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Abstract. Because of these advantages, the nonhomogeneous Poisson process has been widely used in
many practical applications up to this point. But in terms of application, it also has a lot of limitations.
The Poisson modified Lindley process, a groundbreaking counting process model, is created in order
to get around these restrictions. It will be demonstrated that this new counting process model is not
subject to these restrictions. A few fundamental stochastic properties are obtained. A new idea for positive
dependent increments is also developed, and the dependence structure is examined. In this work, some of
the attributes will be briefly mentioned. By providing a novel counting process model with an actuarial
science application and example, this paper adds a great deal.
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Key words and phrases. stochastics process; Poisson modified Lindley process; stochastics properties;
Poisson modified Lindley distribution.

1. Introduction

The most popular counting processes for modeling random recurrent events in many real-world
applications are the renewal process and the nonhomogeneous Poisson process (NHPP), which oc-
casionally includes the homogeneous Poisson process (HPP) as an exception. The NHPP lacks the
HPP’s fixed increments attribute because its rate of occurrence varies over time. In this sense, it is not
the HPP. One of the primary characteristics of the NHPP is its ability to produce explicit results in
various applications while maintaining the independent increments attribute [9]. The NHPP has been
applied widely in practice due to its benefits (see [10–30]). Nevertheless, the NHPP has important
application-specific limitations as well. The requirement that the variance and mean of the number
of occurrences in (0, t) be equal V ar[N(t)] = E[N(t)] is one of the most significant limitations. This
limitation means that situations where the observations are either too closely spaced or too widely
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dispersed cannot be used with the NHPP. The fact that it increments independently is a significant
disadvantage. Actually, most real-world problems cannot be adequately described by the assumption of
increment independence. According to certain shock models, for example, a system is more vulnerable
to shocks the more shocks it has previously encountered [11]. The structure of the paper is as follows.
A new cumulative process model is defined in Section 2, and the distributions for the number(s) of
events in a given time interval(s) are derived. In addition, we determine the mean and variance of the
number of events in (0, t) in Section 3 and obtain the stochastic intensity of the new counting process
model. In addition, the dependence structure is examined and a new notion for positive dependent
increments is defined. In Section 4, the corresponding compound process is briefly discussed, and in
Section 5, an actuarial science example is suggested along with a simulation study.

2. Processus Poisson Lindley Modified

The creation of a new counting process model with mathematical properties is one of the work’s
main goals. We do this by creating a Poisson modified Lindley distribution using the concept. Let Φ

follow the modified Lindley distribution [13] with the parameter θ with its probability density function

f (Φ) =
θ

1 + θ
e(−2θΦ)[(1 + θ)e(θΦ) + 2θΦ− 1],Φ ≥ 0, θ ≥ 0.

Ther-th moment of the modified Lindley distribution is given by

µ′r = E [Φr] =
1

θr

(
1 +

r

2r+1(1 + θ)
r!

)
, r = 1, 2....

In particular, the first four moments of X are given by

µ′1 =
5 + 4θ

4θ(1 + θ)

µ′2 =
5 + 4θ

2θ2(1 + θ)

µ′3 =
3 (19 + 16θ)

8θ3(1 + θ)

µ′3 =
3 (9 + 8θ)

θ4(1 + θ)

and the central moments are given by:

E
[(

Φ− µ′r
)k]

=

k∑
r=0

(k; r)µ′r
(
−µ′1

)k−r
k = 1, 2...

The Poisson modified Lindley distributionis generated by mixing the Poisson distribution with the
mean Φ, resulting in the following probability mass function.

P (x, θ) =

∫ ∞
0

Φx

x!
e−Φ θ

1 + θ
e {−2θΦ} [(1 + θ)e{θΦ}+ 2θΦ− 1]

=
θ

θ + 1

1

x!

[
(1 + θ)

∫ ∞
0

Φxe−(θ+1)ΦdΦ + 2θ

∫ ∞
0

Φx+1e−(2θ+1)ΦdΦ−
∫ ∞

0
Φxe−(2θ+1)ΦdΦ

]
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=
θ

θ + 1

1

x!

[
(1 + θ)

Γ (x+ 1)

(θ + 1)x+1
+ 2θ

Γ (x+ 2)

(2θ + 1)x+2
− Γ (x+ 1)

(2θ + 1)x+1

]
=

θ

θ + 1

[
1

(θ + 1)x
+

2θx

(2θ + 1)x+2
− 1

(2θ + 1)x+2

]
, x ∈ N (1)

To extend this Poisson modified -Lindley distribution to a counting process model with an explicit
probability of the number of events, the idea is that in themixing process in (1), we employ an additional
time-dependent term in the mean value of the Poisson distribution.

Assume that the counting process {M(t), t ≥ 0}is orderly. To show that the counting process
{M(t), t ≥ 0} follows the NHPP with its intensity function λ(t), we shall utilize the notation {M(t), t ≥

0} ∼ PPNH(v(t)). Additionally, the continuous random variable Φ will be represented as following
the modified Lindley distribution with parameter θ using the notation Φ ∼ LM(θ).

Definition 2.1. A counting process {N (t) , t ≥ 0} is called a Poissonmodified Lindley process with the parameter

set (λ (t) , θ), θ ≥ 0, λ (t)) ≥ 0, pour t ≥ 0 if:

-{N (t) , t ≥ 0} | (Φ = φ) ∼NHPP(Φλ (t))

-Φ ∼ML (θ)

Throughout this work, the modified Lindley Poisson process with the set of parameters (λ (t) , θ)

will be denoted as the (PMLP) and we define

Λ (t) =

∫ t

0
λ (X) dX

We will now derive some basic properties of PMLP (λ (t) , θ) .First of all, when dealing with a counting
process model, one might be interested in the number(s) of events in one or more-time intervals.

Proposition 2.2. Let {N (t) , t ≥ 0} Poisson Modified Lindley Process (λ(t), θ) then for t ≥ 0 and 0 = t0 ≤

t1 ≤ t2 ≤ ... ≤ tm check the following properties:

i)

p (N (t) = n) =
θ

1 + θ
Λ (t)n

[
(1 + θ)

1

(Λ (t) + θ)n+1
+ 2θ

n

(Λ (t) + 2θ)n+2
− 1

(Λ (t) + 2θ)n+2

]
(2)

ii)

P (N (t2)−N (t1) = n) =
θ

1 + θ
(Λ (t1)− Λ (t2))n

[
(1 + θ)

1

((Λ (t2)− Λ (t1)) + θ)n+1
(3)

+2θ
n

((Λ (t2)− Λ (t1)) + 2θ)n+2
− 1

((Λ (t2)− Λ (t1)) + 2θ)n+2

]
iii)

P ((N (ti)−N (ti−1)) = ni, i = 1, 2, ...m) =
θ

1 + θ

[
m∏
i=1

(Λ (ti)− λ (ti−1))n

n!

](
m∑
i=1

ni

)
!

×
[
(1 + θ)

1

(
∑m

i=1(Λ (ti)− Λ (ti−1)) + θ)
∑m

i=1 ni+1
(4)
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+2θ

∑m
i=1 ni

(
∑m

i=1(Λ (ti)− Λ (ti−1)) + 2θ)
∑m

i=1 ni+2
− 1

(
∑m

i=1(Λ (ti)− Λ (ti−1)) + 2θ)
∑m

i=1 ni+2

]
Proof. According to the definition of PMLP (λ (t) , θ)

P (N (t) = n) =

∫ ∞
0

(ΦΛ (t)n e {−ΦΛ (t)})
n!

θ

1 + θ
e {−2θΦ} [(1 + θ)e{θΦ}+ 2θΦ− 1]∂Φ

=
θ

1 + θ

Λ (t)n

n!

[
(1 + θ)

n!

(Λ (t) + θ)n+1
+ 2θ

(n+ 1)!

(Λ (t) + 2θ)n+2
− n!

(Λ (t) + 2θ)n+2

]
=

θ

1 + θ
Λ (t)n

[
(1 + θ)

1

(Λ (t) + θ)n+1
+ 2θ

n

(Λ (t) + 2θ)n+2
− 1

(Λ (t) + 2θ)n+2

]
According to the definition of PPLM(λ(t), θ) The probability of the number of events in an arbitrary

interval [t1, t2], P (N(t2)−N(t1) = n) can be easily obtained from the proof of property
i) by replacing Λ(t) with Λ(t2)− Λ(t1)Due to the independent increments property of the NHPP

P (N (ti)−N (ti−1)) = ni i = 1, 2, ...m | Φ = Φ)

=

m∏
i=1

(Φ (Λ (ti)− Λ (ti−1)))

ni!

ni

e {−Φ (Λ (ti)− Λ (ti−1))}

=
θ

1 + θ

[
m∏
i=1

(Λ (ti)− Λ (ti−1))
ni

ni!

]
∗
∫ ∞

0

(
Φ

∑m
i=1 ni + Φ

∑m
i=1 ni+1

)
× e

{
−Φ

(
m∑
i=1

(Λ (ti)− Λ (ti−−1))

)
∂Φ

}

=
θ

1 + θ

[
m∏
i=1

(Λ (ti)− Λ (ti−1))ni

ni!

](
m∑
i=1

ni

)
! ∗
[
(1 + θ)

1

(
∑m

i=1(Λ (ti)− Λ (ti−1)) + θ)
∑m

i=1 ni+1

+2θ

∑m
i=1 ni

(
∑m

i=1(Λ (ti)− Λ (ti−1)) + 2θ)
∑m

i=1 ni+2
− 1

(
∑m

i=1(Λ (ti)− Λ (ti−1)) + 2θ)
∑m

i=1 ni+2

]
For ii) and iii), we use a same idea. �

In most practical applications, the statistical properties of N(t)are of great importance, which are
given by the following theorem.

In the following, the notation
Ψ (s) = E

[
esN(t)

]
Denotes the moment-generating function of N (t) .

Proposition 2.3. Let {N (t) , t ≥ 0} a Poisson modified Lindley process, then we have the following properties:

i) The moment-generating function of N(t) is given by:

Ψ (s) =
θ

1 + θ

[
(1 + θ)

1

(Λ (t)− Λ (t) es + θ)
+

esΛ (t)− Λ (t)

(Λ (t)− Λ (t) es + 2θ)2

]
, s ≤ ln

(
θ + Λ (t)

Λ (t)

)
(5)

ii) The mean and variance of N(t) are given by:

E [N (t)] =
(5 + 4θ)

4θ(1 + θ)
Λ (t) (6)

var [N (t)] =

(
32θ + 15 + 16θ2

)
Λ (t)2 + (5 + 4θ) θΛ (t)

16θ2 (1 + θ)2
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According to proposition 2-(ii),

var [N (t)]− E [N (t)] = var [N (t)]− E [N (t)] =
Λ (t)

2
(16θ2 + 32θ + 15)− Λ (t) (16θ3 + 32θ2 + 15θ)

(4θ)2 (θ + 1)
2 ≥ 0 (7)

Proposition 2.4. Let {N (t) , t ≥ 0} Let it be the modified Lindley Poisson process (general distribution), then:

var [N (t)] ≥ E [N (t)] . (8)

3. Some Mathematical Properties of the PMLP

The PMLP has dependent increments, just like the PPNH. We now derive the stochastic intensity
of the PMLP to observe how past events influence future events. Let {N(t), t ≥ 0} be a marked point
process whose history (internal filtration) in [0, t) is denoted by Ht− = {N(u), 0 ≤ u < t} .

The stochastic intensity λt of an ordered point process {N(t), t ≥ 0} is defined as the following limit:

λt = lim
∂t→0

ρ (N (t, t+ ∂t) = 1 | Ht−)

∂t
= lim

∂t→0

E [N (t, t+ ∂t) | Ht−]

∂t

where N (t1, t2) t1 ≤ t2 represents the number of events in [t1, t2] .

Theorem 3.1. The stochastic intensity λt of the Poisson modified Lindley process (λ (t) , θ) given by::

λt =
(θ + Λ (t)) + (N (t−) + 2)

(θ + Λ (t))2 1
N(t−)+1 + (θ + Λ (t))

λ (t) (9)

According to Theorem 1, we can see that the PPLM has a Markov property, meaning that the current
state of the process depends only on the last state of the process Nt−, and not on the complete history
Ht−. Moreover, λt is increasing in Nt−, which implies that the predisposition to the occurrence of a
future event is increasing in the number of events that have occurred previously. This implies a kind of
property of positive dependent increments. In the following, we analyze the dependency structure
in the increments of PPLM. For this, we begin by introducing a concept of multivariable dependence.
The random variables U1, U2, , , , , Um are positively dependent in the upper orthant (PUOD) if the
inequality

p (Ui) ≥ ui, i = 1, 2, ...m) ≥
m∏
i=1

p (Ui ≥ ui) , pour tout uii = 1, 2, ..m (10)

holds. Intuitively, inequality (3) implies that U1, U2, ..., Um are more likely to simultaneously have
large values, compared to a vector of independent random variables with the same univariate marginal
distributions. We now define a similar concept for multivariate increments in a counting process model.

4. Coumpound of PMLP

The stochastic {w(t), t ≥ 0} process is called a modified compound Lindley Poisson process if

w (t) =

N(t)∑
i=1

Xi, t ≥ 0.
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where, {N(t), t ≥ 0}, is a modified Lindley Poisson process and {Xi, i ≥ 1}is a family of independent
and identically distributed random variables independent of {N(t), t ≥ 0},.

LetMx (s) = E [esxi ], the MGF of Xi , The following result gives the moment-generating function,
the mean, and the variance of w(t).

Theorem 4.1. The moment-generating function of w(t) denoted byMw(t) (s) is given by:

Mw(t) (s) =
θ

1 + θ

[
(1 + θ)

(θ + Λ (t)−MX(s)Λ (t))
+

MX(s)Λ (t)− Λ (t)

(2θ + Λ (t)−MX(s)Λ (t))2

]
(11)

The mean and variance of w(t) are:

E [w (t)] =
(5 + 4θ)

4θ(1 + θ)
E [x] Λ (t) (12)

var [w (t)] =
(16θ2 + 32θ + 15)

(4θ)2 (θ + 1)2 (E [x] Λ (t))2 +
(16θ3 + 32θ2 + 15θ)

(4θ)2 (θ + 1)2 E
[
x2
]

Λ (t)

Proof. By conditioning on N(t)

Mw(t) (s) =

∞∑
n=0

E
[
esw(t) |N(t)=n

]
p (N (t) = n)

=
∞∑
n=0

E
[
es(x1+x2+x3+...xn) | N (t) = n

]
p (N (t) = n) =

∞∑
n=0

E[es(x1+x2+...+xn)]p (N (t) = n)

=

∞∑
n=0

(Mx (s))n p (N (t) = n)

�

5. Application in Surplus Model

modeling surplus. Our objective is to replicate an insurance company’s surplus procedure. We call
this process (Ut)t>0, where Ut is the company’s surplus at time t. Ut = u+ Pt −W (t), where u is the
starting capital (U0 = u),Pt is the gain process (premiums received, interest from investments and
all other sources of income, etc.), andW (t) is the loss process as defined in (4) (compensation paid,
interest from credits, etc.).

Generally speaking, Pt may be dependent on (W (u) u < t). It is true that the premiums can be
adjusted to reflect the amount of risk more accurately based on the losses incurred. For instance, each
year, the number of incidents in the preceding year is used to reevaluate each driver’s price for auto
insurance.

Thus, the lossesW (t) are not necessarily written as aggregate sums, and if this is the case, the losses
Xi are not necessarily independent. However, in this course, we will study only two simplified models:

- Discrete case: we study the model through its increments. We note Yt = Ut − Ut−1 the increase of
the surplus for the period (t− 1, t]:



Asia Pac. J. Math. 2025 12:55 7 of 13

Yt = Pt − Pt−1 − (W (t)−W (t− 1)), t = 1, 2, ....

We have Ut = Ut−1 + Yt, t = 1, 2, ....

- Continuous case: we study the compound Poisson Modified Lindley model Ut = u+ ct−W (t),

where µ the initial capital,W (t) =
N(t)∑
i=1

Xi, t ≥ 0,a compound poisson modified Lindley process where
Nt is a Poisson modified Lindley process of intensity λ and c the premium per unit time of the form

c = (1 + θ)E[W (t)] = (5 + 4θ)λ
E[Xi]

4θ(1 + θ)

We can show that if
c ≥ (5 + 4θ)λ

E[Xi]

4θ(1 + θ)

then the business is not destroyed. This value indicates that, in comparison to the compound Poisson
process, the modified Lindley process yields more satisfactory results because it has more parameters
that can mitigate the compound Poisson process’ drawbacks

6. Example and Simulation

We take the continuous-time model is one where the losses are modeled by a compound Poisson
modified Lindley process: for t > 0

Ut = u+ ct−W (t), whereW (t) =
∑N(t)

i=1 Xi, t ≥ 0 ,Or
- u represents the initial capital,
- c is the premium per unit of time,
-W (t) represents the aggregate losses up to time t, with
the Xi represent the individual losses, they are assumed to be i.i.d. of expectation E[Xi] and indepen-
dent of N(t).
We have For compound Poisson modified Lindley process:

E [Ut] = u+

(
c− (5 + 4θ)λ

E[Xi]

4θ(1 + θ)

)
t,

V ar(Ut) = t

(
(16θ2 + 32θ + 15)

(4θ)2 (θ + 1)2 λ2E[Xi]2 +
(16θ3 + 32θ2 + 15θ)

(4θ)2 (θ + 1)2 λE
[
Xi2

])
Now, if Xi  Gamma distribution where E[Xi] = 0.5, V [Xi] = 1\2 and E[X2

i ] = 3\4.
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Compound Poisson New XLindley Process (PNXLP) Compound Poisson XLindley Process (PXLP)
u c λ θ T E [Ut] V [Ut]

10 1 0.1 0.2 1 10. 625 0.703 13

50 5 0.5 1 1 54. 625 0.703 13

75 10 1 2 1 84. 625 0.703 13

75 30 1 2 1 104. 63 0.703 13

75 5 10 2 1 76. 25 19. 688

100 20 2 5 1 119. 7 0.54

100 20 0.2 0.5 2 139. 4 1. 08

150 50 1 3 2 249. 5 0.875

150 10 1 3 2 169. 5 0.875

150 1 5 1 2 144. 5 39. 375

u c λ θ T E [Ut] V [Ut]

10 1 0.1 0.2 1 10. 576 0.814 86

50 5 0.5 1 1 54. 688 0.566 41

75 10 1 2 1 84. 722 0.493 83

75 30 1 2 1 104. 72 0.493 83

75 5 10 2 1 77. 222 11. 883

100 20 2 5 1 119. 79 0.350 59

100 20 0.2 0.5 2 139. 42 1. 033 6

150 50 1 3 2 249. 65 0.593 97

150 10 1 3 2 169. 65 0.593 97

150 1 5 1 2 145. 75 28. 906

Compound Poisson Lindley Process(PLP) Compound Poisson Process (PP)
u c λ θ T E [Ut] V [Ut]

10 1 0.1 0.2 1 10. 542 0.192 01

50 5 0.5 1 1 54. 625 0.390 63

75 10 1 2 1 84. 667 0.597 22

75 30 1 2 1 104. 67 0.597 22

75 5 10 2 1 76. 667 59. 722

100 20 2 5 1 119. 77 0.752 22

100 20 0.2 0.5 2 139. 33 0.351 11

150 50 1 3 2 249. 58 0.704 86

150 10 1 3 2 169. 58 0.704 86

150 1 5 1 2 144. 5 78. 125

u c λ T E [Ut] V [Ut]

10 1 0.1 1 10. 95 0.075

50 5 0.5 1 54. 75 0.375

75 10 1 1 84. 5 0.75

75 30 1 1 104. 5 0.75

75 5 10 1 75.0 7. 5

100 20 2 1 119.0 1. 5

100 20 0.2 2 139. 8 0.3

150 50 1 2 249.0 1. 5

150 10 1 2 169.0 1. 5

150 1 5 2 147.0 7. 5

Compound Poisson Modified Lindley Process
u c λ θ T E [Ut] V [Ut]

10 1 0.1 0.2 1 10. 698 0.418 51

50 5 0.5 1 1 54. 719 0.430 66

75 10 1 2 1 84. 729 0.434 46

75 30 1 2 1 104. 73 0.434 46

75 5 10 2 1 77. 292 9. 930 6

100 20 2 5 1 119. 79 0.339 41

100 20 0.2 0.5 2 139. 53 0.661 11

150 50 1 3 2 249. 65 0.553 39

150 10 1 3 2 169. 65 0.553 39

150 1 5 1 2 146. 38 19. 688

Table 1. Experance and Variance of Ut using PMLP, PNXLP, PXLP, PLP, and PP
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The compound Poisson modified Lindley, Poisson new XLindley, compound Poisson Lindley, and
compound Poisson XLindley processes all produce results that are comparable to the compound Poisson
process, but Table 1 shows that the compound Poisson XLindley process outperforms the compound
Poisson process in terms of parameters. Furthermore, in comparison to the compound Poisson New
XLindley and compound Poisson XLindley processes, the compound Poisson Modified Lindley process
yields satisfactory results.

Conclusion

In this work, we proposed a Poisson modified Lindley process. This new process’s properties are
displayed. Furthermore, a simulation study that compares the proposed process with Poisson, Poisson
Lindley and Poisson XLindley processes, and Poisson new XLindley process is provided, along with a
recommendation to implement this process using the ruin model. The suggested method yields more
efficient outcomes than a Poisson, Poisson Lindley, and Poisson XLindley method.

Appendices

Proof of Proposition 2
i) using the form of the generating function of the NHPP

Ψ (s) =

∫ ∞
0

eΦ(esΛ(t)−Λ(t)) θ

1 + θ
e−2θΦ[(1 + θ)eθΦ + 2θΦ− 1]dΦ

=
θ

(1 + θ)

(1 + θ)

∞∫
0

e−Φ(Λ(t)+θ−esΛ(t))dΦ + 2θ

∞∫
0

Φe−Φ(Λ(t)+2θ−esΛ(t))dΦ−
∞∫

0

e−Φ(Λ(t)+2θ−esΛ(t))


=

θ

(1 + θ)

[
(1 + θ)

Γ (1)

(Λ (t)− esΛ (t) + θ)
+ 2θ

Γ (2)

(Λ (t)− esΛ (t) + 2θ)2
− Γ (1)

(Λ (t)− esΛ (t) + 2θ)

]
= .

θ

1 + θ

[
(1 + θ)

1

(Λ (t)− Λ (t) es + θ)
+

esΛ (t)− Λ (t)

(Λ (t)− Λ (t) es + 2θ)
2

]

ii) we can show that:
∂Ψ (s)

∂s
=

θ

1 + θ

[
(θ + 1) Λ (t) es

(θ + Λ (t)− Λ (t) es)2 +
Λ (t) es (2θ − Λ (t) + Λ (t) es)

(2θ + Λ (t)− Λ (t) es)3

]
and from there,

E [N (t)] =
∂Ψ (s)

∂s
|s=0=

θ

1 + θ

[
Λ (t) (1 + θ)

(θ)2 − Λ (t) (2θ)2

(2θ)4

]

=
Λ (t) (5 + 4θ)

4θ(1 + θ)

Moreover, it can also be shown that:
∂Ψ (s)

∂s2
=

θ

1 + θ
Λ (t) es

[
(θ + 1)

θ + Λ (t) + Λ (t) es

(θ + Λ (t)− Λ (t) es)3
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+
1

(2θ + Λ (t)− Λ (t) es)4

(
Λ (t)3 e3s − Λ (t)3 es + 8θΛ (t)2 e2s + 4θ2Λ (t) es

)]

E
[
N (t)2

]
=
∂2Ψ (s)

∂s2
|s=0=

[
(8θ + 10) Λ (t)2 + (5 + 4θ) θΛ (t)

4θ2 (1 + θ)

]
Thus

var [N (t)] = E
[
N (t)2

]
− (E [N (t)])2 =

[
(8θ + 10) Λ (t)2 + (5 + 4θ) θΛ (t)

4θ2 (1 + θ)
− Λ (t)2 (5 + 4θ)2

16θ2(1 + θ)2

]

=

(
32θ + 15 + 16θ2

)
Λ (t)2 + (5 + 4θ) θΛ (t)

16θ2 (1 + θ)2 .

Proof of Proposition 3

we have

var [N (t)] = E [var [N (t) | Φ]] + var [E [N (t) | Φ]]

Like

{N (t) , t ≥ 0} | (Φ = φ) ∼ NHPP (Φλ (t))

var [N (t) | Φ] = E [N (t) | Φ]

And

var [N (t)] = E [E [N (t) | Φ]] + var [E [N (t) | Φ]] = E [N (t)] + var [E [N (t) | Φ]] ≥ E [N (t)] .

Proof of Theorem 1

we have

λ (t) = lim
∂t→0

ρ (N (t, t+ ∂t) = 1 | Ht)

∂t
= E (Φ | Ht−)

[
lim
∂t→0

P (N (t, t+ ∂t) = 1 | Φ : Ht)

∂t

]
where E (Φ | Ht−) [.] represents the expectation with respect to the conditional distribution of

(Φ | Ht) and

lim
∂t→0

p (N (t, t+ ∂t) = 1 | Φ : Ht−)

∂t
= Φλ (t)

thus

λt = E (Φ | Ht−) [Φλ (t)]

Note thatHt−can be defined in terms of the number of events in (0, t) denoted N(- and the sequential
arrival times of the events, i.e., 0 ≤ T1 ≤ T2 ≤ − ≤ TN(t−) < t and the conditional probability mass
function of (Ht− | Φ) = (T1, T2, ...TN(t−) | Φ) is given by

n∏
j=1

(φλ (tj))

 exp

{
−φ
∫ t

0
λ (x) ∂x

}
0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ t, n = 0, 1, 2, ...
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where:∏n
j=1 (.) = 1 for n = 0, tj represents the realisation of Tj and n represents that ofN (t) . Thus,

the conditional joint distribution of (Φ | Ht = ht−) where ht = (t1, t2, ...tn, n) is the achievement of
Ht− is given by:(
φn

[
n∏
i=1

λ (ti)

]
exp

{
−φ
∫ t

0
λ (x) dx

}
f (φ)

)
×

(∫ ∞
0

φn

[
n∏
i=1

λ (ti)

]
exp

{
−φ
∫ t

0
λ (x) dx

}
f (φ) dφ

)−1

=

(
φn exp

{
−φ
∫ t

0
λ (x) dx

}
f (φ)

)
×
(∫ ∞

0
φn exp

{
−φ
∫ t

0
λ (x) ∂x

}
f (φ) dφ

)−1

, φ ≥ 0

so,

λt = E (Φ | Ht−) [Φλ (t)] =

∫∞
0 φn+1 exp

{
−φ
∫ t

0 λ (x) ∂x
}
f (φ) ∂φ∫∞

0 φn exp
{
−φ
∫ t

0 λ (x) ∂x
}
f (φ) ∂φ

λ (t)

∫ ∞
0

φn exp

{
−φ
∫ t

0
λ (x) ∂x

}
f (φ) ∂φ =

∫ ∞
0

φne−φΛ(t)

{
θ

1 + θ
e−2θφ[(1 + θ)eθφ + 2θφ− 1]dφ

}

=
θ

(1 + θ)

[
(1 + θ)

∫ ∞
0

φne−φ(Λ(t)+θ) + 2θ

∫ ∞
0

φn+1e−φ(Λ(t)+2θ) −
∫ ∞

0
φne−φ(Λ(t)+2θ)

]
=

θ

θ + 1

[
(1 + θ)

Γ (n+ 1)

(θ + Λ (t))n+1 + 2θ
Γ (n+ 2)

(2θ + Λ (t))n+2 −
Γ (n+ 1)

(Λ (t) + 2θ)n+1

]

A same step for calculate ∫∞0 φn+1 exp
{
−φ
∫ t

0 λ (x) ∂x
}
f (φ) ∂φ, which

∫ ∞
0

φn+1 exp

{
−φ
∫ t

0

λ (x) ∂x

}
f (φ) ∂φ

θ

θ + 1

[
(1 + θ)

Γ (n+ 2)

(θ + Λ (t))
n+2 + 2θ

Γ (n+ 3)

(2θ + Λ (t))
n+3 −

Γ (n+ 2)

(Λ (t) + 2θ)n+2

]

Consequently,

λt =
(θ + Λ (t)) + (N (t−) + 2)

(θ + Λ (t))2 1
N(t−)+1 + (θ + Λ (t))

λ (t) .

Different Compound Process

For compound Poisson XLindley process (see Sakri et al. 2023 [29])

E [Ut] = u+

(
c− (θ(2 + θ) + 2)λ

E[Xi]

θ(1 + θ)2

)
t,

V ar(Ut) = tV ar [W (t)] = t

(
(θ4 + 4θ3 + 8θ2 + 8θ + 4)

θ2 (θ + 1)4 λ2E[Xi]2 +
(θ (2 + θ) + 2))

θ (θ + 1)2 λE
[
X2
])

.

For compound Poisson new XLindley process(see Benatmane et al. 2024 [4])

E [Ut] = u+

(
c− 3λ

E [Xi]

2θ

)
t,

V ar(Ut) = tV ar [W (t)] = t

(
9(E [Xi]λ)2 + 6θE

[
X2
i

]
λ

4θ2

)
.
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For compound Poisson Lindley process (see Cha (2019) [12])

E [Ut] = u+

(
c− (θ + 2)λ

E [Xi]

θ (θ + 1)

)
t,

V ar(Ut) = tV ar [W (t)] = t

(
θ + 2

θ (θ + 1)
(E
[
X2
i

]
λ2 +

(
θ2 + 4θ + 2

)
θ2 (θ + 1)2 (E [Xi]λ)2

)
.

For compound Poisson process (see Last and Penrose (2017) [30])

E [Ut] = u+ (c− λ0.5) t, V ar(Ut) = tV ar [W (t)] = t
(
(E
[
X2
i

]
λ
)
.
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