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1. INTRODUCTION

Difference equations appear in many mathematical models in various fields of research, such as
numerical analysis, computer science, mechanical engineering, control systems, artificial or biological
neural networks and social sciences, suh as economics. Various methods have been used to deal with

,21,22]

and the references therein. Here, we are interested and investigating nonlinear discrete boundary

the existence of solutions to the discrete boundary value problems. We refer the reader to [ 1,5,

value problems in two-dimensional Hilbert space. Note that they are few paper deal with this kind
of problem. Recently, based on the minimization method in [10], Ibrango et al. prove the existence
and uniqueness of solutions when the function f depends only on the space variable. Next, when f
depends only on the space variable and on the solution u, we prove the existence of at least one solution

to the two-dimensional following Dirichlet problem
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—A(a(k —1,h—1,Au(k — 1,h — 1))) = f(k, h,u(k, h))
(k,h) € N[1,T1] x N[1, T], (1)
u(k,h) =0, (k,h) €T.

A particularly case of problem (1) was studied in [7], where the authors deal with the existence

of multiple solutions to the following p-Laplacian problem, based on three critical points theorem

established by Ricerri (see [3,4])
A1(gp(Ai(k —1,h))) + Aa(dp(Az(k, h — 1)) + Af (k, by u(k, h) = 0,

for any (k,h) € N[1,T1] x N[1, T5] with Aju(k, h) = u(k + 1,h) — u(k,h) and
Aou(k,h) = u(k,h + 1) — u(k,h). ¢, is the p-Laplacian given by ¢,(s) = |s|P"2s, 1 < p < co and

f(k,h,.): R — R, is continuous.

Motivated by the above mentioned, we study the existence and multiplicity of solutions to

nonlinear discrete problems of Kirchhoff type namely

(

~M(A(k —1,h— 1, Au(k — 1,h — 1)))A(a(k — 1,h — 1, Au(k — 1,h — 1)))

= Af(k,h,u(k,h)), )
(k, h) S N[l,Tl] X N[LTQ],

\u(k,h) =0, (k,h) el
where
I'=({0,71 +1} x N[0, T2 + 1)) U (N[0, T} + 1] x {0, T2 + 1})

is the boundary of the domain N[1,71] x N[1,T3]; A is the forward difference operator, a : N[1,T7] x
N[1,T5] x R — R; f : N[1,7T1] x N[1,T5] x R — R and M : (0,00) — (0, 00) is a non-decreasing
continuous function. A is a positive real number.

Kirchhoff in 1876 (see [13]) suggested a model defined by the following equation

L
9%u Fa 2 0%u
PoE = (To + 2L/ dﬂ?) 922 (3)

0
where p > 0 is the mass per unit length, Tj is the base tension, E is the Young modulus, a is the area of

ou

ox

cross section and L is the initial length of the string.

Equation (3) takes into account the change of the tension on the string which is caused by the change
of its length during the vibration. After that, several physicists also considered such equations for their
research in the theory of nonlinear vibrations theoretically or experimentally.

Problem like (2) can be seen as a generaly case of problems studied by Ibrango etal. in [11]. In [11],
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the authors deal with the existence results for weak solutions by using the direct variational method.
The goal of the present paper is to stablish the existence of nontrivial solutions for problem (2) by
using critical point theory. We firstly, apply the direct variational method and secondly the well known
Mountain pass technique known as the Mountain pass theorem due to Ambrosetti and Rabinowitz in
order to obtain the existence of at least one nontrivial solution. Third, the use Ekeland’s

principle.

The rest of this paper is organized in the following way. In Section 2, we give some basic definitions
and preliminary facts which will be used throughout the following sections. In section 3, we show that

problem (2) admits at least one weak nontrivial solution under suitable hypothesis on the data such

as [17].

The last section is devoted to study an extension of problem (2).

2. ASSUMPTIONS AND PRELIMINARY

Define the space
H = {u:N[0,T1 + 1] x N[0,T5 + 1] — R, u(k,h) =0 V(k,h) €T}

which endowed with the Euclidean norm

T Tz %
lull = (ZZ\U(M’%)P) :

k=1 h=1

However, we introduce on the space H another norm

T 1> i
[ulm = (ZZ |u(k, h)l’”) ,Vm > 2.

k=1h=1

We assume the following conditions on the data.
a(k,h,.) : R — R is continuous Y(k, h) € N[1,T7] x N[1,Ty]
and there exists A : N[1,77] x N[1,75] x R — R such that
a(k,h,x) = %A(k‘, h,z) and A(k,h,0) =0 V(k,h) e N[1,T1] x N[1,T5]. 4)
We also assume that there exist a positive constant C; such that
[alk. )| < Cy (14 faP D7) (5)

and

|z[P®R) < a(k, h,2)z < p(k, h)A(k, h,z), Yz € R. (6)
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For the function M : (0,00) — (0, c0), we suppose that it is continuous, non-decreasing and there

exist positive numbers Ry, Ry with Ry < Ry and p > 1 such that
Rit"™1 < M(t) < Rot*™1 for t>0. (7)

The function f(k, h,.) : R — Ris jointly continuous and there exist the
functions o1, 09 : N[1,T1] x N[1, T3] — (—00,0) ; ¢1, ¢2 : N[1,T1] x N[1,T»] — (0, 00) and a function
v : N[1, T3] x N[1, T3] — [2, 00) such that

o1(k, h) + o1 (k, h)|z|"FM =Y < F(k, h,x) < ook, h) + do(k, h)|z[7FMT, (8)
One denotes by
1= inf < inf 0'1(k,h)>,‘ g1 = sup sup oi(k,h) | <0,
T keN[l’Tl] heN[LTQ} kGN[l,Tl] hGN[l,Tz}

9 = Inf < inf agk,h>; 03 = sup sup o9(k,h) | <0,
T keN[LTl] heN[lvTQ} ( ) kEN[l,Tl] hEN[l,TQ} ( )

¢1= sup sup ¢1(k,h) |,

0<¢p= inf <inf
keN[1,T1] \ heN[1,T3]

—  keN[1,T1] \heN[1,Ty]

¢1(k7h)>;
0 < ¢o= inf < inf ¢2(k,h)>; ¢y = sup sup ¢a(k, h)

— keN[LT1] \heN[1,Ty] keN[1,T;] \ heN[1, T3]
and
Fk, b ) = / F(k b, s)ds, for (k. h,z) € N[1,Ti] x N[, T3] x R. 9)
0
Example 2.1. We can give the following function satisfies assumptions (4)-(8).
1 p(k,h) p(k,h)—2
o A(k,h,z) = (e h) ((1 +z?) 2 - 1), where a(k,h,z) = (1+[z*) * =z
P{F,

(k,h) € N[1,T1] x N[1,Ty], = € R.
o f(khx)=—14 [z EM-1,

e M(t) = at*~! +b, aand b two positive constants.

In this paper, we assume that the function p : N[1,T7] x N[1, T5] — (1,00) and «y : N[1, T1] x N[1, T3] —
[2,00), with

T = min ( min p(k,h)) ; pT = max <max p(k,h))
keN[1,T1] \ heN[1,T3] keN[1,T1] \ heN[1,T5]

and

_ ; k.h) + k,h).
T metianny Y 7T e iy Y
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To establish our main result, we recall the tools used in [9, 10, 19].

Lemma 2.1. a) For any function u € H with ||u|| > 1, there exist constants C, C > 0 such that
T14+1T5+1
Y > Bulk =1 h = PEEETD > GyllufP — Cs. (10)
k=1 h=1

b) For any function uw € H with ||u|| < 1, there exists constant Cy > 0 such that

T1+1T2+1

SN Auk — 1,8 = DPEEAD > oyl (11)
k=1 h=1

¢) For any function u € H there exist constants Cs, Cg > 0 such that

T1+1T2+1
>3 1Ak — 1,5 — 1)PEEATD < Cyfful]P” 4+ C. (12)
k=1 h=1

Theorem 2.1. [12] Let X be reflexive Banach space. If a functional
J € C1(X,R) is weakly lower semi-continous and coercive,

ie lim J(u)= oo, then there exists ugy such that
[[uf| =00

J(up) = Jg(l](u)

and wy is also a critical point of J, i.e. J'(ug) = 0. Moreover, if J is strictly convex, then a critical point is

unique.

Theorem 2.2. [6] (Ekeland’s principle ) Let X be a complete metric space and J : X — R a lower semi-

continuous function that is bounded below. Let € > 0 and u € X be given such that

€
u) < inf —.
J(a) _JQXJ(U)+ 5

Then given X > 0 there exists uy € X such that
(1) J(un) < J(a),
(2) d(uxr,u) <A,

(3) J(uy) < J(u) + ;d(u,uA) forall u# uy.

Definition 2.1. Let X be a real Banach space. We say that a functional
J : X — R satisfies the Palais-Smale condition if every sequence {uy,} such that {T(u,)} is bounded and

J'(un) — 0 has a convergent subsequence.

Lemma 2.2. [8] Let X be a Banach space and J € C*(X, R) satisfies the Palais-Smale condition. Assume that
there exist ug, w1y € X and a Bounded open

neighborhood 2 of ug such that uy ¢ Q and

max{J (up), J(u1)} < ulenanJ(u)
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Let
Iy ={g € C([0,1], X) : g(0) = uo, g(1) = u1}
and

= inf J
¢ glenl"wrg[%,}i} (9()

Then c is a critical value of J; that is, there exists u* € X such that J'(u*) = 0 and J(u*) = ¢, where

¢ > max{J(ugp), J(u1)}.

3. ExisTENCE OF SoLuTIiONS BY DIRECT VARIATIONAL METHOD

In this section we are concerned with the applications of Theorem 2.1 in order to get the existence

results.

Definition 3.1. A weak solution for problem (2) is a function v € H such that

T1+1To+1
M (Z > A(k—1,h—1,Au(k—1,h— 1))) X
k=1 h=1
T1+1To+1
(Z > a(k:—1,h—1,Au(k:—1,h—1))Av(k—1,h—1)> (13)
k=1 h=1
T, T
=AY > f(k, hyu(k, h)o(k, h),
k=1 h=1

forallv e H.

The main result of this paper is given by the following theorem.

Theorem 3.1. Suppose that v+ < up~ and |¢1| > ~T. Then, there exists \o > 0 such that for any X > X, the
o1

problem (2) has at least one weak nontrivial solution.

In order to prove Theorem 3.1, we define for each A > 0 the functional corresponding to problem (2),

J)\ H— R, by
T1+1To+1 ) T T»

Ja(u) = M (Z S A(k—=1,h—1,Au(k—1,h—1)) | =AY > F(k h,u(k,h)) where (k,h) €

k=1 h=1 k=1h=1
P t T
NI[1,T1] x N[1,T»], M (t) :/ M(s)ds and F(k,h,z) :/ f(k, h,s)ds. From [20], the functional J)
0 0
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is continuous differentiable in the sense of Gateaux and J Q at u reds

T1+1T5+1
(J4(u (Z > A(k—1,h— 1Au(k—1h—1))>
Tit1 Tyl k=1 h=1
(Z > a(k—1,h—l,Au(k—1,h—1))Av(k—1,h—1)> (14)
k:%l h;Ql
=AY O ki hyulk, h))u(k, h)
k=1 h=1

forallv € H.

Assume that (J}(u), v) = 0, which is equivalent to

T1+1T5+1

w) Y Y (Aa(k =1, Au(k — 1)) = Af(k, h,u(k, h))) v(k, h) = 0, (15)

k=1 h=1

T14+1T2+1
VoeM, withI(u)= Y Y A(k—1,h—1,Au(k—1h-1)).

k=1 h=1
Therefore, the critical point u to J satisfies the problem (2).

We begin the proof of Theorem 3.1 with some basic properties on functional J).

Proposition 3.1. Assume that condition (6), (7), (10) are fulfilled with up~ > ~*. Then, the functional Jy is

coercive for all X > 0.

Proof. Let ||u|| > 1, according to (6), (7) and (10), we have

Ti+1To+1 T Th
:M(Z S A(k—l,h—l,Au(k—l,h—l))) =AY F(k, hyulk, b))

k=1 h=1 k=1 h=1
T14+1T5+1
S Ak —1,h—=1,Au(k—1,h — 1))
Ia(u) > /k=1 h=1 Rysttds —
0
T T
A Pk, hyuk, b))
k=1 h=1
Ti+1T5+1
> (Z > Ak —1h—1Au(k—1h—1))> -
k=1 h=1
— T T3 T 1>
<¢2ZZ]uk WPED +oo) S5 " Julk, b)) )
k=1 h=1 k=1 h=1
T1+1T5+1 H
> (Z Z |Au _1 h— )|p(k—1,h—1)> o

k=1 h=1
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a T, To ¢7 Tn 1>
+
( 2§:§:| (k, )" + 2§:§:\ukh|7 +\02|\/T1><T2\u||>
k=1 h=1 k=1 h=1

R .
(el )" =3 (2l + 2l + 0l VT < Talul).

p(pt

Since pup~ > v+, we obtain Jy(u) — 0o as ||u|| — oo; then the functional J)(u) is coercive O

Proof. Proof of Theorem 3.1. We deduce from [10, 11, 14] that the functional J}, is of class C' and
weakly lower semi-continuous. It’s also coercive. Let us(k, h) € H a global minimizer of J, a weak
solution of problem (2). Now, we show that us is not trivial when pup~ > % and A > Ao.

For ty > 1 be a fixed real and (kg, ho) € N[0, T + 1] x N[0, T; + 1]. We define ug € H such that

ug(ko, ho) = to
uo(k,h) = 0, (k,h)e (N[0,T1 + 1] x N[0, T2 + 1]) \ {(ko, ho)}-

Ti+1To+1 T T3
0) :M(Z > A(k—l,h—l,Auo(k—l,h—l))> =AY F(k, by uo(k, R))

k=1 h=1 k=1h=1
According to (6) — (8) and (9), we obtain

Thi+1T5+1
D> A(k—1,h =1, Aug(k — 1,h — 1))
In(ug) < /k=1 h=1 Ros*lds —
0

T Tz
A S Pk, hyug(k, h))

k=1h=1

R T14+1T2+1
2(2 > Ak —1,h - 1Au0(k—1h—1))> -

k=1 h=1

T Ts
AN F(k, hyug(k, b))

k=1 h=1

Ry (T TAL o Aug(k—1h—1) g
2(2 Z/ alk —1,h — )yds>

IN

IN

k=1 h=1
T 1>

=AY Y F(k,hyug(k, b))

k=1h=1
Ry <T1+1 Ta+1

IN

. > GilAug(k—1,h = 1)+

k=1 h=1

T1+1Tp+1 ® b1 .-
> ,h—1>rp<k-1vh-”> Al + 577

klhl

R To+1
=2 ( Z|Au0 —1,h—1)|+

u k=1 h=

IN
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Ti+1To+1 1 K ¢1 _
Z Z F,AUO(]{ —1,h— 1)|P(k—1,h—1)> - <—\al|t0 + 7:+tg >

k=1 h=1
R gplko.ho) | yp(ko—1,ho—1)\ ¥

< a2+ = — Mo (_\01!+¢i)
2 D N

<

+ D1
7(4()1)”156‘1° — Mo <—<71| + W)

where N
_ Ro(4Cy)rthP

Ao = R
u(—lffl|+7+>

Then, J)(up) < 0forany A € (g, 00). We deduce that Jy(us) < 0 for any A > X, us is a weak nontrivial

solution of problem (2). O

4. EXISTENCE OF SOLUTION BY MOUNTAIN PAass LEMMA

In this section, we deal with the existence of nontrivial weak solutions for the problem (2) by

applying Mountain Pass geometry lemma giving by Lemma 2.2.

The main result in this case is the following.

Theorem 4.1. Assume that condition (6) — (9) and (11) are fulfilled with v~ > up™. Then, there exists A\; > 0

such that for X < Ay, the problem (2) has at least one weak nontrivial solution.
We begin by establishing some basic properties on the functional.

Lemma 4.1. Assume that condition (4) — (9) and (12) are fulfilled with v~ > pp™. Then, for any A > 0, the
functional J) satisfies the Palais-Smale

condition.

Proof. Note that # is finite dimensional Banach space, we only need to show that

Ir(up) — —o0 as ||uy|| — oco. From assumptions (4) — (9) and (12), one has

T14+1To+1
Ia(un) = J\?(Z ST Ak =10 =1, Aup(k—1,h — 1))) -
k=1 h=1
T T
A N F(k, by un(k, b))
k=1 h=1
T14+1T2+1
D> Ak —1,h =1, Aup(k = 1,h — 1))
Ia(up) < /k::l h=1 R2su—1d3_
0
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T T
> hz (k, hyun (k, )

k=1 h=1

R, (TtlTatl H
< 2( Z k—1,h—1, Auy(k — 1h—1))> -

p k=1

T1 T2 ¢1 Tl T2
<ZZ ]alHunkh\—i— Z\unkhwkh>

k=1h=1 klhl

R T14+1Ta+1 n(k—1,h—1) ®
< 2(2 Z/ (k:—l,h—l,s)|ds> -
K k=1 h=1
T1 TQ Tl T2
(ZZ o1 [ (K, 1) \+ =50 funlk, ) )
k=1 h=1 k=1 h=1
R T14+1T5+1
< B (z S €l — 10— D)+
k=1 h=1
T1+1T5+1 H
Z Z 1 h— ),p(kl,hl)) -
k=1 h=1
o1 _
A <—\01NT1 < Tl + S
R T1+1Ts+1
< (z S v 10— D)+
'LL k=1 h=1
Ti+1T5+1 H ¢1
> > ik~ 1,k Dt A(\owﬂ X T Junl| + = un )
k=1 h=1 v
R C Ce\*
< B2p (MTI T % @+ Dlluall + Sljun P + _6) -
1% p p
o1 _
A (—anTl KTl + ).
Since v~ > pup™ and |lu, || — oo, we obtain Jy (u,) — —oc. O

Proof. Proof of Theorem 4.1. Set Q := {u € H : |lul]| < 6}, with 6 € (0,1). Recall that

Ty +1Ta+1 T To
:J\7<Z > A(k—l,h—l,Au(k:—Lh—l))) =AY ST F(k, by ulk, h)).

k=1 h=1 k=1h=1

For u € Q, from (6) — (9) and (11), it follows that

T1+1To+1 K
B > (Z > IAulk 1.k~ >\p<k-lvh—1>> -

k=1 h=1

<¢2 ii'“k m |02|‘/m(§:§:‘u - >1)

k=1 h=1 k=1 h=1
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Ri [ Cy \* b2 -

o\ (p")

For v € 09, one has

, -
L > B (5;) ot _ ) <ff3m N m)

"
o

So for every A € (0, A1); Jx(u) > 0 for all u € 00 with

I’ < Cy ) gup*—1
N = u (p™)
1_

+ |02|\/T1 X T2

(16)

For u € H such that u(k,h) > 1, for (k,h) € N[1,T 4+ 1] x N[1,T5 + 1]; from (4) — (6) and 8, we obtain

R T14+1T2+1
Ja(u) < =Z(Cp)H (Z > lAu(k—1,h = 1)+ (17)
K k=1 h=1
T14+1T5+1 H
> Z |Au —1,h—1)|p(k_1’h_1)> —
k=1 h=1
T 1> T T
<ZZ—\01HUkh]+ Zzukhn’”). (18)
k=1 h=1 k=1 h=1

Consider u; € H defined in the following way

w(k,h) = t for (kh) e (N0,T1 +1] x N[0, T5 + 1)) \ {T'}

(19)
ut(k, h) = 0 in T.
Using (17) and (19), there exist integers N1, N2, N3 and N such that
Ry 1 + N
J)\(u) < p (Cl) (N1 + Nz)t + ]?(Nltp + Ngtp ) — (20)
)\Ng <—|O’1’7§ + ﬂt’)’ >
R
< SHoy (2V1 + Mot )" — ANy <—|01|t y By ) (21)
< I Z2(ANCY)MT — ANj <—|al\t + qbiﬂ) (22)
2 7 Y

where N = max{Nj, No}. Since v~ > up™, then tlim Jx(u) = —oo. Thus, there exists 1 such that for
— 00
ug, € H\A{Q}, Ia(ue,) < miar(lzJ,\(u). According to Lemma 2.2 the problem (2) has at least one weak
ue

nontrivial solution. O
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5. EXISTENCE OF SOLUTION BY EKELAND’S PRINCIPLE

In this section, existence of nontrivial weak solutions are obtained by using Theorem 2.2.

The main result in this case is the following.

Theorem 5.1. Assume that condition (5) and (7) — (9) are fulfilled. Then, for any A\ € (0, A1) such that

up~ >~ and ‘¢| > vt ay, the problem (2) has at least one weak nontrivial solution.
g

Proof. For A € (0,)1). Using the proof of Theorem 4.1, for v € 0f2, we obtain Jy(u) > 0. From
Weierstrass theorem, one has

1?6116151)J>\( u) > 0. (23)

Taking u(k, h) € (0, 6), according to (5) and (7) — (9), we have

Ti+1T5+1
I(u) < (ZZ;AU —1,h—=1)| +

k=1 h=1
T1+1Tr+1 H T Tz
> 5 hiauti L= P ) (35 ol
k=1 h=1 k=1 h=1
T T
2SS lutha0).
k=1 h=1

For s € (0,0), assume that

A (—|01|a0 + qﬁ)
s < (Mf*wf) g

R 1\*
=2 (20m)" <a1 + )
7 p

Let (k?o, ho) € (N[l,Tl + 1] X N[l,TQ + 1]) \ {F} such that ’y(ko, ho) =~".
We choose vy € H be a function such that ug(ko,hg) = s and ug(k,h) = 0 for any (k,h) €
(N[l,Tl + 1] X N[l,TQ + 1]) \ {(kﬁo, ho)} We get

R p(ko,ho) 4 gp(ko—1,ho—1)\ ¥ .
J)\(U()) < #2(01) <28+ 5 ts —)\(—|0'1‘8+j}r87 )

p

Ry (1) 257"\ \ < o1 ¢1 7—)

< — - —lo1|s + =5
po ! P =T
R2 sP g le -

< =0 s+—] = <—‘O’1‘S++S’Y ) . (24)
H p 7 Y

We can find two constants a1, ap > 1 such that a;s? > sand aps” > s. Then, inequality (24) gives
o (ko) = (b T ) o7
Jx(u < 200" a1+ — | = A —|otlag+ = | " 25
A (uo) M< ) 1+ o= lo1]ag o (25)

_ 1\* _
< Itz —(2C)!stP (CLl + _) - A <—\01]a0 + qu_) sT <. (26)
H p - gl
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Thus, Jy(ug) < 0 for ug € int(2). Therefore,

—o00 < inf J < 0.
oo < nf o )

So, we have

inf J < inf J .
uegzlt(Q) A(u) ulenaﬂ )\(u)

Using the proof in [15], it follows that

inf J — inf J >e> 0.
Ao D) = b () > €

Applying Ekeland’s variational principle to the functional J : @ — R,

we find u, € 2 such that
Ix(ue) < &Ieng,\(u) + €
and
Ia(ue) < Ia(u) + €llu — ue| for  u# u..
Since

Jr(ue) < inf J < inf J < inf J
Mue) < inf a(w) +es nf Ia(w)+e< inf Ji(w)

we deduce u, € int(§2). Now, we define H) : @ — R by
Hy(u) = Jx(u) + €|lu — ucl| for U # Ue. (27)
We have u, as a minimum of the functional H and therefore Vu € 2
Hy(u) > Hy(ue). (28)
Taking u = u. + tv, v € Q and ¢t > 0 in the relation (27). From (28) and letting t — 0, it follows that
(JA(ue), v) +el|v]| = 0 (29)
and
15 (ue)ll < e (30)
Thus, there exists a sequence {y,} C int(2), (see [18]) such that

In(yn) — ingf)J,\(u) and J}(yn) — 0.
ue

Since {y,, } is bounded in # there exists yo € #H such that, up to a subsequence {y,,} converge to yo € H.
Thus,
Ia(yo) = inf Jy(u) and  J5(yo) = 0.

Yo is one weak nontrivial solution for the problem (2). O
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6. AN EXTENSION
In this section we are concerned the study of the general boundary value problems namely
—M(A(k—1,h —1,Au(k —1,h —1)))A(a(k — 1,h — 1, Au(k — 1,h — 1)))
lulk, )N 2uk, h) = Af (k; b, u(k, k), (k; h) € N[LTi] x N[1, T2], (31)
u(k,h) =0, (k,h) €T
where r : N[1, T1] x N[1, T5] — (2, 00).
We denote by

roo= min r(k,h) and 7t = max r(k,h).
{(k,h)EN[1,T1]xN[1,T]} {(k,h)eN[1,T1]xN[1,T>]}

Definition 6.1. A function v € H is a solution of problem (31) if for any v € H,

Ti+1T5+1
M (Z > A(k—1,h—1,Au(k — 1,h - 1))) X
k=1 h=1
T14+1T2+1
) alk—1,h—1,Au(k —1,h = 1))Av(k — 1,h — 1)+
k=1 h=1
T 1o T T3
SO " fuk, h)[" 20k, hyo(k, h) = X > f(k, hyuk, h))o(k, ).
k=1h=1 k=1h=1

6.1. The main results and their proofs.

Theorem 6.1. Assume that condition (6) — (9) are fulfilled. Then, for pp~ > v+ and |¢1‘ > ~7T, there exists
o1

A2 € (0, 00) such that for all X > Xg, the problem (31) has at least one weak nontrivial solution.

Proof. We define energy functional corresponding to problem (31) by

T1+1T5+1
Ja(u) = M(Z ZA(k—l,h—l,Au(k—l,h—l)))+

k=1 h=1
Ty, To T T3
r(k,h)
szukhy —A>> F(k,hyu(k, h)).
k=1 h=1 k=1 h=1

From [10], the functional .J) is weakly lower semi-continuous and is of class C* and

T +1T5+1
(J5 (u <Z > Ak —1h—1Au(k:—1h—1))>

k=1 h=1
T1+1T5+1
> alk—1L,h—1,Au(k - 1,h—1))Av(k - 1,h - 1)+ (32)
k=1 h=1

1 2 T To
SO fudk, BT ERRuk, hyo(k, ) = AN (R, by ulk, h))o(k, ).

\ k=1 h=1 k=1 h=1
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Since
ii L e, m)rEm > o
k=1h=1 r(k’ h)
it follows that
Ti+1Th+1 T 1>
Jx(u) > M (Z ST Ak —1,h—1,Au(k —1,h — 1))) =AY F(k by ulk, b)),
k=1 h=1 k=1h=1

According to proposition 3.1, J) is coercive.
Let @ be a global minimizer of .Jy. For ¢, > 1 be a fixed real and

(ko, ho) € N[0, T} + 1] x N[0, T, + 1]. We define up € H in the following way

ug(ko, ho) = to

uo(k,h) = 0, (kh) e (N[0, Ty + 1] x N[0, T3 4 1]) \ {(ko, ho)}-

T1+1To+1 T Ty
In(ug) = M (Z > A(k—1,h =1, Aug(k — 1,h — 1))) = ADY F(k hyug(k, ).

k=1 h=1 k=1h=1
We have N
Ia(ug) < R—(4C )“t“p+ + b _ Ao < lo1| + ¢1> (33)
p - v
where
rt—1
2oy e
Ap = H 5 T (34)
—loi| + 7:+
It follows that Jy () < 0 for any A > Ay, @ is a weak nontrivial solution of problem (31). O

Lemma 6.1. Assume that condition (4) — (6) and (8) — (9) are fulfilled with v~ > max{p™*,r*}. Then, for

any X > 0, the functional J) satisfies the Palais-Smale condition.

Proof. We follows the results in the proof of Lemma 4.1, to obtain

T14+1To+1
n(un) < (Z 7 Aun (k= 1,0 — 1)+

k=1 h=1

Th4+1To+1 H T 1>
_ _ 1\|p(k—=1,A—1) r(k,h)
S ) D WO
k=1 h=1 k=1 h=1
o1 _

A (—|cn¢T1 < Tl + Z )
Ry

IN

C 1 Cg\ "
(o (2D < Tt Dl + 2l + Sl + 52 -

1 _
A <—\01NT1 <Tafunll + )

Since v~ > max{p*,r*}, then Jy(u,) — —o0 as ||u,| — . O
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Theorem 6.2. Assume that condition (6), (8), (9) and (11) are fulfilled with v~ > max{up™*,r*}. Then, for

A € (0, 1), the problem (31) has at least one weak nontrivial solution.

Proof. Let 2 :={u € H : |Ju]| < 0} with § € (0,1). Recall that,

Ti+1To+1 T T2
:J\?(Z > A(k—l,h—l,Au(kz—l,h—l))) =AY ST F(k, by ulk, h)).

k=1 h=1 k=1h=1
Taking u € Q, from (6) — (8), (9) and (11), one has

Ja(u) > (pi)u (Z > |Au(k—1,h— 1),p<k_1,h_1>>

H k=1 h=1
1

qT T Ty T T»

M 2SNk )+ ool VT x T <ZZ|U (k, h)| )
k=1h=1 k=1 h=1
For u € 01}, we obtain
Ry + @

J)\(u) > /L(p+)“04eﬂp — )0 <’7_+’0'2‘\/T1 XT2> . (35)

So, for any A < Ay; Jy(u) > 0 for all u € 09Q. For u € H such that u(k, h) > 1, for (k,h) € N[1,T7 + 1] x
N[1,T5 + 1]. From (4) — (6) and (8), we get

T1+1T5+1
In(u) < (ZZAU —1,h—1)|+

k=1 h=1

T1+1T5+1 (-Lh-1) ® T T 1 k)
35 Liauti Lo op ) 3
k=1 h=1 k=1 h=1

T Th
—A (ZZ—IMHU(kzh)!

k=1 h=1

1 2
ZkahW“) (36)
k=1 h=1

Define u; € H such that

w(k,h) = t for (kh) e (N[0, Ty + 1] x N[0, T3 + 1]) \ {T'},

(37)
Ut(k,h) = 0 inT.
We can find integers Ny, Na, N3 and NV such that
a(u) < }ZQ (ANCy )“t“p + Ngt” — AN3 (—|01\t+ ﬁ757 ) (38)

with N = max{Nj, Na}. Since v~ > max{up*,r*}, then Jim Jr(u) = —co. Thus, there exists ¢ such
—00
that for uy, € H \ {2}, Ja(uy,) < miarsl2 Jx(u). According to Lemma 2.2, the problem (31) has at least one
ue

weak nontrivial solution. O
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Next, Apply Ekeland’s variational principle with min{up~,r~} > +~, we will use the result of case

up~ >~ and |J:1‘ > ytag. It well know that for A € (0, \1), one has
91

gla%JA(u) > 0. (39)

Let s € (0,60) and assume that

P1
A <—01|ao + +>
5 < (min{upfwf}*vf) 2 (40)

e (e 5) + mar)

Taking (ko, ho) € N[0, T} + 1] x N[0, T + 1] \ {I'} such that vy(ko, ho) =7~
Let up € #H be a function such that ug(ko,ho) = s and wo(k,h) = 0 for any (k,h) €
(N[1, 77 + 1] x N[1, T3 + 1]) \ {(ko, ho) }. From inequality (36), one has

R2 sP g - le —
Ia(uwy) < —@C) [s+—| +s" —A (—]al|s++57 ) . (41)
1% b 7 v
We can find two constants as, ag > 1 such that a3s? > sand ags?” > s. Thus, we obtain
R - 1\* _ _
JA(’LL()) < 72(201)#8“17 (CLQ + p> + s — A <—|01|a0 + j}r) s7

Ry i - r 1\ H (bl -
< 20 ) gmin{up ﬂ“}<<a _|_> +>—)\<—a ap+—1)s" .

Thus, Jy(ug) < 0, for ug € int(Q2).
In the sequel, we follows the results in the proof of Theorem 5.1, to show that the problem (31) has at

least one weak nontrivial solution.
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