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Abstract. Let T ∈ B(H) be a bounded linear operator on a Hilbert spaceH with the polar decomposition
T = U |T |. The (f, g)-Aluthge transform of the operator T, denoted by ∆f,g(T ), is defined as ∆f,g(T ) =

f(|T |)Ug(|T |),where f and g both are non-negative continuous functions on [0,∞[ such that f(x)g(x) = x,

for all x ≥ 0. In this paper, firstly, we investigate the relationship between this transform and several classes
of operators as quasi-normal, normal, positive, nilpotent and closed range operators. Secondly, we show
that under some conditions the (f, g)-Aluthge transform possesses the polar decomposition. Lastly, we
provide a characterization of binormal operators from the viewpoint of the polar decomposition and the
(f, g)-Aluthge transform.
2020 Mathematics Subject Classification. 47A05; 47B49.
Key words and phrases. (f, g)-Aluthge transform; quasinormal operato; Polar decomposition; binormal
operators.

1. Introduction

Let B(H) denote the algebra of all bounded linear operators on a complex Hilbert spaceH. In the
sequel of this paper,R(T ), N (T ) and T ∗ stand, respectively, for the range, the null subspace and the
adjoint of the operator T ∈ B(H). An operator T ∈ B(H) is said to be self-adjoint if T = T ∗, normal if
TT ∗ = T ∗T, positif if 〈Tx, x〉 ≥ 0, for all x ∈ H, quasi-normal if TT ∗T = T ∗TT and binormal if T ∗T
and TT ∗ commute. Remind that an arbitrary operator T ∈ B(H) has a unique polar decomposition
T = U |T |, where |T | = (T ∗T )

1
2 is the modulus of T and U is the associate partial isometry, i.e.

UU∗U = U with kernel condition N (U) = N (T ) = N (|T |). Then this polar decomposition verifies the
following properties :
P (1) UU∗ = P

R(T )
= P

R(|T ∗|) and U∗U = P
R(T ∗) = P

R(|T |), where PM denotes the orthogonal
projection onto the closed subspaceM ofH.
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P (2) U |T | = |T ∗|U .
P (3) |T | = U∗|T ∗|U .
P (4) |T ∗| = U |T |U∗.
P (5) T is quasi-normal if and only if U |T | = |T |U .
P (6) T is quasi-normal if and only if T |T | = |T |T .

Related to the polar decomposition, the (f, g)-Aluthge transform of an operator T was introduced
recently in [9] and defined by

∆f,g(T ) = f(|T |)Ug(|T |),

where f and g both are non-negative continuous functions on [0,∞[ such that f(x)g(x) = x, for all
x ≥ 0. For the special case f(x) = xλ and g(x) = x1−λ, where λ ∈ [0, 1], we obtain the usual λ-
Aluthge transform ∆λ(T ), which was first introduced by Aluthge in the case when λ = 1

2 [1]. After
that, many authors began to discuss the properties of (f, g)-Aluthge transform ( see [8, 9, 11]). One
of the most important properties of this transform is that T and ∆f,g(T ) have the same spectrum (
see [8, Proposition 2.6]). In this paper, we investigate the relationship between this new transform and
several classes of operators as quasi-normal, normal, positive and nilpotent operators. As a consequence,
We extend various results on λ-Aluthge transform ( see [2,10–12] ) to (f, g)-Aluthge transforms. Before
proceeding, We denote by C+ the set of all continuous function f : [0,+∞[−→ [0,+∞[ whith f(0) = 0.

Obviously, if f, g ∈ C+ such that f(x)g(x) = x, for all x ≥ 0, then f(T )g(T ) = g(T )f(T ) = T, for any
positive operator T in B(H).

The paper is organized as follows. In section 2, firstly, we show that the transform ∆f,g(T ) does not
depend of the choice of the partial isometry factor in the polar decomposition of T. Secondly, we study
the fixed points of (f, g)-Aluthge transform. Third, we focus on conditions on ∆f,g(T ) under which
T is normal or selft-adjoint or positive or nilpotent. In particular, we show that if f, g ∈ C+ such that
f(x)g(x) = x (x ≥ 0), then T is nilpotent of order d+ 1 if and only if (∆f,g(T ))d = 0, for every d ∈ N∗.

Lastly, we study the closedness of the range of ∆f,g(T ).
Section 3 deals with the polar decomposition of ∆f,g(T )). At first, we show that under some conditions
the (f, g)-Aluthge transform possesses the polar decomposition. Afterwards, we give a characterization
of binormal operators via (f, g)-Aluthge. Precisely, we prove that T is binormal if and only if ∆f,g(T ) =

U |∆f,g(T )|,where T = U |T | is the polar decomposition of T and f, g ∈ C+ are both increasing functions
satisfying f(x)g(x) = x (x ≥ 0).

2. Some relationships between an operator and its (f, g)-Aluthge transform

We begin this section with the following two lemmas which will be necessary to prove our main
results.
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Lemma 2.1. Let T = U |T | be the polar decomposition of T ∈ B(H) and let f ∈ C+. Then the following

properties hold:

(i) Uf(|T |) = f(|T ∗|)U.

(ii) U∗Uf(|T |) = f(|T |)U∗U = f(|T |).

(iii) UU∗f(|T ∗|) = f(|T ∗|)UU∗ = f(|T ∗|).

(iv) U∗f(|T ∗|)U = f(|T |) = f(U∗|T ∗|U).

(v) Uf(|T |)U∗ = f(|T ∗|) = f(U |T |U∗).

Proof. (i) By P (2), U |T |n = |T ∗|nU , for each n ∈ N∗. Which implies UP (|T |) = P (|T ∗|)U , for any
polynomial P (t). Since f is non-negative continuous function on σ(|T |) ⊂ [0,∞[ with f(0) = 0, so
there exist a sequence of polynomial (Pn)n∈N∗ such that Pn(0) = 0 for every n ∈ N∗, and Pn(t) −→ f(t)

uniformly on the interval [0, ‖|T |‖]. Hence,

Uf(|T |) = U lim
n→∞

Pn(|T |) = lim
n→∞

UPn(|T |) = lim
n→∞

Pn(|T ∗|)U = f(|T ∗|)U,

and then, the assertion (i) holds.
(ii)ByP (1), we haveU∗U |T | = |T |. Following the sameprocedure as (i), we can prove thatU∗Uf(|T |) =

f(|T |). Hence, by taking the adjoint, we deduce that f(|T |)U∗U = f(|T |).

The proof of (iii) is similar to that of (ii).

(iv) Using (i), (ii) and P (3), we get

U∗f(|T ∗|)U = U∗Uf(|T |) = f(|T |) = f(U∗|T ∗|U).

Thus, the property (iv) is satisfied.
(v) is deduced directly from (i), (iii) and P (4).

�

Lemma 2.2. Let T ∈ B(H) be positive and f, g ∈ C+ such that f(x)g(x) = x, for all x ≥ 0. Then

N (T ) = N (f(T )) = N (g(T )).

Proof. The inclusion N (f(T )) ⊂ N (T ) is obvious because T = g(T )f(T ).

Now, we show the other inclusion. Since T is positive, N (T ) = N (Tn) for each n ∈ N∗. On the
other hand, since f is a continuous function on σ(T ) ⊂ [0,∞[ with f(0) = 0, there existe a sequence
of polynomial (Pn)n∈N∗ without constant terms such that Pn(t) −→ f(t) uniformly on the interval
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[0, ‖T‖]. Hence, for all x ∈ H and n ∈ N∗, we have

x ∈ N (T ) =⇒ Tx = 0

=⇒ Pn(T )x = 0

=⇒ lim
n→∞

Pn(T )x = 0

=⇒ f(T )x = 0

=⇒ x ∈ N (f(T )).

Therefore, N (T ) ⊂ N (f(T )).
By similar way, we can prove that N (T ) = N (g(T )). �

It was shown in [7], that the λ-Aluthge transform does not depend on the partial isometry. This
result is also valid for the (f, g)-Aluthge transform.

Proposition 2.3. Let T = U |T | be the polar decomposition of T and let f, g ∈ C+ such that f(x)g(x) = x, for

all x ≥ 0. If there exists another decomposition T = V |T |, then

∆f,g(T ) = f(|T |)Ug(|T |) = f(|T |)V g(|T |).

Proof. Using the assumptions and Lemma 2.2, we have

H = N (|T |)⊕N (|T |)⊥ = N (g(|T |))⊕N (f(|T |))⊥.

In case x ∈ N (g(|T |)),we obtain

∆f,g(T )x = f(|T |)Ug(|T |)x = 0 = f(|T |)V g(|T |)x.

So, f(|T |)Ug(|T |)x = f(|T |)V g(|T |)x = 0, on N (g(|T |)).

Now, in case x ∈ R(f(|T |)), there exists z ∈ H such that x = f(|T |)z. Then we have

∆f,g(T )x = f(|T |)Ug(|T |)x = f(|T |)Ug(|T |)f(|T |)z

= f(|T |)U |T |z

= f(|T |)Tz

= f(|T |)V |T |z

= f(|T |)V g(|T |)f(|T |)z

= f(|T |)V g(|T |)x.

Hence, f(|T |)Ug(|T |) = f(|T |)V g(|T |) on R(f(|T |)) = N (f(|T |))⊥. Therefore, f(|T |)Ug(|T |) =

f(|T |)V g(|T |) onH.
�
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Here, we provide a new characterization of quasi-normal operators as follows:

Proposition 2.4. Let T = U |T | ∈ B(H) be the polar decomposition of T and let f, g be two non-negative

continuous functions on [0,+∞[, such that f(x)g(x) = x for all x ≥ 0. Then the following assertions are

equivalent:

(i) T is quasi-normal.

(ii) f(|T |)U = Uf(|T |) and g(|T |)U = Ug(|T |).

(iii) f(|T |)T = Tf(|T |) and g(|T |)T = Tg(|T |).

Proof. (i) =⇒ (ii). Suppose that T is quasi-normal. By P (5), we have |T |U = U |T |. Then

|T |nU = U |T |n, for any n ∈ N.

Which implies P (|T |)U = UP (|T |), for any polynomial P (t). Since f is a continuous function on [0,∞),
there existe a sequence of polynomial (Pn)n such that Pn(t) −→ f(t) uniformly on the interval [0, ‖|T |‖].

Then,
Uf(|T |) = U lim

n→∞
Pn(T ) = lim

n→∞
UPn(T ) = lim

n→∞
Pn(T )U = f(|T |)U.

Hence, Uf(|T |) = f(|T |)U.

By similar way we can prove that g(|T |)U = Ug(|T |).

(ii) =⇒ (iii). From (ii), We have

f(|T |)T = f(|T |)U |T | = Uf(|T |)|T | = Uf(|T |)g(|T |)f(|T |) = U |T |f(|T |) = Tf(|T |).

and
g(|T |)T = g(|T |)U |T | = Ug(|T |)|T | = Ug(|T |)f(|T |)g(|T |) = U |T |g(|T |) = Tg(|T |).

So, (iii) is proved.
(iii) =⇒ (i). Using the assumption (iii), we obtain

T |T | = Tf(|T |)g(|T |)

= f(|T |)Tg(|T |)

= f(|T |)g(|T |)T

= |T |T.

Hence, T |T | = |T |T and so T is quasi-normal, by P (6).
�

In [5, Proposition 1.10 ] it was proved that quasi-normal operators are exactly the fixed points of
the λ-Aluthge transform. However, this is not the case for (f, g)-Aluthge transform as shown by the
following example.
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Example 2.5. Consider T =


0 0 5

1
2

√
3
2 0

√
3
2 −1

2 0

 ∈ C3. The canonical polar decomposition of T is T = U |T |,

where

|T | =


1 0 0

0 1 0

0 0 5

 and U = T |T |−1 =


0 0 1

1
2

√
3
2 0

√
3
2 −1

2 0

.

It follows that

|T |U =


0 0 1

1
2

√
3
2 0

5
√
3

2 −5
2 0

 6=


0 0 5

1
2

√
3
2 0

√
3
2 −1

2 0

 = U |T |.

Therefore, T is not quasi-normal, by P (5). Let f(x) = e(x−3)
2 and g(x) = xe−(x−3)

2 , for x ≥ 0. Then, f and g

are non-negative continuous functions on [0,∞[ such that f(x)g(x) = x, for all x ≥ 0. So, we obtain

f(|T |)Ug(|T |) =


0 0 f(1)g(5)

f(1)g(1)
2

f(1)g(1)
√
3

2 0

f(5)g(1)
√
3

2 −f(5)g(1)
2 0

 =


0 0 5

1
2

√
3
2 0

√
3
2 −1

2 0

 = T.

Hence, ∆f,g(T ) = T , while T is not quasi-normal.

In the following Theorem, we will show that the fixed points of the (f, g)-Aluthge transform are the
quasinormal operators for certain functions f.

Theorem 2.6. Let T ∈ B(H) and let f, g ∈ C+ such that f(x)g(x) = x, for all x ≥ 0. If f is increasing, then

T is quasi-normal ⇐⇒ ∆f,g(T ) = T.

Proof. =⇒. Note that this implication is true without the increasing condition of f . Since T is quasi-
normal, by Proposition 2.4, f(|T |)U = Uf(|T |). Then we have

∆f,g(T ) = f(|T |)Ug(|T |)

= Uf(|T |)g(|T |)

= U |T |

= T.

Therefore, ∆f,g(T ) = T.

Conversely, Suppose that ∆f,g(T ) = T.Which implies that

[f(|T |)U − Uf(|T |)]g(|T |) = 0.
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So that f(|T |)U = Uf(|T |) onR(g(T )). On the other hand, by Lemma 2.2, we get

N (U) = N (f(|T |)) = N (g(|T |)).

Hence, f(|T |)U = Uf(|T |) = 0 on N (g(T )). Consequently, f(|T |)U = Uf(|T |) on H. Since f is
increasing it has inverse f−1. Thus, by the continuous functional calculus, we obtain f−1f(|T |)U =

Uf−1f(|T |).Which means that |T |U = U |T |. Therefore, T is quasi-normal. �

As an application of the previous theorem we state an interesting result as follows:

Corollary 2.7. Let T ∈ B(H) be an invertible operator and let f, g ∈ C+ such that f(x)g(x) = x, for all x ≥ 0.

If f is increasing, then

∆f,g(T ) = T ⇐⇒ T is normal.

Proof. Since T is an invertible, then

T is quasi-normal⇐⇒ T is normal.

Therefore, the result is obvious by Theorem 2.6. �

The next Proposition extends Lemma 2.3, obtained in [2] to the case of the (f, g)-Aluthge transform
as follows.

Proposition 2.8. . Let T ∈ B(H), P ∈ B(H) be an orthogonal projection and let f, g ∈ C+ such that

f(x)g(x) = x, for all x ≥ 0. If f is increasing, then the following assertions are equivalent:

(i) ∆f,g(TP ) = T.

(ii) TP = PT = T and T is quasi-normal.

Proof. (i) =⇒ (ii). Let TP = V |TP | be the polar decomposition of TP. From the hypothesis∆f,g(TP ) =

T, we get
f(|TP |)V g(|TP |) = T and g(|TP |)V ∗f(|TP |) = T ∗.

Hence, by Lemma 2.2, we obtain

R(T ) ⊆ R(f(|TP |)) ⊆ R(f(|TP |)) = N (f(|TP |))⊥ = N (|TP |)⊥ = N (|TP |2)⊥ = R(|TP |2),

and

R(T ∗) ⊆ R(g(|TP |)) ⊆ R(g(|TP |)) = N (g(|TP |))⊥ = N (|TP |)⊥ = N (|TP |2)⊥ = R(|TP |2).

Thus,

R(T ) ⊆ R(|TP |2) and R(T ∗) ⊆ R(|TP |2). (2.1)

On the other hand, since |TP |2 = PT ∗TP = P |T |2P,we have

R(|TP |2) ⊆ R(P ) = R(P ).
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Using (2.1), it follows that
R(T ) ⊂ R(P ) and R(T ∗) ⊂ R(P ).

Which implies that T = PT and T ∗ = PT ∗ = (TP )∗. By taking the adjoint, we deduce that PT =

TP = T. Thus,

T = ∆f,g(TP ) = ∆f,g(T ).

Moreover, since f is increasing, T is quasi-normal, by Theorem 2.6.
(ii) =⇒ (i) is deduced directly from Theorem 2.6. �

Obviously, every self-adjoint operator is quasi-normal but the converse is not true in general. Next,
we give certain conditions under which a quasi-normal operator becomes self-adjoint.

Proposition 2.9. . Let T ∈ B(H) be a quasi-normal operator and let f, g ∈ C+ such that f(x)g(x) = x, for all

x ≥ 0. If ∆f,g(T
∗) = T , then T is self-adjoint.

Proof. Let T = U |T | be the polar decomposition of T. Since T is quasi-normal, by using Proposition 2.4,
we have f(|T |)U = Uf(|T |) and g(|T |)U = Ug(|T |). By taking the adjoint, we get

U∗f(|T |) = f(|T |)U∗ and U∗g(|T |) = g(|T |)U∗.

Since T ∗ = U∗|T ∗| is the polar decomposition of T ∗, it follows that

∆f,g(T
∗) = f(|T ∗|)U∗g(|T ∗|)

= Uf(|T |)U∗U∗Ug(|T |)U∗ by Lemma 2.1 (v)

= Uf(|T |)U∗g(|T |)U∗ by Lemma 2.1 (ii)

= Uf(|T |)U∗U∗g(|T |)

= U(U∗)2f(|T |)g(|T |)

= U(U∗)2|T |.

Thus, from the assumption ∆f,g(T
∗) = T , we obtain U(U∗)2|T | = U |T |.Multiplying this equality by

U∗ on the left side, we get
U∗U(U∗)2|T | = (U∗)2|T | = |T |.

So (U∗)2|T | is self-djoint. Moreover, since T is quasi-normal, then we have

|T | = (U∗)2|T | = |T |U2 = U |T |U.

Thus,
T = U |T | = |T |U = U∗U |T |U = U∗|T | = |T |U∗ = T ∗.

Therefore, T is self-adjoint. �



Asia Pac. J. Math. 2025 12:57 9 of 19

Let T = U |T | be the polar decomposition of T ∈ B(H) and ∆(T ) = |T |
1
2U |T |

1
2 be its Aluthge

transform. In [10], the authors showed that if U is unitary and T = α∆(T ) for some complex number
α, then T is normal. In the following three results, we discuss the similar situation of (f, g)-Aluthge
transforms.

Proposition 2.10. Let f and g be two increasing functions in C+ such that f(x)g(x) = x, for all x ≥ 0 and let

T = U |T | be the polar decomposition of T ∈ B(H). If T = α∆f,g(T ) for some complex number α, then

Uf(|T |) = αf(|T |)U and α ≥ 1.

Proof. Let T = U |T | be the polar decomposition of T . Then, we have

T = α∆f,g(T ) ⇐⇒ U |T | = αf(|T |)Ug(|T |)

⇐⇒ Uf(|T |)g(|T |) = αf(|T |)Ug(|T |)

⇐⇒ [Uf(|T |)− αf(|T |)U ]g(|T |) = 0,

and thus Uf(|T |) = αf(|T |)U onR(g(|T |)) = N (g(|T |))⊥. Since by Lemma 2.2, N (f(|T |)) = N (U) =

N (g(|T |)), then , it is clear that Uf(|T |) = αf(|T |)U = 0 on N (g(|T |)). Hence, Uf(|T |) = αf(|T |)U on
H.
Multiplying this equality by U∗ on the left side and using Lemma 2.1 (ii), we get

f(|T |) = αU∗f(|T |)U.

Hence α > 0, because f(|T |) and U∗f(|T |)U are positive. Moreover, since f and g are increasing, then
we have

‖T‖ = |α|‖∆f,g(T )‖

≤ α‖f(|T |)‖‖U‖‖g(|T |)‖

= α‖f(|T |)‖‖g(|T |)‖ since ‖U‖ = 1

= αf(‖|T |‖)g(‖|T |‖)

= αf(‖T‖)g(‖T‖) since ‖|T |‖ = ‖T‖

= α‖T‖.

Thus, α ≥ 1. �

We say that T ∈ B(H) is normaloid if and only if r(T ) = ‖T‖, where r(T ) denotes the spectral
radius of T. In [11, Corollary 9] the authors showed that the inequality ‖∆f,g(T )‖ ≥ ‖T‖ holds, for
any normaloid operator T in B(H). Next, We use this result to prove the following corollary.
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Corollary 2.11. Let f, g be two increasing functions in C+ such that f(x)g(x) = x, for all x ≥ 0. If T ∈ B(H)

is a non-zero normaloid operator such that T = α∆f,g(T ), for some complex number α, then T is quasi-normal.

Proof. Suppose that T = α∆f,g(T ). From Proposition 2.10, we obtain α ≥ 1. On the other hand since T
is normaloid and by using [11, Corollary 9], we have

‖T‖ = ‖α∆f,g(T )‖ ≥ α‖T‖.

It follows that α ≤ 1 and so α = 1. which means that T = ∆f,g(T ). Therefore, T is quasi-normal by
Theorem 2.6. �

Proposition 2.12. Let f, g be two increasing functions in C+ such that f(x)g(x) = x, for all x ≥ 0, and let

T = U |T | be the polar decomposition of T ∈ B(H) with U unitary. If T = α∆f,g(T ) for some complex number

α, then T is normal.

Proof. Using Proposition 2.10, we have Uf(|T |) = αf(|T |)U . Since f(|T |) is positive, by [10, Proposition
2.10], we deduce that α = 1. This implies that T = ∆f,g(T ). Therefore, from Theorem 2.6, T is quasi-
normal. So T is normal because U is unitaire. �

Now, we present some relationships between a positive operator and its (f, g)-Aluthge transform.

Theorem 2.13. Let T ∈ B(H) be an invertible operator. Then the following assertions are equivalent:

(i) T is positive.

(ii) ∆f,g(T ) is positive, for every f, g ∈ C+ which satisfying f(x)g(x) = x, for all x ≥ 0.

(iii) ∆f,g(T ) is positive, for some f, g ∈ C+ which satisfying f(x)g(x) = x, for all x ≥ 0.

Proof. (i) ⇒ (ii). Let T = U |T | be the polar decomposition T . Since T is positive and invertible, it
follows that

U = T |T |−1

= TT−1

= I.

Thus, ∆f,g(T ) = f(|T |)g(|T |) = |T |, and so ∆f,g(T ) is positive .
(ii)⇒ (iii). Trivial.
(iii) ⇒ (i). Assume that ∆f,g(T ) is positive. Since T is invertible, then |T | is invertible and by the
continuous functional calculus, f(|T |) and g(|T |) are also invertible. We put A = (g(|T |))−1f(|T |).
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Then A is the product of two commuting and positive operators so A > 0. As a consequence, we have

AU = g(|T |))−1f(|T |)U

= (g(|T |))−1(f(|T |)Ug(|T |))(g(|T |))−1

= (g(|T |))−1∆f,g(T )(g(|T |))−1.

Hence, AU = (g(|T |))−1∆f,g(T )(g(|T |))−1 is positive. Which means that AU = U∗A. By multiplying
this equation on the left by U , we get

UAU = UU∗A =⇒ UAU = A since U is unitary

=⇒ (AU)2 = A2

=⇒ AU = A since AU and A are positive

=⇒ U = I since A is invertible.

That implies T = |T | and so T is positive. �

The following theorem shows that the (f, g)-Aluthge transform of a nilpotent operator is nilpotent
too. This theorem was proved by Jung, Ko and Pearcy in [6], for λ-Aluthge transforms.

Theorem 2.14. Let T ∈ B(H) and let f and g be as in Theorem 2.13. Then for every d ∈ N∗, we have

T d+1 = 0 ⇐⇒ (∆f,g(T ))d = 0.

Proof. Let T = U |T | be the polar decomposition of T and d ∈ N∗. Then, it is easy to see the following
equalities:

T d+1 = (U |T |)d+1 = (Ug(|T |)f(|T |))d+1

= Ug(|T |)(f(|T |)Ug(|T |))df(|T |)

= Ug(|T |)(∆f,g(T ))df(|T |). (2.2)

Thus, (∆f,g(T ))d = 0 implies that T d+1 = 0. Conversely, we have

T d+1 = 0 =⇒ Ug(|T |)(∆f,g(T ))df(|T |) = 0 by (2.2)

=⇒ U∗Ug(|T |)(∆f,g(T ))df(|T |) = 0

=⇒ g(|T |)(∆f,g(T ))df(|T |) = 0 by Lemma 2.1(ii)

=⇒ f(|T |)g(|T |)(∆f,g(T ))df(|T |)g(|T |) = 0

=⇒ |T |(∆f,g(T ))d|T | = 0.

Hence, for all x ∈ H, it follows that

〈|T |(∆f,g(T ))d|T |x, x〉 = 〈(∆f,g(T ))d|T |x, |T |x〉 = 0.
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Thus, (∆f,g(T ))d = 0 onR(|T |). Moreover, from Lemma 2.2, we have

N (|T |) = N (g(|T |)) ⊂ N (∆f,g(T )),

which gives, (∆f,g(T ))d = 0 on N (|T |) = 0. Therefore, (∆f,g(T ))d = 0 onH.
�

In what follows of this section, we study the closedness of the range of ∆f,g(T ).

Proposition 2.15. Let T ∈ B(H) be positive and let f, g ∈ C+ such that f(x)g(x) = x, for all x ≥ 0. Then the

following assertions are equivalent.

(i) R(T ) is closed,

(ii) R(f(T )) is closed,

(iii) R(g(T )) is closed.

In any case,R(T ) = R(f(T )) = R(g(T )).

In order to prove Proposition 2.15, we need to recall the reduced minimum modulus that measures
the closedness of the range of an operator.

Lemma 2.16. [3] Let T ∈ B(H). Then the reduced minimum modulus of T is defined by:

γ(T ) :=

inf{‖Tx‖; ‖x‖ = 1, x ∈ N (T )⊥} if T 6= 0

+∞ if T = 0.

Thus, γ(T ) > 0 if and only if T has a closed range .

Proof. ( Proposition 2.15)
(i) ⇒ (ii). Assume that R(T ) is closed and R(f(T )) is not closed. By Lemma 2.16, γ(f(T )) = 0. So,
there exists a sequence of unit vectors xn ∈ N (f(T ))⊥ such that f(T )xn −→ 0. From Lemma 2.2,
xn ∈ N (T )⊥ and Txn = g(T )f(T )xn −→ 0. This contradict the fact thatR(T ) is closed.
(ii)⇒ (i). Suppose thatR(f(T )) is closed andR(T ) is not closed. Thus, γ(T ) = 0. So, we can choose a
sequence of unit vectors xn ∈ N (T )⊥ such that Txn → 0.Which means that f(T )g(T )xn → 0. By using
again Lemma 2.2, xn ∈ N (T )⊥ = N (g(T ))⊥. So, there exists α > 0 such that ‖g(T )xn‖ ≥ α for all n.
We put yn =

g(T )xn
‖g(T )xn‖

. Then clearly, ‖yn‖ = 1 and f(T )yn → 0.Moreover

yn ∈ R(g(T )) ⊂ R(g(T )) = N (g(T ))⊥ = N (f(T ))⊥,

For all n. This contradicts the fact thatR(f(T )) is closed.
With similar arguments we prove the equivalence (i)⇐⇒ (iii).

�
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Theorem 2.17. Let T ∈ B(H) and let f, g ∈ C+ such that f(x)g(x) = x, for all x ≥ 0. If N (T ) ⊆ N (T ∗),

then

R(T ) is closed ⇐⇒ R(∆f,g(T )) is closed.

Proof. First, recall that the closedness of any one of the following sets implies the closedness of the
remaining three sets:

R(T ),R(T ∗),R(|T |) andR(|T ∗|).

IfR(T ) is closed, thenR(T ) = R(|T ∗|) andR(T ∗) = R(|T |).

=⇒. By taking the orthogonal complements in the relation N (T ) ⊆ N (T ∗) and sinceR(T ) is closed,
we get thatR(T ) ⊆ R(T ∗). This implies that PR(T ∗)PR(T ) = PR(T ). Therefore, we have

R(T ) is closed =⇒ R(PR(T ∗)PR(T )) is closed

=⇒ R(PR(T )PR(T ∗)) is closed

=⇒ PR(T )R(PR(T ∗)) is closed

=⇒ PR(T )R(|T |) is closed

=⇒ PR(T )R(f(|T |)) is closed by Proposition 2.15

=⇒ R(f(|T |)PR(T )) is closed

=⇒ f(|T |)R(PR(T )) is closed

=⇒ f(|T |)R(|T ∗|) is closed

=⇒ f(|T |)R(g(|T ∗|f(|T ∗|)) is closed

=⇒ f(|T |)g(|T ∗|)R(f(|T ∗|)) is closed

=⇒ f(|T |)g(|T ∗|)R(|T ∗|) is closed

=⇒ f(|T |)g(|T ∗|)R(U) is closed

=⇒ f(|T |)R(g(|T ∗|)U) is closed

=⇒ f(|T |)R(Ug(|T |)) is closed by Lemma 2.1, (i)

=⇒ f(|T |)R(Ug(|T |)) is closed

=⇒ R(∆f,g(T )) is closed .

⇐= Suppose thatR(∆f,g(T )) is closed andR(T ) is not closed. ThenR(|T |) is not closed. It follows from
Proposition 2.15 thatR(g(T )) is nonclosed and so there exists a sequence of unit vectorsxn ∈ N (g(|T |))⊥

such that g(|T |)xn → 0. This implies that ∆f,g(T )xn = f(|T |)Ug(|T |)xn → 0. Now, we show that
xn ∈ N (∆f,g(T ))⊥, for all n. It is enough to prove that N (∆f,g(T )) ⊂ N (g(|T |)). Let x ∈ N (∆f,g(T )).

Then f(|T |)Ug(|T |)x = 0,which means that
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Ug(|T |)x ∈ N (f(|T |)) ∩R(U) = N (|T |) ∩R(T ) ⊂ N (T ∗) ∩R(T ) = {0}.

So Ug(|T |)x = 0. By using P (1) and Lemma 2.2, we deduce that g(|T |)x = U∗Ug(|T |)x = 0. Hence,
x ∈ N (g(|T |)). Finally, each xn ∈ N (∆f,g(T ))⊥ and ∆f,g(T )xn → 0,which is a contradiction with the
fact thatR(∆f,g(T )) is closed. �

3. On the polar decomposition of the (f, g)-Aluthge transform

We show below that under some conditions the (f, g)-Aluthge transform possesses the polar de-
composition. The proof of Theorem 3.1, in the particular case f(x) = g(x) = x

1
2 , (x > 0) can be found

in [4].

Theorem 3.1. Let T = U |T | be the polar decomposition of T ∈ B(H) and f, g ∈ C+ such that f(x)g(x) = x,

for all x ≥ 0 and let f(|T |)g(|T ∗|) = V |f(|T |)g(|T ∗|)| be the polar decomposition too. Then

∆f,g(T ) = V U |∆f,g(T )|

is also the polar decomposition of ∆f,g(T ).

Proof. (i) Firstly, we show that ∆f,g(T ) = V U |∆f,g(T )|. By Lemma 2.1 (ii), we easily obtain

(Ug(|T |)Sg(|T |)U∗)n = U(g(|T |)Sg(|T |))nU∗,

for any positive operator S ∈ B(H) and all n ∈ N∗.Which implies

P (Ug(|T |)Sg(|T |)U∗) = UP (g(|T |)Sg(|T |))U∗,

for any polynomial P (t) with no constant term. Since K(t) = tα, (α > 0) is a continuous function
in [0,∞[, so there exist a sequence of polynomial (Pn)n∈N∗ such that Pn(0) = 0, for each n ∈ N∗, and
(Pn(t))n∈N∗ converges uniformly toK(t) on the interval [0, ‖|T |‖]. Hence,

K(Ug(|T |)Sg(|T |)U∗) = lim
n→+∞

Pn(Ug(|T |)Sg(|T |)U∗)

= lim
n→+∞

UPn(g(|T |)Sg(|T |))U∗

= UK(g(|T |)Sg(|T |))U∗.

So,

(Ug(|T |)Sg(|T |)U∗)α = U(g(|T |)Sg(|T |))αU∗, (3.1)
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for any positive operator S ∈ B(H) and all α > 0. It follows that

V U |∆f,g(T )| = V UU∗U(g(|T |)U∗f(|T |)f(|T |)Ug(|T |))
1
2

= V U(g(|T |)U∗f(|T |)f(|T |)Ug(|T |))
1
2U∗U

= V (Ug(|T |)U∗f(|T |)f(|T |)Ug(|T |)U∗)
1
2U by (3.1)

= V (g(|T ∗|)f(|T |)f(|T |)g(|T ∗|))
1
2U by Lemma 2.1 (v)

= V |f(|T |)g(|T ∗|)|U

= f(|T |)g(|T ∗|)U

= f(|T |)Ug(|T |) by Lemma 2.1(i)

= ∆f,g(T ).

(ii) Secondly, we will show that N (∆f,g(T )) = N (V U). For x ∈ B(H),we have

V Ux = 0 ⇔ f(|T |)g(|T ∗|)Ux = 0 since N (V ) = N (f(|T |)g(|T ∗|))

⇔ f(|T |)Ug(|T |)x = 0 by Lemma 2.1 (i)

⇔ ∆f,g(T )x = 0.

Therefore, N (V U) = N (∆f,g(T )).

(iii) Finally, we shall prove that V U is a partial isometry. By (ii),we get that

N (V U)⊥ = N (|∆f,g(T )|)⊥ = R(|∆f,g(T )|).

So, for every x ∈ R(|∆f,g(T )|), there exists a sequence (yn)n ⊂ H such that x = lim
n→+∞

|∆f,g(T )|yn.

Hence, we have

‖V Ux‖ = ‖V U lim
n→∞

|∆f,g(T )|yn‖

= ‖ lim
n→∞

V U |∆f,g(T )|yn‖

= ‖ lim
n→∞

∆f,g(T )yn‖ by (i)

= lim
n→∞

‖∆f,g(T )yn‖

= lim
n→∞

‖|∆f,g(T )|yn‖

= ‖ lim
n→∞

|∆f,g(T )|yn‖

= ‖x‖,

that is V U is a partial isometry.
�



Asia Pac. J. Math. 2025 12:57 16 of 19

The following is a new characterization of binormal operators which is an extension of Theorem 3.1
in [4].

Theorem 3.2. Let T = U |T | be the polar decomposition of T ∈ B(H) and let f, g ∈ C+ be two increasing

functions such that f(x)g(x) = x, for all x ≥ 0 . Then

T is binormal ⇐⇒ ∆f,g(T ) = U |∆f,g(T )|.

Proof.

(=⇒). This implication is true without the increasing condition of f and g. Suppose that T is binormal.
This means that |T ||T ∗| = |T ∗||T |. Since f, g ∈ C+, by the continuous functional calculus we have
f(|T |)g(|T ∗|) = g(|T ∗|)f(|T |). It follows that f(|T |)g(|T ∗|) > 0 and so f(|T |)g(|T ∗|) = |f(|T |)g(|T ∗|)|.

From this equality and Lemma 2.1, we get

∆f,g(T ) = f(|T |)Ug(|T |)

= f(|T |)g(|T ∗|)U

= |f(|T |)g(|T ∗|)|U

= UU∗(g(|T ∗|)f(|T |)f(|T |)g(|T ∗|))
1
2U

= U(U∗g(|T ∗|)f(|T |)f(|T |)g(|T ∗|)U)
1
2

= U((g(|T ∗|)U)∗f(|T |)f(|T |)g(|T ∗|)U)
1
2

= U((Ug(|T |))∗f(|T |)f(|T |)Ug(|T |))
1
2

= U(g(|T |)U∗f(|T |)f(|T |)Ug(|T |))
1
2

= U((∆f,g(T ))∗∆f,g(T ))
1
2

= U |∆f,g(T )|.

(⇐=). Assume that ∆f,g(T ) = U |∆f,g(T )|. Then we have

f(|T |)g(|T ∗|) = f(|T |)Ug(|T |)U∗ = ∆f,g(T )U∗ = U |∆f,g(T )|U∗,

and
g(|T ∗|)f(|T |) = Ug(|T |)U∗f(|T |) = U(∆f,g(T ))∗ = U(U |∆f,g(T )|)∗ = U |∆f,g(T )|U∗.

Hence, f(|T |)g(|T ∗|) = g(|T ∗|)f(|T |). Since f and g are increasing, they have inverses. So by the
continuous functional calculus, we get

f−1f(|T |)g−1g(|T ∗|) = g−1g(|T ∗|)f−1f(|T |).

Therefore, |T ||T ∗| = |T ∗||T | and so T is binormal.
�
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The binormality of a bounded operator on Hilbert spaces does not imply the binormality of its
(f, g)-Aluthge transform. As shown in [4, Example 3.4], for f(t) = g(t) = t

1
2 , (t ≥ 0). Recently

in [12], we showed that if T is a binormal operator such that the partial isometry factor U of its polar
decomposition is unitary and satisfies U2|T | = |T |U2, then ∆λ(T ) is binormal, for any λ ∈]0, 1[. In our
final result, we will show the binormality of ∆f,g(T ) under the same conditions.

Proposition 3.3. let f, g ∈ C+ such that f(x)g(x) = x (x ≥ 0) and let T = U |T | be the polar decomposition

of a binormal operator T ∈ B(H). If in addition U is unitary and U2|T | = |T |U2, then ∆f,g(T ) is binormal.

Proof. From the hypothesis U2|T | = |T |U2 and using the continuous functional calculus, we obtain
U2f(|T |) = f(|T |)U2, for f ∈ C+ . This implies Uf(|T ∗|)U = f(|T |)U2, by Lemma 2.1 part (i).

Multiplying this equality by U∗ on the right side and since U is unitary, we get

Uf(|T ∗|) = f(|T |)U, (3.2)

and by taking the adjoint, we get also

f(|T ∗|)U∗ = U∗f(|T |). (3.3)

Therefore, we have

|∆f,g(T )∗|2|∆f,g(T )|2 = f(|T |)Ug(|T |)g(|T |)U∗|T |U∗f(|T |)f(|T |)Ug(|T |)

= f(|T |)g(|T ∗|)g(|T ∗|)UU∗|T |U∗f(|T |)f(|T |)Ug(|T |) by Lemma 2.1(i)

= f(|T |)[g(|T ∗|)]2|T |U∗f(|T |)f(|T |)Ug(|T |)

= f(|T |)[g(|T ∗|)]2|T |(f(|T |)U)∗f(|T |)Ug(|T |)

= f(|T |)[g(|T ∗|)]2|T |f(|T ∗|)U∗f(|T |)Ug(|T |) by (3.2)

= f(|T |)[g(|T ∗|)]2|T |f(|T ∗|)f(|T ∗|)U∗Ug(|T |) by (3.3)

= f(|T |)[g(|T ∗|)]2|T |f(|T ∗|)2g(|T |). (3.4)

On the other hand, since T is binormal, i.e. |T ||T ∗| = |T ∗||T |, By using again the continuous functional
calculus, we have

|T |f(|T ∗|) = f(|T ∗|)|T | and |T ∗|g(|T |) = g(|T |)|T ∗|. (3.5)

Then, by (3.4) and (3.5), we obtain

|∆f,g(T )∗|2|∆f,g(T )|2 = |T |2|T ∗|2
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With the same calculus, we have

|∆f,g(T )|2|∆f,g(T )∗|2 = g(|T |)U∗f(|T |)f(|T |)U |T |Ug(|T |)g(|T |)U∗f(|T |)

= g(|T |)U∗f(|T |)f(|T |)U |T |g(|T ∗|)Ug(|T |)U∗f(|T |)

= g(|T |)U∗f(|T |)f(|T |)U |T |g(|T ∗|)g(|T ∗|)UU∗f(|T |) by Lemma 2.1(i)

= g(|T |)U∗f(|T |)f(|T |)U |T |[g(|T ∗|)]2f(|T |)

= g(|T |)(f(|T |)U)∗f(|T |)U |T |[g(|T ∗|)]2f(|T |)

= g(|T |)f(|T ∗|)U∗f(|T |)U |T |[g(|T ∗|)]2f(|T |) by (3.2)

= g(|T |)f(|T ∗|)f(|T ∗|)U∗U |T |[g(|T ∗|)]2f(|T |) by (3.3)

= g(|T |)[f(|T ∗|)]2|T |[g(|T ∗|)]2f(|T |)

= |T |2|T ∗|2 by (3.5).

And finally we deduce that ∆f,g(T ) is binormal. �
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