

CLASSES OF OPERATORS ASSOCIATED WITH (f, g)-ALUTHGE TRANSFORMS

FARIDA MEKKAOUI, SAFA MENKAD*

Laboratory of Mathematical Techniques (LTM), Department of Mathematics, Faculty of Mathematics and Computer Science, University of Batna 2, 05078, Batna, Algeria f.mekkaoui@univ-batna2.dz *Corresponding author: s.menkad@univ-batna2.dz

Received Apr. 6, 2025

ABSTRACT. Let $T \in \mathcal{B}(\mathcal{H})$ be a bounded linear operator on a Hilbert space \mathcal{H} with the polar decomposition T = U|T|. The (f, g)-Aluthge transform of the operator T, denoted by $\Delta_{f,g}(T)$, is defined as $\Delta_{f,g}(T) = f(|T|)Ug(|T|)$, where f and g both are non-negative continuous functions on $[0, \infty[$ such that f(x)g(x) = x, for all $x \ge 0$. In this paper, firstly, we investigate the relationship between this transform and several classes of operators as quasi-normal, normal, positive, nilpotent and closed range operators. Secondly, we show that under some conditions the (f, g)-Aluthge transform possesses the polar decomposition. Lastly, we provide a characterization of binormal operators from the viewpoint of the polar decomposition and the (f, g)-Aluthge transform.

2020 Mathematics Subject Classification. 47A05; 47B49.

Key words and phrases. (f, g)-Aluthge transform; quasinormal operato; Polar decomposition; binormal operators.

1. INTRODUCTION

Let $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} . In the sequel of this paper, $\mathcal{R}(T)$, $\mathcal{N}(T)$ and T^* stand, respectively, for the range, the null subspace and the adjoint of the operator $T \in \mathcal{B}(\mathcal{H})$. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be self-adjoint if $T = T^*$, normal if $TT^* = T^*T$, positif if $\langle Tx, x \rangle \geq 0$, for all $x \in \mathcal{H}$, quasi-normal if $TT^*T = T^*TT$ and binormal if T^*T and TT^* commute. Remind that an arbitrary operator $T \in \mathcal{B}(\mathcal{H})$ has a unique polar decomposition T = U|T|, where $|T| = (T^*T)^{\frac{1}{2}}$ is the modulus of T and U is the associate partial isometry, i.e. $UU^*U = U$ with kernel condition $\mathcal{N}(U) = \mathcal{N}(T) = \mathcal{N}(|T|)$. Then this polar decomposition verifies the following properties :

 $P(1) UU^* = P_{\overline{R(T)}} = P_{\overline{R(|T^*|)}}$ and $U^*U = P_{\overline{R(T^*)}} = P_{\overline{R(|T|)}}$, where P_M denotes the orthogonal projection onto the closed subspace M of \mathcal{H} .

DOI: 10.28924/APJM/12-57

- $P(2) |U|T| = |T^*|U.$
- $P(3) \ |T| = U^* |T^*| U.$
- $P(4) \ |T^*| = U|T|U^*.$
- P(5) T is quasi-normal if and only if U|T| = |T|U.
- P(6) T is quasi-normal if and only if T|T| = |T|T.

Related to the polar decomposition, the (f, g)-Aluthge transform of an operator T was introduced recently in [9] and defined by

$$\Delta_{f,g}(T) = f(|T|)Ug(|T|),$$

where f and g both are non-negative continuous functions on $[0, \infty[$ such that f(x)g(x) = x, for all $x \ge 0$. For the special case $f(x) = x^{\lambda}$ and $g(x) = x^{1-\lambda}$, where $\lambda \in [0,1]$, we obtain the usual λ -Aluthge transform $\Delta_{\lambda}(T)$, which was first introduced by Aluthge in the case when $\lambda = \frac{1}{2}$ [1]. After that, many authors began to discuss the properties of (f,g)-Aluthge transform (see [8,9,11]). One of the most important properties of this transform is that T and $\Delta_{f,g}(T)$ have the same spectrum (see [8, Proposition 2.6]). In this paper, we investigate the relationship between this new transform and several classes of operators as quasi-normal, normal, positive and nilpotent operators. As a consequence, We extend various results on λ -Aluthge transform (see [2,10–12]) to (f,g)-Aluthge transforms. Before proceeding, We denote by C_+ the set of all continuous function $f : [0, +\infty[\longrightarrow [0, +\infty[$ whith f(0) = 0. Obviously, if $f, g \in C_+$ such that f(x)g(x) = x, for all $x \ge 0$, then f(T)g(T) = g(T)f(T) = T, for any positive operator T in $\mathcal{B}(\mathcal{H})$.

The paper is organized as follows. In section 2, firstly, we show that the transform $\Delta_{f,g}(T)$ does not depend of the choice of the partial isometry factor in the polar decomposition of T. Secondly, we study the fixed points of (f,g)-Aluthge transform. Third, we focus on conditions on $\Delta_{f,g}(T)$ under which T is normal or selft-adjoint or positive or nilpotent. In particular, we show that if $f, g \in C_+$ such that f(x)g(x) = x ($x \ge 0$), then T is nilpotent of order d + 1 if and only if $(\Delta_{f,g}(T))^d = 0$, for every $d \in \mathbb{N}^*$. Lastly, we study the closedness of the range of $\Delta_{f,g}(T)$.

Section 3 deals with the polar decomposition of $\Delta_{f,g}(T)$). At first, we show that under some conditions the (f,g)-Aluthge transform possesses the polar decomposition. Afterwards, we give a characterization of binormal operators via (f,g)-Aluthge. Precisely, we prove that T is binormal if and only if $\Delta_{f,g}(T) =$ $U|\Delta_{f,g}(T)|$, where T = U|T| is the polar decomposition of T and $f, g \in C_+$ are both increasing functions satisfying f(x)g(x) = x ($x \ge 0$).

2. Some relationships between an operator and its (f, g)-Aluthge transform

We begin this section with the following two lemmas which will be necessary to prove our main results.

Lemma 2.1. Let T = U|T| be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$ and let $f \in C_+$. Then the following properties hold:

(i)
$$Uf(|T|) = f(|T^*|)U$$
.

- (*ii*) $U^*Uf(|T|) = f(|T|)U^*U = f(|T|).$
- $(iii) \ UU^*f(|T^*|)=f(|T^*|)UU^*=f(|T^*|).$
- $(iv) \ U^*f(|T^*|)U = f(|T|) = f(U^*|T^*|U).$
- $(v) \ Uf(|T|)U^* = f(|T^*|) = f(U|T|U^*).$

Proof. (*i*) By P(2), $U|T|^n = |T^*|^n U$, for each $n \in \mathbb{N}^*$. Which implies $UP(|T|) = P(|T^*|)U$, for any polynomial P(t). Since f is non-negative continuous function on $\sigma(|T|) \subset [0, \infty[$ with f(0) = 0, so there exist a sequence of polynomial $(P_n)_{n \in \mathbb{N}^*}$ such that $P_n(0) = 0$ for every $n \in \mathbb{N}^*$, and $P_n(t) \longrightarrow f(t)$ uniformly on the interval [0, ||T|||]. Hence,

$$Uf(|T|) = U \lim_{n \to \infty} P_n(|T|) = \lim_{n \to \infty} UP_n(|T|) = \lim_{n \to \infty} P_n(|T^*|)U = f(|T^*|)U,$$

and then, the assertion (i) holds.

(*ii*) By P(1), we have $U^*U|T| = |T|$. Following the same procedure as (*i*), we can prove that $U^*Uf(|T|) = f(|T|)$. Hence, by taking the adjoint, we deduce that $f(|T|)U^*U = f(|T|)$. The proof of (*iii*) is similar to that of (*ii*).

(iv) Using (i), (ii) and P(3), we get

$$U^*f(|T^*|)U = U^*Uf(|T|) = f(|T|) = f(U^*|T^*|U).$$

Thus, the property (iv) is satisfied.

(v) is deduced directly from (i), (iii) and P(4).

Lemma 2.2. Let $T \in \mathcal{B}(\mathcal{H})$ be positive and $f, g \in \mathcal{C}_+$ such that f(x)g(x) = x, for all $x \ge 0$. Then

$$\mathcal{N}(T) = \mathcal{N}(f(T)) = \mathcal{N}(g(T)).$$

Proof. The inclusion $\mathcal{N}(f(T)) \subset \mathcal{N}(T)$ is obvious because T = g(T)f(T).

Now, we show the other inclusion. Since T is positive, $\mathcal{N}(T) = \mathcal{N}(T^n)$ for each $n \in \mathbb{N}^*$. On the other hand, since f is a continuous function on $\sigma(T) \subset [0, \infty[$ with f(0) = 0, there existe a sequence of polynomial $(P_n)_{n \in \mathbb{N}^*}$ without constant terms such that $P_n(t) \longrightarrow f(t)$ uniformly on the interval

[0, ||T||]. Hence, for all $x \in \mathcal{H}$ and $n \in \mathbb{N}^*$, we have

$$x \in \mathcal{N}(T) \implies Tx = 0$$
$$\implies P_n(T)x = 0$$
$$\implies \lim_{n \to \infty} P_n(T)x =$$
$$\implies f(T)x = 0$$
$$\implies x \in \mathcal{N}(f(T)).$$

0

Therefore, $\mathcal{N}(T) \subset \mathcal{N}(f(T))$.

By similar way, we can prove that $\mathcal{N}(T) = \mathcal{N}(g(T))$.

It was shown in [7], that the λ -Aluthge transform does not depend on the partial isometry. This result is also valid for the (f, g)-Aluthge transform.

Proposition 2.3. Let T = U|T| be the polar decomposition of T and let $f, g \in C_+$ such that f(x)g(x) = x, for all $x \ge 0$. If there exists another decomposition T = V|T|, then

$$\Delta_{f,g}(T) = f(|T|)Ug(|T|) = f(|T|)Vg(|T|).$$

Proof. Using the assumptions and Lemma 2.2, we have

$$\mathcal{H} = \mathcal{N}(|T|) \oplus \mathcal{N}(|T|)^{\perp} = \mathcal{N}(g(|T|)) \oplus \mathcal{N}(f(|T|))^{\perp}.$$

In case $x \in \mathcal{N}(g(|T|))$, we obtain

$$\Delta_{f,g}(T)x = f(|T|)Ug(|T|)x = 0 = f(|T|)Vg(|T|)x$$

So, f(|T|)Ug(|T|)x = f(|T|)Vg(|T|)x = 0, on $\mathcal{N}(g(|T|))$.

Now, in case $x \in \mathcal{R}(f(|T|))$, there exists $z \in \mathcal{H}$ such that x = f(|T|)z. Then we have

$$\begin{split} \Delta_{f,g}(T)x &= f(|T|)Ug(|T|)x &= f(|T|)Ug(|T|)f(|T|)z \\ &= f(|T|)U|T|z \\ &= f(|T|)Tz \\ &= f(|T|)V|T|z \\ &= f(|T|)Vg(|T|)f(|T|)z \\ &= f(|T|)Vg(|T|)x. \end{split}$$

Hence, f(|T|)Ug(|T|) = f(|T|)Vg(|T|) on $\overline{\mathcal{R}(f(|T|))} = \mathcal{N}(f(|T|))^{\perp}$. Therefore, f(|T|)Ug(|T|) = f(|T|)Vg(|T|) on \mathcal{H} .

Here, we provide a new characterization of quasi-normal operators as follows:

Proposition 2.4. Let $T = U|T| \in \mathcal{B}(\mathcal{H})$ be the polar decomposition of T and let f, g be two non-negative continuous functions on $[0, +\infty[$, such that f(x)g(x) = x for all $x \ge 0$. Then the following assertions are equivalent:

- (i) T is quasi-normal.
- (*ii*) f(|T|)U = Uf(|T|) and g(|T|)U = Ug(|T|).
- (*iii*) f(|T|)T = Tf(|T|) and g(|T|)T = Tg(|T|).

Proof. (*i*) \implies (*ii*). Suppose that *T* is quasi-normal. By *P*(5), we have |T|U = U|T|. Then

$$|T|^n U = U|T|^n$$
, for any $n \in \mathbb{N}$.

Which implies P(|T|)U = UP(|T|), for any polynomial P(t). Since f is a continuous function on $[0, \infty)$, there existe a sequence of polynomial $(P_n)_n$ such that $P_n(t) \longrightarrow f(t)$ uniformly on the interval [0, ||T|||]. Then,

$$Uf(|T|) = U\lim_{n \to \infty} P_n(T) = \lim_{n \to \infty} UP_n(T) = \lim_{n \to \infty} P_n(T)U = f(|T|)U.$$

Hence, Uf(|T|) = f(|T|)U.

By similar way we can prove that g(|T|)U = Ug(|T|).

 $(ii) \Longrightarrow (iii)$. From (ii), We have

$$f(|T|)T = f(|T|)U|T| = Uf(|T|)|T| = Uf(|T|)g(|T|)f(|T|) = U|T|f(|T|) = Tf(|T|).$$

and

$$g(|T|)T = g(|T|)U|T| = Ug(|T|)|T| = Ug(|T|)f(|T|)g(|T|) = U|T|g(|T|) = Tg(|T|).$$

So, (iii) is proved.

 $(iii) \Longrightarrow (i)$. Using the assumption (iii), we obtain

$$T|T| = Tf(|T|)g(|T|)$$
$$= f(|T|)Tg(|T|)$$
$$= f(|T|)g(|T|)T$$
$$= |T|T.$$

Hence, T|T| = |T|T and so *T* is quasi-normal, by *P*(6).

In [5, Proposition 1.10] it was proved that quasi-normal operators are exactly the fixed points of the λ -Aluthge transform. However, this is not the case for (f, g)-Aluthge transform as shown by the following example.

Example 2.5. Consider $T = \begin{pmatrix} 0 & 0 & 5 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \end{pmatrix} \in \mathbb{C}^3$. The canonical polar decomposition of T is T = U|T|, where

$$|T| = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix} \text{ and } U = T|T|^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \end{pmatrix}.$$

It follows that

$$|T|U = \begin{pmatrix} 0 & 0 & 1\\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{5\sqrt{3}}{2} & -\frac{5}{2} & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 & 5\\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \end{pmatrix} = U|T|.$$

Therefore, T is not quasi-normal, by P(5). Let $f(x) = e^{(x-3)^2}$ and $g(x) = xe^{-(x-3)^2}$, for $x \ge 0$. Then, f and g are non-negative continuous functions on $[0, \infty]$ such that f(x)g(x) = x, for all $x \ge 0$. So, we obtain

$$f(|T|)Ug(|T|) = \begin{pmatrix} 0 & 0 & f(1)g(5) \\ \frac{f(1)g(1)}{2} & \frac{f(1)g(1)\sqrt{3}}{2} & 0 \\ \frac{f(5)g(1)\sqrt{3}}{2} & -\frac{f(5)g(1)}{2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 5 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \end{pmatrix} = T.$$

Hence, $\Delta_{f,g}(T) = T$ *, while* T *is not quasi-normal.*

In the following Theorem, we will show that the fixed points of the (f, g)-Aluthge transform are the quasinormal operators for certain functions f.

Theorem 2.6. Let $T \in \mathcal{B}(\mathcal{H})$ and let $f, g \in \mathcal{C}_+$ such that f(x)g(x) = x, for all $x \ge 0$. If f is increasing, then

T is quasi-normal
$$\iff \Delta_{f,q}(T) = T.$$

Proof. \implies . Note that this implication is true without the increasing condition of f. Since T is quasinormal, by Proposition 2.4, f(|T|)U = Uf(|T|). Then we have

$$\Delta_{f,g}(T) = f(|T|)Ug(|T|)$$
$$= Uf(|T|)g(|T|)$$
$$= U|T|$$
$$= T.$$

Therefore, $\Delta_{f,q}(T) = T$.

Conversely, Suppose that $\Delta_{f,g}(T) = T$. Which implies that

$$[f(|T|)U - Uf(|T|)]g(|T|) = 0.$$

So that f(|T|)U = Uf(|T|) on $\overline{\mathcal{R}(g(T))}$. On the other hand, by Lemma 2.2, we get

$$\mathcal{N}(U) = \mathcal{N}(f(|T|)) = \mathcal{N}(g(|T|)).$$

Hence, f(|T|)U = Uf(|T|) = 0 on $\mathcal{N}(g(T))$. Consequently, f(|T|)U = Uf(|T|) on \mathcal{H} . Since f is increasing it has inverse f^{-1} . Thus, by the continuous functional calculus, we obtain $f^{-1}f(|T|)U = Uf^{-1}f(|T|)$. Which means that |T|U = U|T|. Therefore, T is quasi-normal.

As an application of the previous theorem we state an interesting result as follows:

Corollary 2.7. Let $T \in \mathcal{B}(\mathcal{H})$ be an invertible operator and let $f, g \in \mathcal{C}_+$ such that f(x)g(x) = x, for all $x \ge 0$. If f is increasing, then

$$\Delta_{f,q}(T) = T \iff T$$
 is normal.

Proof. Since T is an invertible, then

T is quasi-normal \iff *T* is normal.

Therefore, the result is obvious by Theorem 2.6.

The next Proposition extends Lemma 2.3, obtained in [2] to the case of the (f, g)-Aluthge transform as follows.

Proposition 2.8. Let $T \in \mathcal{B}(\mathcal{H})$, $P \in \mathcal{B}(\mathcal{H})$ be an orthogonal projection and let $f, g \in C_+$ such that f(x)g(x) = x, for all $x \ge 0$. If f is increasing, then the following assertions are equivalent:

- (i) $\Delta_{f,q}(TP) = T$.
- (*ii*) TP = PT = T and T is quasi-normal.

Proof. (*i*) \implies (*ii*). Let TP = V|TP| be the polar decomposition of TP. From the hypothesis $\Delta_{f,g}(TP) = T$, we get

$$f(|TP|)Vg(|TP|) = T$$
 and $g(|TP|)V^*f(|TP|) = T^*$

Hence, by Lemma 2.2, we obtain

$$\mathcal{R}(T) \subseteq \mathcal{R}(f(|TP|)) \subseteq \overline{\mathcal{R}(f(|TP|))} = \mathcal{N}(f(|TP|))^{\perp} = \mathcal{N}(|TP|)^{\perp} = \mathcal{N}(|TP|^2)^{\perp} = \overline{\mathcal{R}(|TP|^2)},$$

and

$$\mathcal{R}(T^*) \subseteq \mathcal{R}(g(|TP|)) \subseteq \overline{\mathcal{R}(g(|TP|))} = \mathcal{N}(g(|TP|))^{\perp} = \mathcal{N}(|TP|)^{\perp} = \mathcal{N}(|TP|^2)^{\perp} = \overline{\mathcal{R}(|TP|^2)}.$$

Thus,

$$\mathcal{R}(T) \subseteq \mathcal{R}(|TP|^2) \text{ and } \mathcal{R}(T^*) \subseteq \mathcal{R}(|TP|^2).$$
(2.1)

On the other hand, since $|TP|^2 = PT^*TP = P|T|^2P$, we have

$$\overline{\mathcal{R}(|TP|^2)} \subseteq \overline{\mathcal{R}(P)} = \mathcal{R}(P)$$

Using (2.1), it follows that

$$\mathcal{R}(T) \subset \mathcal{R}(P)$$
 and $\mathcal{R}(T^*) \subset \mathcal{R}(P)$.

Which implies that T = PT and $T^* = PT^* = (TP)^*$. By taking the adjoint, we deduce that PT = TP = T. Thus,

$$T = \Delta_{f,q}(TP) = \Delta_{f,q}(T).$$

Moreover, since f is increasing, T is quasi-normal, by Theorem 2.6.

 $(ii) \Longrightarrow (i)$ is deduced directly from Theorem 2.6.

Obviously, every self-adjoint operator is quasi-normal but the converse is not true in general. Next, we give certain conditions under which a quasi-normal operator becomes self-adjoint.

Proposition 2.9. *.* Let $T \in \mathcal{B}(\mathcal{H})$ be a quasi-normal operator and let $f, g \in \mathcal{C}_+$ such that f(x)g(x) = x, for all $x \ge 0$. If $\Delta_{f,g}(T^*) = T$, then T is self-adjoint.

Proof. Let T = U|T| be the polar decomposition of T. Since T is quasi-normal, by using Proposition 2.4, we have f(|T|)U = Uf(|T|) and g(|T|)U = Ug(|T|). By taking the adjoint, we get

$$U^*f(|T|) = f(|T|)U^*$$
 and $U^*g(|T|) = g(|T|)U^*$.

Since $T^* = U^* |T^*|$ is the polar decomposition of T^* , it follows that

$$\begin{split} \Delta_{f,g}(T^*) &= f(|T^*|)U^*g(|T^*|) \\ &= Uf(|T|)U^*U^*Ug(|T|)U^* \quad \text{by Lemma 2.1 } (v) \\ &= Uf(|T|)U^*g(|T|)U^* \quad \text{by Lemma 2.1 } (ii) \\ &= Uf(|T|)U^*U^*g(|T|) \\ &= U(U^*)^2f(|T|)g(|T|) \\ &= U(U^*)^2|T|. \end{split}$$

Thus, from the assumption $\Delta_{f,g}(T^*) = T$, we obtain $U(U^*)^2|T| = U|T|$. Multiplying this equality by U^* on the left side, we get

$$U^*U(U^*)^2|T| = (U^*)^2|T| = |T|.$$

So $(U^*)^2|T|$ is self-djoint. Moreover, since *T* is quasi-normal, then we have

$$|T| = (U^*)^2 |T| = |T|U^2 = U|T|U.$$

Thus,

$$T = U|T| = |T|U = U^*U|T|U = U^*|T| = |T|U^* = T^*.$$

Therefore, T is self-adjoint.

Let T = U|T| be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$ and $\Delta(T) = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ be its Aluthge transform. In [10], the authors showed that if U is unitary and $T = \alpha \Delta(T)$ for some complex number α , then T is normal. In the following three results, we discuss the similar situation of (f, g)-Aluthge transforms.

Proposition 2.10. Let f and g be two increasing functions in C_+ such that f(x)g(x) = x, for all $x \ge 0$ and let T = U|T| be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$. If $T = \alpha \Delta_{f,g}(T)$ for some complex number α , then

$$Uf(|T|) = \alpha f(|T|)U$$
 and $\alpha \ge 1$.

Proof. Let T = U|T| be the polar decomposition of *T*. Then, we have

$$T = \alpha \Delta_{f,g}(T) \iff U|T| = \alpha f(|T|)Ug(|T|)$$
$$\iff Uf(|T|)g(|T|) = \alpha f(|T|)Ug(|T|)$$
$$\iff [Uf(|T|) - \alpha f(|T|)U]g(|T|) = 0,$$

and thus $Uf(|T|) = \alpha f(|T|)U$ on $\overline{\mathcal{R}(g(|T|))} = \mathcal{N}(g(|T|))^{\perp}$. Since by Lemma 2.2, $\mathcal{N}(f(|T|)) = \mathcal{N}(U) = \mathcal{N}(g(|T|))$, then , it is clear that $Uf(|T|) = \alpha f(|T|)U = 0$ on $\mathcal{N}(g(|T|))$. Hence, $Uf(|T|) = \alpha f(|T|)U$ on \mathcal{H} .

Multiplying this equality by U^* on the left side and using Lemma 2.1 (*ii*), we get

$$f(|T|) = \alpha U^* f(|T|) U.$$

Hence $\alpha > 0$, because f(|T|) and $U^*f(|T|)U$ are positive. Moreover, since f and g are increasing, then we have

$$\begin{aligned} \|T\| &= |\alpha| \|\Delta_{f,g}(T)\| \\ &\leq \alpha \|f(|T|)\| \|U\| \|g(|T|)\| \\ &= \alpha \|f(|T|)\| \|g(|T|)\| \quad \text{since } \|U\| = 1 \\ &= \alpha f(\||T|\|)g(\||T|\|) \\ &= \alpha f(\|T\|)g(\|T\|) \quad \text{since } \||T\|\| = \|T\| \\ &= \alpha \|T\|. \end{aligned}$$

Thus, $\alpha \geq 1$.

We say that $T \in \mathcal{B}(\mathcal{H})$ is normaloid if and only if r(T) = ||T||, where r(T) denotes the spectral radius of *T*. In [11, Corollary 9] the authors showed that the inequality $||\Delta_{f,g}(T)|| \ge ||T||$ holds, for any normaloid operator *T* in $\mathcal{B}(\mathcal{H})$. Next, We use this result to prove the following corollary.

Corollary 2.11. Let f, g be two increasing functions in C_+ such that f(x)g(x) = x, for all $x \ge 0$. If $T \in \mathcal{B}(\mathcal{H})$ is a non-zero normaloid operator such that $T = \alpha \Delta_{f,q}(T)$, for some complex number α , then T is quasi-normal.

Proof. Suppose that $T = \alpha \Delta_{f,g}(T)$. From Proposition 2.10, we obtain $\alpha \ge 1$. On the other hand since T is normaloid and by using [11, Corollary 9], we have

$$||T|| = ||\alpha \Delta_{f,g}(T)|| \ge \alpha ||T||$$

It follows that $\alpha \leq 1$ and so $\alpha = 1$. which means that $T = \Delta_{f,g}(T)$. Therefore, T is quasi-normal by Theorem 2.6.

Proposition 2.12. Let f, g be two increasing functions in C_+ such that f(x)g(x) = x, for all $x \ge 0$, and let T = U|T| be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$ with U unitary. If $T = \alpha \Delta_{f,g}(T)$ for some complex number α , then T is normal.

Proof. Using Proposition 2.10, we have $Uf(|T|) = \alpha f(|T|)U$. Since f(|T|) is positive, by [10, Proposition 2.10], we deduce that $\alpha = 1$. This implies that $T = \Delta_{f,g}(T)$. Therefore, from Theorem 2.6, T is quasinormal. So T is normal because U is unitaire.

Now, we present some relationships between a positive operator and its (f, g)-Aluthge transform.

Theorem 2.13. Let $T \in \mathcal{B}(\mathcal{H})$ be an invertible operator. Then the following assertions are equivalent:

- (i) T is positive.
- (*ii*) $\Delta_{f,q}(T)$ is positive, for every $f, g \in C_+$ which satisfying f(x)g(x) = x, for all $x \ge 0$.
- (*iii*) $\Delta_{f,g}(T)$ is positive, for some $f, g \in C_+$ which satisfying f(x)g(x) = x, for all $x \ge 0$.

Proof. $(i) \Rightarrow (ii)$. Let T = U|T| be the polar decomposition T. Since T is positive and invertible, it follows that

$$U = T|T|^{-1}$$
$$= TT^{-1}$$
$$= I.$$

Thus, $\Delta_{f,g}(T) = f(|T|)g(|T|) = |T|$, and so $\Delta_{f,g}(T)$ is positive .

 $(ii) \Rightarrow (iii)$. Trivial.

 $(iii) \Rightarrow (i)$. Assume that $\Delta_{f,g}(T)$ is positive. Since *T* is invertible, then |T| is invertible and by the continuous functional calculus, f(|T|) and g(|T|) are also invertible. We put $A = (g(|T|))^{-1}f(|T|)$.

Then *A* is the product of two commuting and positive operators so A > 0. As a consequence, we have

$$AU = g(|T|))^{-1} f(|T|)U$$

= $(g(|T|))^{-1} (f(|T|)Ug(|T|))(g(|T|))^{-1}$
= $(g(|T|))^{-1} \Delta_{f,g}(T)(g(|T|))^{-1}.$

Hence, $AU = (g(|T|))^{-1}\Delta_{f,g}(T)(g(|T|))^{-1}$ is positive. Which means that $AU = U^*A$. By multiplying this equation on the left by U, we get

$$UAU = UU^*A \implies UAU = A$$
 since U is unitary
 $\implies (AU)^2 = A^2$
 $\implies AU = A$ since AU and A are positive
 $\implies U = I$ since A is invertible.

That implies T = |T| and so T is positive.

The following theorem shows that the (f, g)-Aluthge transform of a nilpotent operator is nilpotent too. This theorem was proved by Jung, Ko and Pearcy in [6], for λ -Aluthge transforms.

Theorem 2.14. Let $T \in \mathcal{B}(\mathcal{H})$ and let f and g be as in Theorem 2.13. Then for every $d \in \mathbb{N}^*$, we have

$$T^{d+1} = 0 \iff (\Delta_{f,g}(T))^d = 0.$$

Proof. Let T = U|T| be the polar decomposition of T and $d \in \mathbb{N}^*$. Then, it is easy to see the following equalities:

$$T^{d+1} = (U|T|)^{d+1} = (Ug(|T|)f(|T|))^{d+1}$$

= $Ug(|T|)(f(|T|)Ug(|T|))^d f(|T|)$
= $Ug(|T|)(\Delta_{f,g}(T))^d f(|T|).$ (2.2)

Thus, $(\Delta_{f,q}(T))^d = 0$ implies that $T^{d+1} = 0$. Conversely, we have

$$T^{d+1} = 0 \implies Ug(|T|)(\Delta_{f,g}(T))^d f(|T|) = 0 \qquad \text{by (2.2)}$$

$$\implies U^* Ug(|T|)(\Delta_{f,g}(T))^d f(|T|) = 0$$

$$\implies g(|T|)(\Delta_{f,g}(T))^d f(|T|) = 0 \qquad \text{by Lemma 2.1}(ii)$$

$$\implies f(|T|)g(|T|)(\Delta_{f,g}(T))^d f(|T|)g(|T|) = 0$$

$$\implies |T|(\Delta_{f,g}(T))^d |T| = 0.$$

Hence, for all $x \in \mathcal{H}$, it follows that

$$\langle |T|(\Delta_{f,g}(T))^d | T|x, x \rangle = \langle (\Delta_{f,g}(T))^d | T|x, |T|x \rangle = 0.$$

Thus, $(\Delta_{f,g}(T))^d = 0$ on $\mathcal{R}(|T|)$. Moreover, from Lemma 2.2, we have

$$\mathcal{N}(|T|) = \mathcal{N}(g(|T|)) \subset \mathcal{N}(\Delta_{f,g}(T))$$

which gives, $(\Delta_{f,g}(T))^d = 0$ on $\mathcal{N}(|T|) = 0$. Therefore, $(\Delta_{f,g}(T))^d = 0$ on \mathcal{H} .

In what follows of this section, we study the closedness of the range of $\Delta_{f,q}(T)$.

Proposition 2.15. Let $T \in \mathcal{B}(\mathcal{H})$ be positive and let $f, g \in \mathcal{C}_+$ such that f(x)g(x) = x, for all $x \ge 0$. Then the following assertions are equivalent.

- (i) $\mathcal{R}(T)$ is closed,
- (*ii*) $\mathcal{R}(f(T))$ is closed,
- (*iii*) $\mathcal{R}(g(T))$ is closed.

In any case, $\mathcal{R}(T) = \mathcal{R}(f(T)) = \mathcal{R}(g(T))$.

In order to prove Proposition 2.15, we need to recall the reduced minimum modulus that measures the closedness of the range of an operator.

Lemma 2.16. [3] Let $T \in \mathcal{B}(\mathcal{H})$. Then the reduced minimum modulus of T is defined by:

$$\gamma(T) := \begin{cases} \inf\{\|Tx\|; \|x\| = 1, \ x \in \mathcal{N}(T)^{\perp}\} & \text{if } T \neq 0 \\ +\infty & \text{if } T = 0 \end{cases}$$

Thus, $\gamma(T) > 0$ *if and only if* T *has a closed range* .

Proof. (Proposition 2.15)

 $(i) \Rightarrow (ii)$. Assume that $\mathcal{R}(T)$ is closed and $\mathcal{R}(f(T))$ is not closed. By Lemma 2.16, $\gamma(f(T)) = 0$. So, there exists a sequence of unit vectors $x_n \in \mathcal{N}(f(T))^{\perp}$ such that $f(T)x_n \longrightarrow 0$. From Lemma 2.2, $x_n \in \mathcal{N}(T)^{\perp}$ and $Tx_n = g(T)f(T)x_n \longrightarrow 0$. This contradict the fact that $\mathcal{R}(T)$ is closed.

 $(ii) \Rightarrow (i)$. Suppose that $\mathcal{R}(f(T))$ is closed and $\mathcal{R}(T)$ is not closed. Thus, $\gamma(T) = 0$. So, we can choose a sequence of unit vectors $x_n \in \mathcal{N}(T)^{\perp}$ such that $Tx_n \to 0$. Which means that $f(T)g(T)x_n \to 0$. By using again Lemma 2.2, $x_n \in \mathcal{N}(T)^{\perp} = \mathcal{N}(g(T))^{\perp}$. So, there exists $\alpha > 0$ such that $||g(T)x_n|| \ge \alpha$ for all n. We put $y_n = \frac{g(T)x_n}{||g(T)x_n||}$. Then clearly, $||y_n|| = 1$ and $f(T)y_n \to 0$. Moreover

$$y_n \in \mathcal{R}(g(T)) \subset \overline{\mathcal{R}(g(T))} = \mathcal{N}(g(T))^{\perp} = \mathcal{N}(f(T))^{\perp},$$

For all *n*. This contradicts the fact that $\mathcal{R}(f(T))$ is closed.

With similar arguments we prove the equivalence $(i) \iff (iii)$.

Theorem 2.17. Let $T \in \mathcal{B}(\mathcal{H})$ and let $f, g \in \mathcal{C}_+$ such that f(x)g(x) = x, for all $x \ge 0$. If $\mathcal{N}(T) \subseteq \mathcal{N}(T^*)$, then

$$\mathcal{R}(T)$$
 is closed $\iff \mathcal{R}(\Delta_{f,g}(T))$ is closed.

Proof. First, recall that the closedness of any one of the following sets implies the closedness of the remaining three sets:

$$\mathcal{R}(T)$$
, $\mathcal{R}(T^*)$, $\mathcal{R}(|T|)$ and $\mathcal{R}(|T^*|)$.

If $\mathcal{R}(T)$ is closed, then $\mathcal{R}(T) = \mathcal{R}(|T^*|)$ and $\mathcal{R}(T^*) = \mathcal{R}(|T|)$.

 \implies . By taking the orthogonal complements in the relation $\mathcal{N}(T) \subseteq \mathcal{N}(T^*)$ and since $\mathcal{R}(T)$ is closed, we get that $\mathcal{R}(T) \subseteq \mathcal{R}(T^*)$. This implies that $P_{\mathcal{R}(T^*)}P_{\mathcal{R}(T)} = P_{\mathcal{R}(T)}$. Therefore, we have

 $\mathcal{R}(T)$ is closed $\implies \mathcal{R}(P_{\mathcal{R}(T^*)}P_{\mathcal{R}(T)})$ is closed $\implies \mathcal{R}(P_{\mathcal{R}(T)}P_{\mathcal{R}(T^*)})$ is closed $\implies P_{\mathcal{R}(T)}\mathcal{R}(P_{\mathcal{R}(T^*)})$ is closed $\implies P_{\mathcal{R}(T)}\mathcal{R}(|T|)$ is closed $\implies P_{\mathcal{R}(T)}\mathcal{R}(f(|T|))$ is closed by Proposition 2.15 $\implies \mathcal{R}(f(|T|)P_{\mathcal{R}(T)})$ is closed $\implies f(|T|)\mathcal{R}(P_{\mathcal{R}(T)})$ is closed $\implies f(|T|)\mathcal{R}(|T^*|)$ is closed $\implies f(|T|)\mathcal{R}(g(|T^*|f(|T^*|)))$ is closed $\implies f(|T|)g(|T^*|)\mathcal{R}(f(|T^*|))$ is closed $\implies f(|T|)g(|T^*|)\mathcal{R}(|T^*|)$ is closed $\implies f(|T|)g(|T^*|)\mathcal{R}(U)$ is closed $\implies f(|T|)\mathcal{R}(g(|T^*|)U)$ is closed $\implies f(|T|)\mathcal{R}(Ug(|T|))$ is closed by Lemma 2.1, (i) $\implies f(|T|)\mathcal{R}(Ug(|T|))$ is closed $\implies \mathcal{R}(\Delta_{f,q}(T))$ is closed.

$$Ug(|T|)x \in \mathcal{N}(f(|T|)) \cap \mathcal{R}(U) = \mathcal{N}(|T|) \cap \overline{\mathcal{R}(T)} \subset \mathcal{N}(T^*) \cap \overline{\mathcal{R}(T)} = \{0\}.$$

So Ug(|T|)x = 0. By using P(1) and Lemma 2.2, we deduce that $g(|T|)x = U^*Ug(|T|)x = 0$. Hence, $x \in \mathcal{N}(g(|T|))$. Finally, each $x_n \in \mathcal{N}(\Delta_{f,g}(T))^{\perp}$ and $\Delta_{f,g}(T)x_n \to 0$, which is a contradiction with the fact that $\mathcal{R}(\Delta_{f,g}(T))$ is closed.

3. On the polar decomposition of the (f,g)-Aluthge transform

We show below that under some conditions the (f, g)-Aluthge transform possesses the polar decomposition. The proof of Theorem 3.1, in the particular case $f(x) = g(x) = x^{\frac{1}{2}}$, $(x \ge 0)$ can be found in [4].

Theorem 3.1. Let T = U|T| be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$ and $f, g \in \mathcal{C}_+$ such that f(x)g(x) = x, for all $x \ge 0$ and let $f(|T|)g(|T^*|) = V|f(|T|)g(|T^*|)|$ be the polar decomposition too. Then

$$\Delta_{f,g}(T) = VU|\Delta_{f,g}(T)|$$

is also the polar decomposition of $\Delta_{f,g}(T)$.

Proof. (*i*) Firstly, we show that $\Delta_{f,g}(T) = VU|\Delta_{f,g}(T)|$. By Lemma 2.1 (ii), we easily obtain

$$(Ug(|T|)Sg(|T|)U^*)^n = U(g(|T|)Sg(|T|))^n U^*$$

for any positive operator $S \in \mathcal{B}(\mathcal{H})$ and all $n \in \mathbb{N}^*$. Which implies

$$P(Ug(|T|)Sg(|T|)U^*) = UP(g(|T|)Sg(|T|))U^*,$$

for any polynomial P(t) with no constant term. Since $K(t) = t^{\alpha}$, $(\alpha > 0)$ is a continuous function in $[0, \infty[$, so there exist a sequence of polynomial $(P_n)_{n \in \mathbb{N}^*}$ such that $P_n(0) = 0$, for each $n \in \mathbb{N}^*$, and $(P_n(t))_{n \in \mathbb{N}^*}$ converges uniformly to K(t) on the interval [0, ||T|||]. Hence,

$$K(Ug(|T|)Sg(|T|)U^*) = \lim_{n \to +\infty} P_n(Ug(|T|)Sg(|T|)U^*)$$
$$= \lim_{n \to +\infty} UP_n(g(|T|)Sg(|T|))U^*$$
$$= UK(g(|T|)Sg(|T|))U^*.$$

So,

$$(Ug(|T|)Sg(|T|)U^*)^{\alpha} = U(g(|T|)Sg(|T|))^{\alpha}U^*,$$
(3.1)

$$\begin{aligned} VU|\Delta_{f,g}(T)| &= VUU^*U(g(|T|)U^*f(|T|)f(|T|)Ug(|T|))^{\frac{1}{2}} \\ &= VU(g(|T|)U^*f(|T|)f(|T|)Ug(|T|))^{\frac{1}{2}}U^*U \\ &= V(Ug(|T|)U^*f(|T|)f(|T|)Ug(|T|)U^*)^{\frac{1}{2}}U \quad \text{by (3.1)} \\ &= V(g(|T^*|)f(|T|)f(|T|)g(|T^*|))^{\frac{1}{2}}U \quad \text{by Lemma 2.1 (v)} \\ &= V|f(|T|)g(|T^*|)|U \\ &= f(|T|)g(|T^*|)U \\ &= f(|T|)Ug(|T|) \quad \text{by Lemma 2.1(i)} \\ &= \Delta_{f,g}(T). \end{aligned}$$

(ii) Secondly, we will show that $\mathcal{N}(\Delta_{f,g}(T))=\mathcal{N}(VU).$ For $x\in\mathcal{B}(\mathcal{H}),$ we have

$$\begin{split} VUx &= 0 &\Leftrightarrow f(|T|)g(|T^*|)Ux = 0 \quad \text{since } \mathcal{N}(V) = \mathcal{N}(f(|T|)g(|T^*|)) \\ &\Leftrightarrow f(|T|)Ug(|T|)x = 0 \quad \text{by Lemma 2.1} \ (i) \\ &\Leftrightarrow \Delta_{f,g}(T)x = 0. \end{split}$$

Therefore, $\mathcal{N}(VU) = \mathcal{N}(\Delta_{f,g}(T)).$

(iii) Finally, we shall prove that VU is a partial isometry. By (ii), we get that

$$\mathcal{N}(VU)^{\perp} = \mathcal{N}(|\Delta_{f,g}(T)|)^{\perp} = \overline{\mathcal{R}(|\Delta_{f,g}(T)|)}.$$

So, for every $x \in \overline{\mathcal{R}}(|\Delta_{f,g}(T)|)$, there exists a sequence $(y_n)_n \subset \mathcal{H}$ such that $x = \lim_{n \to +\infty} |\Delta_{f,g}(T)|y_n$. Hence, we have

$$\begin{aligned} \|VUx\| &= \|VU\lim_{n \to \infty} |\Delta_{f,g}(T)|y_n\| \\ &= \|\lim_{n \to \infty} VU|\Delta_{f,g}(T)|y_n\| \\ &= \|\lim_{n \to \infty} \Delta_{f,g}(T)y_n\| \quad \text{by } (i) \\ &= \lim_{n \to \infty} \|\Delta_{f,g}(T)y_n\| \\ &= \lim_{n \to \infty} \||\Delta_{f,g}(T)|y_n\| \\ &= \|\lim_{n \to \infty} |\Delta_{f,g}(T)|y_n\| \\ &= \|x\|, \end{aligned}$$

that is VU is a partial isometry.

The following is a new characterization of binormal operators which is an extension of Theorem 3.1 in [4].

Theorem 3.2. Let T = U|T| be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$ and let $f, g \in C_+$ be two increasing functions such that f(x)g(x) = x, for all $x \ge 0$. Then

T is binormal
$$\iff \Delta_{f,g}(T) = U|\Delta_{f,g}(T)|.$$

Proof.

 (\Longrightarrow) . This implication is true without the increasing condition of f and g. Suppose that T is binormal. This means that $|T||T^*| = |T^*||T|$. Since $f, g \in C_+$, by the continuous functional calculus we have $f(|T|)g(|T^*|) = g(|T^*|)f(|T|)$. It follows that $f(|T|)g(|T^*|) \ge 0$ and so $f(|T|)g(|T^*|) = |f(|T|)g(|T^*|)|$. From this equality and Lemma 2.1, we get

$$\begin{split} \Delta_{f,g}(T) &= f(|T|)Ug(|T|) \\ &= f(|T|)g(|T^*|)U \\ &= |f(|T|)g(|T^*|)|U \\ &= UU^*(g(|T^*|)f(|T|)f(|T|)g(|T^*|))^{\frac{1}{2}}U \\ &= U(U^*g(|T^*|)f(|T|)f(|T|)g(|T^*|)U)^{\frac{1}{2}} \\ &= U((g(|T^*|)U)^*f(|T|)f(|T|)g(|T^*|)U)^{\frac{1}{2}} \\ &= U((Ug(|T|))^*f(|T|)f(|T|)Ug(|T|))^{\frac{1}{2}} \\ &= U(g(|T|)U^*f(|T|)f(|T|)Ug(|T|))^{\frac{1}{2}} \\ &= U((\Delta_{f,g}(T))^*\Delta_{f,g}(T))^{\frac{1}{2}} \\ &= U|\Delta_{f,g}(T)|. \end{split}$$

(\Leftarrow). Assume that $\Delta_{f,g}(T) = U|\Delta_{f,g}(T)|$. Then we have

$$f(|T|)g(|T^*|) = f(|T|)Ug(|T|)U^* = \Delta_{f,g}(T)U^* = U|\Delta_{f,g}(T)|U^*,$$

and

$$g(|T^*|)f(|T|) = Ug(|T|)U^*f(|T|) = U(\Delta_{f,g}(T))^* = U(U|\Delta_{f,g}(T)|)^* = U|\Delta_{f,g}(T)|U^*.$$

Hence, $f(|T|)g(|T^*|) = g(|T^*|)f(|T|)$. Since *f* and *g* are increasing, they have inverses. So by the continuous functional calculus, we get

$$f^{-1}f(|T|)g^{-1}g(|T^*|) = g^{-1}g(|T^*|)f^{-1}f(|T|).$$

Therefore, $|T||T^*| = |T^*||T|$ and so *T* is binormal.

The binormality of a bounded operator on Hilbert spaces does not imply the binormality of its (f,g)-Aluthge transform. As shown in [4, Example 3.4], for $f(t) = g(t) = t^{\frac{1}{2}}$, $(t \ge 0)$. Recently in [12], we showed that if T is a binormal operator such that the partial isometry factor U of its polar decomposition is unitary and satisfies $U^2|T| = |T|U^2$, then $\Delta_{\lambda}(T)$ is binormal, for any $\lambda \in]0, 1[$. In our final result, we will show the binormality of $\Delta_{f,q}(T)$ under the same conditions.

Proposition 3.3. *let* $f, g \in C_+$ *such that* f(x)g(x) = x $(x \ge 0)$ *and let* T = U|T| *be the polar decomposition of a binormal operator* $T \in \mathcal{B}(\mathcal{H})$ *. If in addition* U *is unitary and* $U^2|T| = |T|U^2$ *, then* $\Delta_{f,g}(T)$ *is binormal.*

Proof. From the hypothesis $U^2|T| = |T|U^2$ and using the continuous functional calculus, we obtain $U^2f(|T|) = f(|T|)U^2$, for $f \in C_+$. This implies $Uf(|T^*|)U = f(|T|)U^2$, by Lemma 2.1 part (*i*). Multiplying this equality by U^* on the right side and since U is unitary, we get

$$Uf(|T^*|) = f(|T|)U,$$
(3.2)

and by taking the adjoint, we get also

$$f(|T^*|)U^* = U^*f(|T|).$$
(3.3)

Therefore, we have

$$\begin{split} |\Delta_{f,g}(T)^*|^2 |\Delta_{f,g}(T)|^2 &= f(|T|)Ug(|T|)g(|T|)U^*|T|U^*f(|T|)f(|T|)Ug(|T|) \\ &= f(|T|)g(|T^*|)g(|T^*|)UU^*|T|U^*f(|T|)f(|T|)Ug(|T|) \\ &= f(|T|)[g(|T^*|)]^2|T|U^*f(|T|)Ig(|T|) \\ &= f(|T|)[g(|T^*|)]^2|T|(f(|T|)U)^*f(|T|)Ug(|T|) \\ &= f(|T|)[g(|T^*|)]^2|T|f(|T^*|)U^*f(|T|)Ug(|T|) \\ &= f(|T|)[g(|T^*|)]^2|T|f(|T^*|)U^*f(|T|)Ug(|T|) \\ &= f(|T|)[g(|T^*|)]^2|T|f(|T^*|)f(|T^*|)U^*Ug(|T|) \\ &= f(|T|)[g(|T^*|)]^2|T|f(|T^*|)f(|T^*|)U^*Ug(|T|) \\ &= f(|T|)[g(|T^*|)]^2|T|f(|T^*|)I^*(|T^*|)U^*Ug(|T|) \\ &= f(|T|)[g(|T^*|)]^2|T|f(|T^*|)I^*Ug(|T|) \\ &= f(|T|)[g(|T^*|)I^*Ug(|T|) \\ &= f(|T|)[g(|T^*|)I^*Ug(|T|) \\ &= f(|T|)[g(|T^*|)I^*Ug(|T|) \\ &= f(|T|)[g(|T^*|)I^*Ug(|T^*|)I^*Ug(|T|) \\ &= f(|T|)[g(|T^*|)I^*Ug(|T^*|)I^*Ug(|T^*|)I^*Ug(|T^*|)I^*Ug(|T^*|)I^*Ug(|T^*|)I^*U$$

On the other hand, since *T* is binormal, i.e. $|T||T^*| = |T^*||T|$, By using again the continuous functional calculus, we have

$$T|f(|T^*|) = f(|T^*|)|T| \text{ and } |T^*|g(|T|) = g(|T|)|T^*|.$$
(3.5)

Then, by (3.4) and (3.5), we obtain

$$|\Delta_{f,g}(T)^*|^2 |\Delta_{f,g}(T)|^2 = |T|^2 |T^*|^2$$

With the same calculus, we have

$$\begin{split} |\Delta_{f,g}(T)|^2 |\Delta_{f,g}(T)^*|^2 &= g(|T|)U^*f(|T|)f(|T|)U|T|Ug(|T|)g(|T|)U^*f(|T|) \\ &= g(|T|)U^*f(|T|)f(|T|)U|T|g(|T^*|)Ug(|T|)U^*f(|T|) \\ &= g(|T|)U^*f(|T|)f(|T|)U|T|g(|T^*|)g(|T^*|)UU^*f(|T|) \text{ by Lemma 2.1}(i) \\ &= g(|T|)U^*f(|T|)f(|T|)U|T|[g(|T^*|)]^2f(|T|) \\ &= g(|T|)(f(|T|)U)^*f(|T|)U|T|[g(|T^*|)]^2f(|T|) \\ &= g(|T|)f(|T^*|)U^*f(|T|)U|T|[g(|T^*|)]^2f(|T|) \text{ by } (3.2) \\ &= g(|T|)f(|T^*|)f(|T^*|)U^*U|T|[g(|T^*|)]^2f(|T|) \text{ by } (3.3) \\ &= g(|T|)[f(|T^*|)]^2|T|[g(|T^*|)]^2f(|T|) \\ &= |T|^2|T^*|^2 \text{ by } (3.5). \end{split}$$

And finally we deduce that $\Delta_{f,g}(T)$ is binormal.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- [1] A. Aluthge, On *p*-Hyponormal Operators for 0 , Integral Equ. Oper. Theory 13 (1990), 307–315. https://doi.org/10.1007/BF01199886.
- [2] F. Chabbabi, Product Commuting Maps with the λ-Aluthge Transform, J. Math. Anal. Appl. 449 (2017), 589–600. https://doi.org/10.1016/j.jmaa.2016.12.027.
- [3] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966.
- [4] M. Ito, T. Yamazaki, M. Yanagida, On the Polar Decomposition of the Aluthge Transformation and Related Results, J. Oper. Theory 51 (2004), 303–319.
- [5] I. Bong Jung, E. Ko, C. Pearcy, Aluthge Transforms of Operators, Integral Equ. Oper. Theory 37 (2000), 437–448. https://doi.org/10.1007/BF01192831.
- [6] I.B. Jung, E. Ko, C. Pearcy, The Iterated Aluthge Transform of an Operator, Integral Equ. Oper. Theory 45 (2003), 375–387. https://doi.org/10.1007/s000200300012.
- [7] K. Okubo, On Weakly Unitarily Invariant Norm and the Aluthge Transformation, Linear Algebra Appl. 371 (2003), 369–375. https://doi.org/10.1016/S0024-3795(03)00485-3.
- [8] S.M.S.N. Sales, On the Hyponormal Property of Operators, Iran. J. Math. Sci. Inform. 15 (2020), 21–30.
- K. Shebrawi, M. Bakherad, Generalizations of the Aluthge Transform of Operators, Filomat 32 (2018), 6465–6474. https://doi.org/10.2298/FIL18184655.
- [10] S.M.S.N. Sales, A Note on λ -Aluthge Transforms of Operators, Wavel. Linear Algebra 3 (2016), 53–60.
- [11] Z. Zhang, M.S. Akram, J. Hyder, G. Farid, T. Yan, Spectral Radius Formulas Involving Generalized Aluthge Transform, J. Funct. Spaces 2022 (2022), 3993044. https://doi.org/10.1155/2022/3993044.

[12] S. Zid, S. Menkad, The λ-Aluthge Transform and Its Applications to Some Classes of Operators, Filomat 36 (2022), 289–301. https://doi.org/10.2298/FIL2201289Z.