1

∑J+1
j=1 yrd,j = 0, ∀rd ∈ Kd

γrd > 1, ∀rd ∈ Kd

(10)

The goal solution g of the multi-objective model is defined as:

grd = q × yrd , ∀rd ∈ Kd

gr = yr, ∀r /∈ Kd
(11)

where Kd is the set of indixes of objectives to be improved.

3.3. Algorithm H-MOOP.

3.3.1. Principle. The principle of this new interactive multi-objective heuristic is based on the generation
of a set of effective solutions by PFGA-LM. This set is an approximation of the complete set of effective
solutions. Once this set is generated, it is restricted as the decision-maker reacts to the different solutions
proposed in the various stages of the iteration process. The procedure stops when the decision-maker
is satisfied or when this package no longer contains a solution, that is to say, it can no longer improve
the performance of the current solution. It applies specifically to maximization problems. When it is a
minimization problem, a transformation is necessary to return to a maximization problem. This is the
mind used by the DEA method for the case of undesirable outputs.

3.3.2. Steps of the algorithm. The H-MOOP algorithm can be summarized by the following steps

: Step 1: initializing Generate E(P ) by PFGA-LM method. Takem = 0, Lm = E(P ). Randomly
select z ∈ f(E(P )).

: Step 2: Iterative process and interaction with the decision maker While the decision maker is
not satisfied: UpdatingKd through interaction with the decision maker; Calculate g; Updating
Lm Lm = Lm−1

⋂
{x ∈ E(P )|yrd ≥ grd , y = f(x)}; Resume process withm = m+ 1.

4. Applications

We will apply the H-MOOP method to three examples: an example of a multiobjective knapsack
problem (maximization), a non-linear multiobjective test problem (maximization) and a multiobjective
linear minimization problem. In any case we will consider a fictitious decision-maker who will interact
in the interactive process. Note Ym the performance vector proposed to the decision-maker at the
iterationm, frd the objective chosen for improvement, Lm the set of selectable performance vectors at
the iterationm and |Lm| its cardinal, γm the optimal solution of the system (2) at the iterationm, and
gm the goal at the iterationm.
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4.1. Application 1. We apply our method to a multiobjective combinatorial optimization problem,
namely the multi-objective knapsack problem formulated as follows [14]:

max zk(X) =
∑n

j=1 c
k
jxj , k = 1, ...,K∑n

j=1wjxj ≤W

wj ≤W , j = 1, ..., n∑n
j=1wj > W , k = 1, ...,K

xj ∈ {0; 1}, j = 1, ..., n

(12)

To solve the problem (4), we consider the following hypotheses.
• ckj ∈ [1; 50], j = 1; ...;n, k = 1; ...;K;
• zk =

max(zk) +min(zk)

2
; k = 1; ...;K;

• The weights of objects wj are randomly selected in [1; 50];
• The knapsackW capacity is selected as follows: W∑n

j=1wj
= 0.5;

• n = 50000 : the number of objects or the size of the problem;
• we takeK = 2.

The results obtained from the different iterations are summarised in the following table 1:

Table 1. Summary of the application of H-MOOP to example 1
Iterationm |E(P )| Ym z γm gm

1 7 (65773,65792) z2 1.0040 (66279;65277)
2 3 (66062,65367) z2 1.0042 (66062;65644)
3 2 (64717,66051) z1 1.0054 (65069;66051)
4 1 (64717,66051) z2 1 (65773;65792)

The efficient performance solution (64717, 66051) is the best compromise solution at the end of the
procedure.

4.2. Application 2. In this example, we consider six (06) objectives that is to say we takeK = 6.
The results obtained from the different iterations are summarized in the following table 2:

Table 2. Summary of the application of H-MOOP to example 2
Iterationm |Lm| ym frd γm gm

1 73 (65728, 65671 , 66802, 66037, 66440, 65385) z4 1.0063 (65728, 65671, 66802, 66455, 66440, 65385)
2 35 (65739, 65516, 66495, 66692, 65722, 65609) z5 1.0032 (65739, 65516, 66495, 66692, 65932, 65609)
3 26 (64997, 66219, 66399, 67521, 66279, 65442) z5 1.0006 (64997, 66219, 66399, 67521, 66316, 65442)
4 19 (65362, 65576, 66873, 66526, 66837, 65921) z2 1.0006 (65362, 65617, 66873, 66526, 66837, 65921)
5 6 (65594, 65986, 65807, 67617, 66790, 65144) z2 1.0032 (65594, 66200, 65807, 67617, 66790, 65144)
6 2 (65862, 65299, 66144, 66761, 66533, 65715) z2 1.0065 (65865, 66925, 66091, 66654, 67629, 64634)
7 0 − − − −
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The efficient performance solution (65865, 66925, 66091, 66654, 67629, 64634) is the best compromise
solution at the end of the procedure.

4.3. Application 3. The purpose of this problem is to minimize simultaneously (z1) and (z2). The
mathematical formulation of the problem leads to a bi-objective optimization problem as presented
below.



min z1(x) = 0.1x1 + 1.3x2 + 0.3x3 + 0.42x4 + 0.8x5 + 0.3x6+

0.5x7 + 1.5x9 + 0.62x10 + 0.12x11 + 1.0x12 + 0.5x13+

0.74x15 + 0.24x16 + 1.62x17 + 1.12x18 + 0.62x19+

0.12x20 + 2.0x21 + 1.5x22 + 1.0x23 + 0.5x24

min z2(x) = 2x1 + 1x2 + 2x3 + 2x4 + 2x5 + 3x6 + 2x7+

2x8 + 1x9 + 2x10 + 1x11 + 2x12 + 3x13 + 3x14+

2x15 + 3x16 + 1x17 + 2x18 + 3x19 + 4x20 + 1x21+

2x22 + 3x23 + 4x24 + 4x25

s.c



2x1 + x2 + x3 + x4 + x5 + x6 ≥ 10

x3 + 2x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 ≥ 15

x4 + x10 + x11 + 2x15 + 2x16 + x17 + x18 + x19 + x20 ≥ 30

x5 + 2x6 + x8 + x11 + x12 + 2x13 + 3x14 + x16 + x18

+2x19 + 3x20 + x21 + 2x22 + 3x23 + 4x24 + 5x25 ≥ 8

xi ≥ 0, i ∈ {1; ...; 25}

(13)

The results obtained from the different iterations are summarized in the following table 3:

Table 3. Summary of the application of H-MOOP to example 3

Iterationm |Lm| ym frd γm gm

1 10 (18.5000; 99.0000) f2 1.0514 (18.5000; 104.0909)

2 5 (19.7000; 93.0000) f1 1.0555 (20.7933; 93.0000)

3 3 (19.7000; 93.0000) f1 1.0081 (19.8589; 93.0000)

4 2 (18.5000; 99.0000) f1 1.0216 (18.9000; 99.0000)

5 1 − − − −

The efficient performance solution (18.5000; 99.0000) is the best compromise solution at the end of
the procedure.

4.4. Application 4. We consider a non-linear bi-criterion maximization problem as follows:
max z1(x) = 1.1− x1

max z2(x) = 60− 1− x2
x1

x = (x1;x2) = [0.1; 1]× [0; 5]

(14)

The results obtained from the different iterations are summarized in the following table 4:
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Table 4. ummary of the application of H-MOOP to example 4
Iterationm |Lm| ym frd γm gm

1 200 (0.2130; 58.8726) z1 3.2231 (0.6865; 58.8726)

2 115 (0.8623; 55.7932) z1 1.0368 (0.8940; 55.7932)

3 65 (0.9467; 53.4766) z2 1.0152 (0.9467; 54.2900)

4 10 (0.9031; 54.9208) z1 1.0091 (0.9113; 54.9208)

5 5 (0.9203; 54.4339) z2 1.0002 (0.9203; 54.4474)

6 2 (0.9139; 54.6276) z2 1.0015 (0.9139; 54.7071)

7 0 − − − −

The efficient performance solution (0.9139; 54.6276) is the best compromise solution at the end of
the procedure.

5. Conclusion and Future Work

The hybrid interactive heuristic presented in this paper is a significant step forward in the field of
multi-objective optimization. By combining the advantages of Pareto fitness genetic algorithms and
goal-programming, this approach offers increased flexibility and efficiency in solving complex problems.
The integration of an interactive process allows active involvement of decision-makers, ensuring that
the solutions obtained accurately reflect their preferences and priorities. Four applications illustrate
the potential and versatility of this heuristic. Future research could explore the application of this
approach to other areas and study its comparative effectiveness with other hybrid methods.
Abbreviations.

DM: Decision Maker
GP: Goal Programming
H-MOOP: heuristic Multi-Objective Optimization Problem
MOOP: Multi-Objective Optimization Problem
PFGA: Pareto Fitness Genetic Algorithm
PFGA-LM: Pareto Fitness Genetic Algorithm with polynomial mutation and algorithmic mean.
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