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AN EFFECT OF HURST EXPONENT ON PREDICTING THAI STOCK MARKET
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Abstract. Any time series can be classified by Hurst exponent. If Hurst exponent is greater than 0.5, then
the time series has a persistent behavior. While it has anti-persistent behavior when Hurst exponent is
less than 0.5. In this paper, we use Hurst exponent to determine the behavior of Thai stock market in
different periods of time. We found that the periods with larger Hurst exponent have higher accuracy
when predicted by Neural Networks.
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1. Introduction

Predicting the direction of stock prices is one of the topics that attracts significant interest from
investors and researchers. The more precise the forecasting in unpredictable environments, the more
effective the market strategies.

The Efficient Market Hypothesis (EMH) was proposed independently by Paul A. Samuelson and
Eugene F. Fama in the 1960s. It is a concept in financial economics which states that the stock prices
or assets in the market fully reflects all available information at that time. In [4], Fama presented
compelling empirical evidence demonstrating that stock prices exhibit a random walk pattern. On the
other hand, Lo and MacKinlay [5] examined the random walk hypothesis for weekly stock market
return by comparing variance estimators from different types of frequency data. The results showed
that the random walk hypothesis did not hold for all sample periods.

Identifying trends can improve the accuracy of stock price forecasting. Hurst exponent is a useful
tool for indicating trends effectively. It was proposed by Harold Edwin Hurst [1] in the 1950s. He
introduced Hurst exponent in his work in the area of hydrology while he was studying long-term
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storage capacity of reservoirs and analyzing the Nile River’s water flow patterns. The Hurst exponent
method was later introduced and explored in other fields by Mandelbrot and Ness [2].

The Hurst exponent is a statistical tool used to assess the long-term memory of a time series. Un-
derstanding this memory is valuable in financial markets, as financial returns often deviate from
the behavior of random walks. It helps to determine whether a time series (such as stock prices) is
trending, mean-reverting, or exhibiting a random walk. The Hurst exponentH ranges between 0 and 1.
If 0 < H < 0.5, then the time series is mean reverting. IfH = 0.5, then the time series is a random walk.
If 0.5 < H < 1, then the time series is trending. The strength of trend increases as H approaches 1.

Mitra [3] estimated the Hurst exponent of stock indices and examined the relationships between
Hurst exponent and the predictability of financial time series. The study showed that Hurst exponent
and the returns of stock indices from a trading rule are correlated and hence, Hurst exponent can be
used as a measure to detect the trend in technical analysis.

Neural networks are widely deployed in modern finance to forecast the direction of classic financial
time series data. The more precise the forecasting in unpredictable environments, the more effective
the market strategies. In the past decades, there have been many researches that implement Neural
networks to predict stock future closed prices. There are many research articles that utilize neural
networks for predicting financial time series data. In [6], Sako et al. used neural networks to predict
stock indices and currency exchange rates.

Noorbakhsh and Shaygani [7] applied five models, 2 hybrid models and three single models, in
neural networks to predict stock prices of five companies listed on the Tehran Stock Exchange. The
results demonstrated that the hybrid model which is CNN-LSTMmodel achieved higher accuracy than
the other models.

Qian and Rasheed [15] investigated the effect of the Hurst exponent on classifying series of financial
data from different periods of time. The data of Dow-Jones daily return was used in this research. By
using backpropagation Neural Networks, the result showed that the time series data with large Hurst
exponent can be predicted more accurately than those series with Hurst exponent close to 0.50.

The Random Walk Hypothesis suggests that log returns of stock prices follow a random walk. Each
log return is independent of the previous log returns and the mean and variance remain constant over
time. If log returns truly follow a random walk, it would be difficult to consistently predict future stock
prices based on the past price movements. Moreover, it would be ineffective to use Technical analysis
to identify patterns in the price charts.

In this work, we would like to see the effect of Hurst exponent in predicting the daily log return
of stock indices. Here, we used the SET index data from January 2, 1997 to December 30, 2024. We
divided our work into two parts. The first part utilized Hurst exponent to understand trends of the
daily returns. Then we divided the data into two groups, one with large Hurst exponent, and the other
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with Hurst exponent close to 0.5. The second part utilized Neural networks to predict daily returns of
the assets in each group and compare the accuracy of the prediction. We found that the larger Hurst
exponent, the smaller the error obtained.

2. Hurst Exponents

In this work, we use the R/S analysis to calculate the Hurst exponent of the time series. For an
integer N ≥ 5, let X1, X2, . . . , X2N be a time series of length 2N . For each n ∈ {24, 25, . . . , 2N} and
k ∈

{
0, 1, . . . , 2

N

n − 1
}
, let

mn,k =
1

n

n∑
i=1

Xkn+i

and for t ∈ {1, 2, . . . , n} let

Yn,k,t = Xkn+t −mn,k and Zn,k,t =

t∑
i=1

Yn,k,i.

Next we calculate R(n, k) and S(n, k) as follows:

R(n, k) = max
t∈{1,2,...,n}

(Zn,k,t)− min
t∈{1,2,...,n}

(Zn,k,t)

and

S(n, k) =

√√√√ 1

n− 1

n∑
i=1

Y 2
n,k,i.

Then define
R

S
(n) =

n

2N

2N

n∑
i=1

R(n, i− 1)

S(n, i− 1)
.

Plot log R
S (n) as a function of log n. After fitting a straight line to the data, the Hurst exponent, denoted

byH , is the slope of the line. Figure 1 shows an example of the straight line fitted with the data from
08/02/2007 to 22/04/2011. The Hurst exponent in this example is about 0.6583.
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Figure 1. The straight line fitted with the data from 08/02/2007 to 22/04/2011

In this research, we analyze the log returns of the SET index over the period from January 2, 1997, to
November 30, 2024. For each rolling window of 1024 trading days, we computed the Hurst exponent
as shown in Figure 2. In the next section, we will show that there are underlying structures in rolling
windows with high Hurst exponent.

Figure 2. Rolling Hurst Exponent of the daily return of SET index from 02/01/1997 to 30/12/2024
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3. Hurst exponent of standard Gaussian time series

For standard Gaussian time series, Anis and Lloyd [19] gave a formula to estimate the expectation
of RS (t) as follows:

E

(
R

S
(t)

)
≈

Γ
(
t−1
2

)
√
π · Γ

(
t
2

) t−1∑
i=1

√
t− i
i
. (1)

We approximate the expectation of RS (t) for t ∈ {24, 25, . . . , 210} and apply linear regression at signifi-
cance level α = 0.05. Results are provided in Table 1.

log2(t) log2

(
E

(
R

S
(t)

))
4 2.012758404
5 2.600624317
6 3.164394909
7 3.710466641
8 4.243598131
9 4.767327524
10 5.284267119

Regression slope (H) 0.543826278± 0.01395367

Table 1. The Hurst exponent calculated by using formula (1)

To confirm the result, we used Monte Carlo simulations to estimate the Hurst exponent of standard
Gaussian time series. Specifically, we generated 10,000 standard Gaussian time series of length 1024
and calculated the average and standard deviation of their Hurst exponents. This process was repeated
10 times, and we took the mean of the averages and standard deviations across all repetitions. With 95%
confidence, we determined that the Hurst exponent of a standard Gaussian time series falls between
0.545528− (1.96× 0.048709) = 0.450058 and 0.545528 + (1.96× 0.048709) = 0.640998.
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Simulated Hurst Exponent Standard deviation
1 0.546583 0.049243
2 0.545754 0.048507
3 0.545521 0.049578
4 0.545464 0.048378
5 0.545623 0.048401
6 0.544929 0.048624
7 0.545539 0.048322
8 0.545610 0.048438
9 0.545097 0.048808
10 0.545164 0.048790

Mean 0.5455284 0.0487089

Std. 0.000454749

Table 2. Hurst exponent calculated by using Monte Carlo methods

To confirm the presence of underlying structures in periods with high Hurst exponents, we randomly
selected a period with a Hurst exponent greater than 0.645. For this period, we shuffled the data order
500 times and then calculated the Hurst exponent of the shuffled data. We repeated this process for 10
times and recorded the result in Table 3. Then we calculated the average of the Hurst exponents.

Hurst exponent after shuffling Standard deviation
1 0.549713 0.051802
2 0.552230 0.046106
3 0.548959 0.049081
4 0.547096 0.046547
5 0.548084 0.047139
6 0.549542 0.048883
7 0.549175 0.048774
8 0.550917 0.048263
9 0.548429 0.050287
10 0.547314 0.048827

Mean 0.549146 0.048571

Table 3. The Hurst exponent of shuffled data
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After shuffling, the Hurst exponent is close to 0.545528, which corresponds to the Hurst exponent of
a standard Gaussian time series. This result indicates that the original periods contained meaningful
structures that were eliminated by shuffling.

4. Neural networks

Currently, neural networks offer best solutions for many complex problems, especially the problems
concerning with pattern recognition or prediction. It is then often used as a tool in forecasting time
series data. A neural network is a computing system composing of interconnected simple processing
nodes, called neurons or perceptrons, in a layered structure. Each node computes a weighted sum of its
inputs from the previous layer and passes the result, transformed by its activation function, to connected
nodes in the next layer. The classical feedforward neural network will let the information flow in only
one direction, from inputs to outputs with no feedback loop, and the input of i+ 1th layer is the output
of the ith layer. In particular, a feedforward neural network with a single hidden layer is considered
to be able to approximate any continuous function [10]. The learning process of a neural network
involves iterative adjustments of weights and biases to minimize the errors between its predicted
outputs and the actual values. There are many learning algorithms in neural networks. One of the
widely used algorithms is backpropagation. A feedforward neural network trained by backpropagation
algorithm is called the feedforward backpropagation neural network. The backpropagation algorithm
employs gradient descent to locate a local minimum of the error function. It determines the gradient,
or partial derivative, of the error with respect to each weight. Moving in the opposite direction of these
gradients, known as the steepest descent direction, leads to the fastest reduction in error. The algorithm
updates the weights by following this steepest descent path. Many variations of backpropagation were
introduced to optimize the direction and step size for improving the performance of the neural network
(see [9, 11–14,16] for more details). Once training is complete, the network can be used to predict new
data.

4.1. Data preparation. Using a rolling window of 1024 trading days, we computed the Hurst exponent
for SET index daily return data spanning from 02/01/1997 to 30/12/2024. The calculation resulted in a
total of 5087 rolling periods. Of these, 164 periods had Hurst exponents exceeding 0.645, while 159
periods showed Hurst exponents within the range of 0.52 to 0.535. The histogram in Figure 3 shows
the distribution of Hurst exponents across all periods.
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Figure 3. Histogram of all 5087 calculated Hurst exponents

4.2. Defining the neural network structure. Forecasting the future state of a time series is a complicate
problem especially when the time series is non-linear or chaotic because it cannot be dealt with
classical statistical methodology. To handle with this kind of time series, many tools are introduced
(see [8,18]). However, the main idea of these tools is to firstly embed the problematic time series to
higher-dimensional space which yield a new representation and then study the underlying dynamical
structure from the new representation. This embedding is called time delayed embedding method and
it is regularly used in the time series analysis and prediction. One of the delayed embedding techniques
is introduced by Takens [17] in 1981. He proposed a theorem in which the main hypothesis is that,
given a time series data x1, x2, . . . , xi, we can predict the value of xi+1 from the information contained
in the time-delay vectorXi = (xi, xi+τ , xi+2τ , . . . , xi+(d−1)τ ) if the values of d and τ are appropriate and
d� N . In this way, we can represent the future point in the time series by points in the d-dimensional
space. Here d is called the embedding dimension and τ is called the delay.

According to Takens’ theorem, it requires two parameters which are the delay parameter τ , and the
embedding dimension parameter d. An estimation of these parameters in one-dimensional time series
can be done by calculating the auto-mutual information (AMI) function and the false nearest neighbor
(FNN) function [18]. The delay and the embedding dimension are the first local minima of the AMI
and FNN functions, respectively.
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Figure 4 shows the graph of AMI function of the SET index data from 08/02/2007 to 22/04/2011
with Hurst exponent being equal to 0.6620. According to the figure, it estimates that the delay is equal
to 1. We further used this information to calculate FNN and got the graph represented in Figure 5. The
graph shows that the suggested embedding dimension is equal to 3. We calculated the AMI and FNN
functions for our random 60 data sets. The delay is suggested to be 1. This coincides with the work
in [15]. The embedding dimension is suggested to be 3. This coincide with the embedding dimension
that gives the best prediction in [15]. However, we will also consider the embedding dimension 4 and
5.

Figure 4. The auto-mutual information of the log return of the SET index from
08/02/2007 to 22/04/2011

Figure 5. The false nearest neighbor of the log return of the SET index from 08/02/2007
to 22/04/2011 when τ = 1
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As aforementioned, most practical applications utilize networks with a single hidden layer [10]
because multi-hidden-layer networks offer no significant advantage over their single-layer counterparts.
In this research, we designed a neural network with a single hidden layer, using the suggested number
of input nodes and one output node. The network was built using Keras’s Sequential model and
optimized with the Adaptive Moment Estimation (Adam) algorithm. The hidden layer employed the
ReLU activation function, while the output layer used a linear activation function. We normalize the
data before feeding the data to the models by using the Python StandardScaler function which is a
technique for feature scaling in the preprocessing stage before training a model in neural networks.
After normalizing, each feature in the dataset is rescaled such that the mean is adjusted to 0 and the
standard deviation is adjusted to 1 by using the following equation:

Xscaled =
X − µ
σ

,

whereX is the original value in the data set, µ is the mean of the feature, and σ is the standard deviation
of the feature.

To mitigate overfitting, the dataset was divided into three subsets: training, validation, and testing.
The training set was used to update the network’s weights through error backpropagation, while the
validation set was employed to halt training when the error on the validation set began to rise. The
testing set was used to evaluate the network’s predictive accuracy. Specifically, 60% of the data were
allocated for training, 20% for validation, and the remaining 20% for testing. This approach ensures
greater reliability in the network’s predictive performance, as the testing data directly precede the
forecasting period.

Figure 6. Log return data from 02/01/1997, to 30/12/2024, divided into three datasets
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4.3. Neural network construction and forecasting. A practical guideline for deciding the hidden
nodes is that the total degrees of freedom in the network should be 1.5 times the square root of the
total data count. This leads to the following equation:

(# input nodes + 1)(# hidden nodes) + (# hidden nodes + 1)(# output nodes) = 1.5
√
# data.

We observe that for dimensions 3, 4, and 5, the number of hidden nodes should be 10, 8, and 7, respec-
tively. For each of these dimensions, five network configurations are tested, with hidden node counts
varying slightly around the recommended number. For instance, for dimension 3, the configurations
include 8, 9, 10, 11, and 12 hidden nodes. We randomly select five periods for training each network,
running the training 100 times per network, and recording the lowest NRMSE value. NRMSE is defined
as:

NRMSE =

√
1
n

∑n
i=1(Oi − Ti)2

maxi≤nOi −mini≤nOi
. (2)

In (2), Oi is an output value and Ti is a target value, where i ∈ {1, 2, . . . , n}. After the training, we
obtained the following results shown in Table 4 to Table 6:

Dimension 3, Hidden nodes
8 9 10 11 12

1 0.121892 0.120617 0.119863 0.158328 0.123228
2 0.156266 0.119484 0.120696 0.163260 0.152804
3 0.163524 0.124464 0.129016 0.151973 0.155709
4 0.175731 0.152956 0.131743 0.153010 0.128893
5 0.119783 0.126728 0.123473 0.108648 0.124700
6 0.151146 0.146742 0.150026 0.154598 0.131969
7 0.125452 0.151689 0.132426 0.166046 0.153307
8 0.164703 0.120787 0.094381 0.190640 0.150365
9 0.130878 0.151674 0.124516 0.149566 0.120247
10 0.155145 0.157450 0.095528 0.164757 0.152698

Mean 0.146452 0.137259 0.122167 0.156083 0.139392
Std 0.020204 0.015982 0.016721 0.020402 0.014705

Table 4. The error for dimension 3
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Dimension 4, Hidden nodes
6 7 8 9 10

1 0.120601 0.122211 0.127069 0.160776 0.121840
2 0.131547 0.124977 0.161715 0.124139 0.120200
3 0.154574 0.129369 0.123473 0.132766 0.135982
4 0.126811 0.125079 0.126356 0.125040 0.123974
5 0.121472 0.123937 0.117585 0.159125 0.123316
6 0.095290 0.136187 0.153872 0.162635 0.138452
7 0.154438 0.152314 0.168702 0.126563 0.140016
8 0.161447 0.125318 0.100115 0.165518 0.122031
9 0.143804 0.104974 0.157160 0.152270 0.169056
10 0.152052 0.119589 0.102829 0.128290 0.152027

Mean 0.136204 0.126396 0.133888 0.143712 0.134689
Std 0.020711 0.012065 0.024743 0.017698 0.016005

Table 5. The error for dimension 4

Dimension 5, Hidden nodes
5 6 7 8 9

1 0.132331 0.132331 0.159188 0.135140 0.170846
2 0.120823 0.120823 0.119370 0.124525 0.126940
3 0.121063 0.121063 0.160163 0.122652 0.122106
4 0.122690 0.122690 0.123148 0.125123 0.161274
5 0.117412 0.117412 0.129360 0.167059 0.161859
6 0.152520 0.152520 0.102262 0.168188 0.193977
7 0.159476 0.159476 0.154130 0.164050 0.148780
8 0.149949 0.149949 0.147213 0.154635 0.103922
9 0.136422 0.136422 0.146666 0.169422 0.152576
10 0.195455 0.195455 0.156997 0.159797 0.144139

Mean 0.140814 0.140814 0.139850 0.149059 0.148642
Std 0.024293 0.024293 0.020018 0.019837 0.026020

Table 6. The error for dimension 5

From Table 4 to Table 6, the optimal numbers of hidden nodes that resulted in the lowest average
NRMSE for dimensions 3, 4, and 5 were 10, 7, and 7, respectively. Therefore, we selected networks
with 10 hidden nodes for dimension 3, and 7 hidden nodes for dimensions 4 and 5 for the prediction
task. Each network is set to be trained for 100 times and stop when the error in the validation set is
increased. The minimum NRMSE is recorded. Table 7 shows NRMSE of our initial 50 samples from
each group in each dimension.
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Dim = 3, Hidden = 11 Dim = 4, Hidden = 9 Dim = 5, Hidden = 7
Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

1 0.128114 0.153203 0.122787 0.15248 0.122101 0.103352
2 0.123587 0.134926 0.122033 0.148094 0.124285 0.15307
3 0.125109 0.162508 0.123396 0.154251 0.126454 0.156869
4 0.122656 0.151139 0.124164 0.128019 0.132101 0.142092
5 0.121223 0.152134 0.127045 0.137381 0.119477 0.130878
6 0.119839 0.122057 0.160541 0.149577 0.124361 0.094874
7 0.134074 0.124365 0.159086 0.151293 0.120607 0.15307
8 0.120442 0.119885 0.124336 0.192595 0.118094 0.130664
9 0.161918 0.152596 0.15496 0.127351 0.126617 0.162113
10 0.161575 0.145918 0.12391 0.168361 0.122995 0.164169
11 0.123671 0.138578 0.159751 0.119913 0.157416 0.137864
12 0.128224 0.153765 0.162159 0.163962 0.128504 0.154382
13 0.157832 0.141353 0.129839 0.16904 0.154494 0.152744
14 0.121263 0.193128 0.183224 0.103071 0.121312 0.168753
15 0.158886 0.142334 0.130289 0.130296 0.12295 0.12062
16 0.121707 0.098852 0.125233 0.151683 0.123392 0.15016
17 0.161817 0.152747 0.157905 0.126412 0.12362 0.137572
18 0.155691 0.167353 0.159093 0.154234 0.155496 0.096145
19 0.121641 0.15272 0.125694 0.133125 0.163718 0.168864
20 0.120102 0.09431 0.156585 0.152689 0.130536 0.172223
21 0.125526 0.150192 0.127547 0.152158 0.129325 0.127309
22 0.118626 0.120418 0.121885 0.17095 0.125694 0.157241
23 0.125306 0.152463 0.120535 0.154091 0.124113 0.139754
24 0.13388 0.1464 0.163863 0.146348 0.118295 0.148325
25 0.128134 0.131116 0.159781 0.168475 0.156445 0.153525
26 0.117478 0.141827 0.159155 0.15148 0.123285 0.140452
27 0.132596 0.19249 0.12294 0.195189 0.122351 0.15032
28 0.123724 0.103499 0.155092 0.151711 0.162428 0.16404
29 0.126506 0.153291 0.118197 0.16218 0.153218 0.153277
30 0.125641 0.126366 0.157004 0.121123 0.157686 0.193069
31 0.123929 0.160364 0.164213 0.15452 0.123342 0.157091
32 0.128764 0.152183 0.12093 0.131891 0.159376 0.137198
33 0.172749 0.098614 0.159912 0.095674 0.129699 0.150951
34 0.127014 0.126579 0.128798 0.137611 0.145019 0.14674
35 0.161198 0.165377 0.119594 0.094429 0.127321 0.188349
36 0.159744 0.144582 0.125355 0.168027 0.126055 0.14648
37 0.128516 0.148503 0.124163 0.152731 0.128036 0.168069
38 0.15572 0.154183 0.122542 0.10048 0.126162 0.165219
39 0.12493 0.15288 0.121851 0.128571 0.123813 0.144357
40 0.122896 0.099447 0.119146 0.156209 0.120492 0.154209
41 0.119968 0.152441 0.160524 0.16174 0.166884 0.154672
42 0.157391 0.129421 0.12342 0.159426 0.159517 0.157019
43 0.155012 0.163585 0.118773 0.156724 0.117398 0.155261
44 0.124067 0.162659 0.122902 0.151628 0.124158 0.193598
45 0.15544 0.164935 0.176201 0.168889 0.119128 0.151014
46 0.175848 0.09462 0.128601 0.15061 0.160742 0.103567
47 0.123861 0.16731 0.127799 0.15556 0.12379 0.154245
48 0.124446 0.162216 0.124121 0.153011 0.121246 0.157016
49 0.133942 0.143894 0.165913 0.147035 0.152445 0.163653
50 0.126269 0.146374 0.13221 0.14604 0.129625 0.102784

Mean 0.13496984 0.143242 0.13849994 0.14716676 0.13351236 0.14858564
Std 0.016954199 0.022689224 0.019141513 0.021295698 0.015675002 0.021862984

Table 7. NRMSE for two groups
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We used an unpaired t-test to determine if there was a significant difference between the means of
the two groups. The t-statistics for dimensions 3, 4, and 5 were -2.065143, -2.140244, and -3.962003,
respectively, with p-values of 0.041549, 0.034817, and 0.000141. Since all the p-values are lower than
0.05, we reject the null hypothesis. We can conclude that time series with a higher Hurst exponent tend
to be predicted more accurately.

5. Conclusion

In this study, we compare the effect of Hurst exponent in the prediction of SET index daily return by
using ANN. We vary the number of the input nodes and the number of hidden nodes. We found that,
in any daily return predictions, the accuracy is better in higher Hurst exponent periods than that in
smaller Hurst exponent group. Therefore, the ANNmodel that is trained with high Hurst exponent
data is more effective and give better trading results.
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