Asia Pac. ] Math. 2025 12:57 ASIA PACIFIC ACADEMIC

CLASSES OF OPERATORS ASSOCIATED WITH (f, g)-ALUTHGE TRANSFORMS

FARIDA MEKKAOUI, SAFA MENKAD*

Laboratory of Mathematical Techniques (LTM), Department of Mathematics,
Faculty of Mathematics and Computer Science, University of Batna 2, 05078, Batna, Algeria
f.mekkaoui@univ-batna2.dz

*Corresponding author: s.menkad@univ-batna2.dz

Received Apr. 6, 2025

Asstract. Let T € B(H) be a bounded linear operator on a Hilbert space H with the polar decomposition
T = U|T|. The (f, g)-Aluthge transform of the operator T, denoted by Ay ;(T), is defined as Ay 4(T) =
F(T))Ug(|T|), where f and g both are non-negative continuous functions on [0, co[ such that f(z)g(z) = =,
for all z > 0. In this paper, firstly, we investigate the relationship between this transform and several classes
of operators as quasi-normal, normal, positive, nilpotent and closed range operators. Secondly, we show
that under some conditions the (f, g)-Aluthge transform possesses the polar decomposition. Lastly, we
provide a characterization of binormal operators from the viewpoint of the polar decomposition and the
(f, 9)-Aluthge transform.
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1. INTRODUCTION

Let B(#) denote the algebra of all bounded linear operators on a complex Hilbert space 7. In the
sequel of this paper,R(T'), N (T') and T* stand, respectively, for the range, the null subspace and the
adjoint of the operator 7' € B(#). An operator T' € B(H) is said to be self-adjoint if 7" = 7™, normal if
TT* = T*T, positif if (T'z,z) > 0, for all z € H, quasi-normal if TT*T = T*T'T and binormal if T*T
and TT* commute. Remind that an arbitrary operator 7' € B(#) has a unique polar decomposition
T = U|T|, where |T| = (T*T)% is the modulus of 7" and U is the associate partial isometry, i.e.
UU*U = U with kernel condition N (U) = N(T') = N(|T|). Then this polar decomposition verifies the

following properties :

P(1) UU* = Py = P

R(T]) and U*U = P

Ry = Pryyy Where Py denotes the orthogonal

(T)
projection onto the closed subspace M of H.
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P(2) U|T| =|T*|U.
P(3) |T| =U*T*|U.
P4) |T*| =U|T\U*.
P(5) T is quasi-normal if and only if U|T| = |T|U.
P(6) T is quasi-normal if and only if T'|T'| = |T'|T.

Related to the polar decomposition, the (f, g)-Aluthge transform of an operator 7" was introduced

recently in [9] and defined by

Arg(T) = F(ITHUG(IT)),
where f and ¢ both are non-negative continuous functions on [0, oo[ such that f(z)g(z) = z, for all
x > 0. For the special case f(z) = 2* and g(x) = z'~*, where A € [0, 1], we obtain the usual \-
Aluthge transform A, (T'), which was first introduced by Aluthge in the case when A = 1 [1]. After
that, many authors began to discuss the properties of (f, g)-Aluthge transform ( see [8,9,11]). One
of the most important properties of this transform is that 7" and Ay ,(T") have the same spectrum (
see [8, Proposition 2.6]). In this paper, we investigate the relationship between this new transform and
several classes of operators as quasi-normal, normal, positive and nilpotent operators. As a consequence,
We extend various results on A\-Aluthge transform ( see [2,10-12] ) to (f, g)-Aluthge transforms. Before
proceeding, We denote by C.. the set of all continuous function f : [0, +0co[— [0, +oo[ whith f(0) = 0.
Obviously, if f, g € C such that f(z)g(z) = z, for all z > 0, then f(T")g(T") = g(T) f(T) = T, for any
positive operator 7" in B(H).
The paper is organized as follows. In section 2, firstly, we show that the transform A ;(T") does not
depend of the choice of the partial isometry factor in the polar decomposition of 7. Secondly, we study
the fixed points of ( f, g)-Aluthge transform. Third, we focus on conditions on A ,(T') under which
T is normal or selft-adjoint or positive or nilpotent. In particular, we show that if f, g € C such that
f(x)g(z) = z (z > 0), then T is nilpotent of order d + 1 if and only if (A ,(7))? = 0, for every d € N*.
Lastly, we study the closedness of the range of A ,(T').
Section 3 deals with the polar decomposition of Af ,(T)). At first, we show that under some conditions
the (f, g)-Aluthge transform possesses the polar decomposition. Afterwards, we give a characterization
of binormal operators via ( f, g)-Aluthge. Precisely, we prove that 7" is binormal if and only if A ((T') =
U|A¢4(T)|, where T' = U|T| is the polar decomposition of T"and f, g € C are both increasing functions
satisfying f(z)g(z) = = (z > 0).

2. SOME RELATIONSHIPS BETWEEN AN OPERATOR AND ITS ( f, ¢)-ALUTHGE TRANSFORM

We begin this section with the following two lemmas which will be necessary to prove our main

results.
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Lemma 2.1. Let T' = U|T| be the polar decomposition of T € B(H) and let f € C,.. Then the following
properties hold:

(@) Uf(T]) = f(T)U.

(i) UUf(IT]) = f(ITNUU = f(T1)-
(iid) UUf(|T*]) = f(IT)UU" = f(IT7)).
(iv) U f(IT*)U = F(IT]) = fFU|T*|U).
(v) UF(ITNU" = F(IT7]) = FUIT|U7).

Proof. (i) By P(2), U|T|™ = |T*|"U, for each n € N*. Which implies UP(|T'|) = P(|T*|)U, for any
polynomial P(t). Since f is non-negative continuous function on o(|7’|) C [0, oo with f(0) = 0, so
there exist a sequence of polynomial (P, ),en+ such that P,(0) = 0 for every n € N*, and P, (t) — f(t)

uniformly on the interval [0, |||T’|||]. Hence,
Uf(IT) = U lim Po(|T]) = lim UP,(|T]) = lim B(|T*)U = f(IT*V,

and then, the assertion (i) holds.

(73) By P(1), wehave U*U|T'| = |T'|. Following the same procedure as (i), we can prove that U*U f(|T'|) =
f(IT). Hence, by taking the adjoint, we deduce that f(|T'|)U*U = f(|T|).

The proof of (iii) is similar to that of (ii).

(1v) Using (3), (i) and P(3), we get

Urf(IThU =UrUf(IT)) = f(IT]) = FU[T*|U).

Thus, the property (iv) is satisfied.
(v) is deduced directly from (7), (ii¢) and P(4).

Lemma 2.2. Let T' € B(#H) be positive and f, g € C4 such that f(z)g(x) = z, for all x > 0. Then

Proof. The inclusion N (f(T")) C N(T) is obvious because T' = ¢(T') f(T).
Now, we show the other inclusion. Since T is positive, N'(T') = N(T") for each n € N*. On the
other hand, since f is a continuous function on ¢(7") C [0, oo[ with f(0) = 0, there existe a sequence

of polynomial (P, ),en+ without constant terms such that P, (t) — f(¢) uniformly on the interval
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0, |T°]|]. Hence, for all x € H and n € N*, we have

reNT) = Txz=0
= P,(T)x=0
= lim Py(T)z =0
= f(T)x=0
=z e N(f(T))
Therefore, N(T') C N(f(T)).
By similar way, we can prove that N'(T) = N (g(T)). 0

It was shown in [7], that the A\-Aluthge transform does not depend on the partial isometry. This
result is also valid for the (f, g)-Aluthge transform.

Proposition 2.3. Let T = U|T| be the polar decomposition of T and let f, g € C such that f(x)g(z) = z, for
all x > 0. If there exists another decomposition T = V'|T|, then

Apg(T) = FITNUY(IT)) = F(THV9(IT1).
Proof. Using the assumptions and Lemma 2.2, we have
H=N(T) @ N(T)* =N(g(IT)) & N(f(IT))*
In case z € N (g(|T)), we obtain
Agg(T)a = F(TNU(T]) = 0 = F(T)V (T
So, fF(ITHUY(ITDz = f(IT)Vg(IT])z = 0, on N (g(|T))-
Now, in case z € R(f(|T|)), there exists z € H such that x = f(|T|)z. Then we have
Apg(Mz = f(ITHUg(IThz = fAITNUg(T))f(IT])=
= f(THUIT|=
= f(T)T=
= f(THVIT|=
= SUTHVa(IT)F(T))=
= fUTHVg(T])=.

Hence, f(IT)Ug(IT|) = f(T)Vg(IT]) on R(F(IT])) = N(f(|T]))*". Therefore, f(|T|)Ug(|T|) =
FATNHVy(|T]) on H.
g
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Here, we provide a new characterization of quasi-normal operators as follows:

Proposition 2.4. Let T' = U|T| € B(H) be the polar decomposition of T and let f, g be two non-negative
continuous functions on [0, +oo|, such that f(x)g(z) = x for all x > 0. Then the following assertions are
equivalent:
(1) T is quasi-normal.
(i) F(TDU = US(|T]) and g(|T|)U = Ug(|T]).
(eid) f(TDT = Tf(|T]) and g(|T)T = Ty(|T)-

Proof. (i) = (it). Suppose that T' is quasi-normal. By P(5), we have |T'|U = U|T|. Then
|T|"U = U|T|", forany n € N.

Which implies P(|T|)U = UP(|T|), for any polynomial P(t). Since f is a continuous function on [0, c0),
there existe a sequence of polynomial (P, ), such that P,,(t) — f(¢) uniformly on the interval [0, |||T']|].

Then,

Uf(‘TD = Unlggo Po(T) = nlggo UP,(T) = nlggo Pn(T)U = f(‘TDU
Hence, Uf(|T|) = f(|T|)U.
By similar way we can prove that g(|7'|)U = Ug(|T|).

(ii) = (iii). From (ii), We have
FATNT = fATHUIT| = U f(ITDIT = UL(TDHg(ITD f(T]) = UIT[f(IT]) = TF(|T1)-
and
g(ITNT = g(ITHUIT| = Ug(IT)|T| = Ug(IT) f(ITDg(IT]) = UIT|g(IT|) = Ty(|T).
So, (iii) is proved.
(iii) = (i). Using the assumption (iii), we obtain
T, = Tf(IThy(IT1)
= SUT)Tg(T)
= f(TNg(IT)T
— |T|T.

Hence, T'|T| = |T'|T and so T is quasi-normal, by P(6).
U

In [5, Proposition 1.10 ] it was proved that quasi-normal operators are exactly the fixed points of
the A\-Aluthge transform. However, this is not the case for (f, g)-Aluthge transform as shown by the

following example.
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0 0 5
Example 2.5. Consider T' = | 1 @ 0 | € C3. The canonical polar decomposition of T is T = U|T),
where
1 0 0 0 0 1
T|={0 1 0| and U=T|T|" =] L L& o
0 0 5 @ _% 0
It follows that
0 0 1 0 0 5
TU=| 1 B o|l#[ s ¥ of=Uml
50 Bo1oo
2

Therefore, T is not quasi-normal, by P(5). Let f(z) = 3" and g(z) = xe_(m_3)2,f0r x > 0. Then, f and g

are non-negative continuous functions on [0, co[ such that f(x)g(x) = x, for all z > 0. So, we obtain

0 0 F(1)g(5) 0 0 5
_ 1)g(1 g(1)v3 — —
F(ThUg(T)) = | L Hgh 0 =]z ¥ o|=T
fGgMV3  _ f(5)g(1) 0 V3 _1
2 2 2 2

Hence, Ay o(T) =T, while T is not quasi-normal.

In the following Theorem, we will show that the fixed points of the (f, g)-Aluthge transform are the

quasinormal operators for certain functions f.

Theorem 2.6. Let T' € B(H) and let f,g € Cy such that f(x)g(z) = x, forall x > 0. If f is increasing, then

T is quasi-normal <= Ay ,(T) =T.

Proof. =>. Note that this implication is true without the increasing condition of f. Since 7" is quasi-

normal, by Proposition 2.4, f(|T'|)U = U f(|T'|). Then we have

Apg(T) = f(TNUg(IT])
= UF(ThHg(TT)
= UlT|
= T

Therefore, Ay ,(T) = T.
Conversely, Suppose that A¢ ,(T') = T. Which implies that

FUTHU = UF(TDIg(T1]) = 0.
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So that f(|T'|)U = U f(|T|) on R(g(T)). On the other hand, by Lemma 2.2, we get
N(U) = N(f(ITD) = N(g(IT1))-

Hence, f(|T|)U = Uf(|T]) = 0 on N(g(T)). Consequently, f(|T|)U = Uf(|T|) on H. Since f is
increasing it has inverse f~!. Thus, by the continuous functional calculus, we obtain f~1f(|T|)U =

Uf~1f(|T|). Which means that |T|U = U|T|. Therefore, T is quasi-normal. O

As an application of the previous theorem we state an interesting result as follows:

Corollary 2.7. Let T' € B(H) be an invertible operator and let f, g € C such that f(x)g(z) = x, forall x > 0.
If f is increasing, then
A¢o(T) =T <= T isnormal.
Proof. Since T is an invertible, then
T is quasi-normal <= T'is normal.

Therefore, the result is obvious by Theorem 2.6. O

The next Proposition extends Lemma 2.3, obtained in [2] to the case of the (f, g)-Aluthge transform

as follows.

Proposition 2.8. . Let T' € B(H), P € B(H) be an orthogonal projection and let f,g € Cy such that

f(x)g(x) = z, forall = > 0. If f is increasing, then the following assertions are equivalent:
(i) Apq(TP)=T.
(15) TP = PT =T and T is quasi-normal.

Proof. (i) = (ii). Let TP = V|T P| be the polar decomposition of 7'P. From the hypothesis A ,(T'P) =
T, we get
FTP)Vy(ITP|) =T and g(ITP)V*f(|TP|) =T".

Hence, by Lemma 2.2, we obtain

R(T) € R(F(ITP))) € R(F(ITP) = N(f(ITP|)* = N(TP|)* = N(ITP|*)* = R(ITPP),
and

R(T*) € R(9(ITP)) € R(¢(ITP)) = N(g(ITP|))~ = N(ITP)* = N(ITP[*)*= = R(ITPP?).
Thus,

R(T) C R(TP2) and R(T*) C R(TPP). (2.1)

On the other hand, since |TP|?> = PT*TP = P|T|>P, we have

R(|TP)?) C R(P) =R(P).
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Using (2.1), it follows that
R(T) C R(P) and R(T™) C R(P).

Which implies that 7" = PT and T* = PT* = (T'P)*. By taking the adjoint, we deduce that PT =
TP =T. Thus,

Moreover, since f is increasing, 1" is quasi-normal, by Theorem 2.6.

(1) = (1) is deduced directly from Theorem 2.6. O
Obviously, every self-adjoint operator is quasi-normal but the converse is not true in general. Next,

we give certain conditions under which a quasi-normal operator becomes self-adjoint.

Proposition 2.9. . Let T' € B(#H) be a quasi-normal operator and let f, g € C such that f(x)g(z) = x, for all
x> 0. If Ay ,(T%) =T, then T is self-adjoint.

Proof. Let T = U|T| be the polar decomposition of T Since 7" is quasi-normal, by using Proposition 2.4,
we have f(|T|)U = U f(|T|) and ¢g(|T|)U = Ug(|T|). By taking the adjoint, we get
Ut f(IT) = f(THU* and U*g(|T]) = g(ITHU".
Since T* = U*|T*| is the polar decomposition of 7%, it follows that
Apg(T*) = f(TNU g(IT))
= Uf(|T)U*U*Ug(|T|)U* by Lemma 2.1 (v)
= Uf(|T))U*g(|T|)U* by Lemma2.1 (i7)
= US(TNU U g(|T])
= U F(TDg(IT1)
= UU?IT].
Thus, from the assumption A ,(T*) = T, we obtain U(U*)?|T| = U|T|. Multiplying this equality by
U* on the left side, we get
UU(U)?|T| = (U")?IT| = |T|.
So (U*)?|T) is self-djoint. Moreover, since T is quasi-normal, then we have
T = (U|T| = |T|U* = U|T|U.
Thus,
T=U|T| = |T\U=UUTIU=U"T|=|T\U*=T".

Therefore, T is self-adjoint. O
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Let T = U|T| be the polar decomposition of T € B(H) and A(T) = |T|2U|T|z be its Aluthge
transform. In [10], the authors showed that if U is unitary and 7" = aA(T") for some complex number
a, then T is normal. In the following three results, we discuss the similar situation of ( f, g)-Aluthge

transforms.

Proposition 2.10. Let f and g be two increasing functions in Cy such that f(z)g(x) = x, for all x > 0 and let
T = U|T)| be the polar decomposition of T € B(H). If T' = oAy 4(T) for some complex number «, then

Uf(IT)) = af(|IT))U and o > 1.
Proof. Let T' = U|T'| be the polar decomposition of 7. Then, we have

T =alpy(T) < UlT|=af(IT)Ug(|T])
> US(TDg(IT]) = af(ITNUg(IT)
> [US(T]) = af(IT)Ug(IT]) = 0,
and thus U f(|T|) = af(|T|)U on R(g(|T])) = N'(g(|T|))*. Since by Lemma 2.2, N'(f(|T|)) = N (U) =
N(g(|T])), then , itis clear that U f(|T|) = af(|T])U = 0on N (g(|T|)). Hence, U f(|T|) = af (|T])U on

H.
Multiplying this equality by U* on the left side and using Lemma 2.1 (i7), we get

FIT)) = aU™F(IT)U.

Hence o > 0, because f(|T']) and U* f(|T'|)U are positive. Moreover, since f and g are increasing, then
we have
1Tl = lelllAzg (Tl
< ol FATDHINT g AT
= allf/(ITPllg(ITPI since |U]| =1
= af ([IT1Dg T
= af(ITIDg(Tl})  since [[[T]]| = [T

= «o|T].
Thus, o > 1. O

We say that T' € B(H) is normaloid if and only if »(7') = ||T’||, where (T") denotes the spectral
radius of 7. In [ 11, Corollary 9] the authors showed that the inequality ||A,(7T")|| > ||T'|| holds, for

any normaloid operator 7" in B(#). Next, We use this result to prove the following corollary.
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Corollary 2.11. Let f, g be two increasing functions in C such that f(x)g(x) = x, forall x > 0. If T € B(H)

is a non-zero normaloid operator such that T' = aAy 4(T), for some complex number «, then T is quasi-normal.

Proof. Suppose that T' = aA¢ 4(T"). From Proposition 2.10, we obtain o > 1. On the other hand since T’

is normaloid and by using [11, Corollary 9], we have
171 = lladsg(T)] = [T

It follows that o < 1 and so & = 1. which means that 7" = Ay ,(T'). Therefore, T' is quasi-normal by
Theorem 2.6. 0

Proposition 2.12. Let f, g be two increasing functions in C such that f(x)g(x) = z, for all x > 0, and let
T = U|T)| be the polar decomposition of T' € B(H) with U unitary. If T' = oy ,(T") for some complex number

«, then T is normal.

Proof. Using Proposition 2.10, we have U f(|T'|) = af (|T'|)U. Since f(|T'|) is positive, by [ 10, Proposition
2.10], we deduce that a = 1. This implies that 7" = Ay ,(T"). Therefore, from Theorem 2.6, T' is quasi-

normal. So T' is normal because U is unitaire. O
Now, we present some relationships between a positive operator and its ( f, g)-Aluthge transform.

Theorem 2.13. Let T' € B(H) be an invertible operator. Then the following assertions are equivalent:

(2) T is positive.
(i1) Ay q(T) is positive, for every f, g € C which satisfying f(x)g(x) = x, for all x > 0.
(i7i) Ay 4(T) is positive, for some f, g € Cy which satisfying f(x)g(x) = x, for all z > 0.

Proof. (i) = (ii). Let T = U|T| be the polar decomposition 7. Since 7' is positive and invertible, it
follows that

U = 1|1
= 177!

= [

Thus, Af4(T) = f(|T])g9(|T|) = |T|, and so Ay 4(T) is positive .

(73) = (i74). Trivial.

(17i) = (i). Assume that Ay (T) is positive. Since T is invertible, then |T'| is invertible and by the
continuous functional calculus, f(|T]) and g(|T|) are also invertible. We put A = (g(|T)))~*f(|T)).
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Then A is the product of two commuting and positive operators so A > 0. As a consequence, we have
AU = g(IT))~'f(TU
= (T~ (FITHU (T (9(|IT1) ™
= (9(ITD) " Apg(T)(g(IT) ™.

Hence, AU = (g(|T'])) ' As4(T)(g(|T|)) " is positive. Which means that AU = U*A. By multiplying
this equation on the left by U, we get

UAU =UU*A = UAU=A since U is unitary
— (AU)?* = A?
— AU=A since AU and A are positive
= U=1 since A is invertible.
That implies 7' = |T'| and so T' is positive. O

The following theorem shows that the ( f, g)-Aluthge transform of a nilpotent operator is nilpotent

too. This theorem was proved by Jung, Ko and Pearcy in [6], for A\-Aluthge transforms.

Theorem 2.14. Let T € B(H) and let f and g be as in Theorem 2.13. Then for every d € N*, we have
TH =0 <= (A, (T))*=0.
Proof. Let T = U|T| be the polar decomposition of T"and d € N*. Then, it is easy to see the following
equalities:
T = OIT) = (Ue(TDFITD)
= Ug(ITh((THUg(IT))*F(IT1)
= Ug(IT)(Arg(T))*f(IT). (2.2)
Thus, (A 4(T))¢ = 0 implies that 7¢"! = 0. Conversely, we have
T =0 = Ug(T)(As(T) (T =0 by (22)
— UUg(T)(A (D) (T]) = 0
— (ITN(Apy (D) F(T) =0 by Lemma2.1(ii)
= FTDI(TN(Arg(T)F(ITNg(IT]) =0
= |T|(Apg(T))"T| = 0.
Hence, for all z € H, it follows that

(TI(Apg(T)T Iz, 2) = (Apg(T))T |z, |T|z) = 0.



Asia Pac. J. Math. 2025 12:57 12 of 19

Thus, (A74(T))¢ = 0 on R(|T'|). Moreover, from Lemma 2.2, we have

N(T|) = N(g(IT])) € N(Ag,y(T)),

which gives, (A ,(T))? = 0 on N'(|T|) = 0. Therefore, (A 4(T))% = 0 on H.

In what follows of this section, we study the closedness of the range of A (7).

Proposition 2.15. Let T' € B(H) be positive and let f,g € C such that f(x)g(z) = z, for all = > 0. Then the

following assertions are equivalent.
(i) R(T) is closed,

(1) R(f(T)) is closed,
(7i1) R(g(T)) is closed.

In any case, R(T)) = R(f(T")) = R(9(T))-

In order to prove Proposition 2.15, we need to recall the reduced minimum modulus that measures

the closedness of the range of an operator.
Lemma 2.16. [3] Let T' € B(H). Then the reduced minimum modulus of T is defined by:

oo PREIT s = 1w X)) if T 0
400 if T =0.

Thus, v(T') > 0 if and only if T has a closed range .

Proof. ( Proposition 2.15)

(1) = (i1). Assume that R(T) is closed and R(f(T')) is not closed. By Lemma 2.16, v(f(T")) = 0. So,
there exists a sequence of unit vectors x,, € N(f(T))* such that f(T)z, — 0. From Lemma 2.2,
z, € N(T)* and Tz, = g(T) f(T)x,, — 0. This contradict the fact that R(T") is closed.

(73) = (7). Suppose that R(f(7")) is closed and R(T') is not closed. Thus, v(7") = 0. So, we can choose a
sequence of unit vectors x,, € N'(T)* such that Tz, — 0. Which means that f(T")g(T)z,, — 0. By using

again Lemma 2.2, z,, € N(T)+ = N (g(T))*. So, there exists a > 0 such that ||g(T)z,|| > « for all n.
9g(T)zn

Wi ty, = —F—+-F—.
PR = (T

Then clearly, ||y, || = 1 and f(T)y, — 0. Moreover
yn € R(9(T)) C R(g(T)) = N(9(T))"* = N(f(T))",

For all n. This contradicts the fact that R(f(7")) is closed.

With similar arguments we prove the equivalence (i) <= (ii7).
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Theorem 2.17. Let T € B(H) and let f, g € C4 such that f(z)g(z) = z, forall z > 0. IF N (T') C N(T*),
then
R(T) isclosed <= R(Asq(T)) isclosed.

Proof. First, recall that the closedness of any one of the following sets implies the closedness of the

remaining three sets:
R(T), R(T), R(ITY) and R(|T™).

If R(T) is closed, then R(T) = R(|T*|) and R(T™) = R(|T).
—>. By taking the orthogonal complements in the relation NV (T') C N(T*) and since R(T') is closed,
we get that R(T) € R(T™). This implies that Pgp+)Pr(r) = Pr(r)- Therefore, we have

R(T) isclosed == R(Pr(r+)Pr(r)) is closed

!

R(Pr(ryPr(r+)) is closed

Pr(1)R(Pr(r+)) is closed

PrryR(|T]) is closed

PrryR(f(|T|)) is closed by Proposition 2.15
R(f(IT|)Pr(r)) is closed

FITNR(Prr)) is closed

FUTR(|T*|) is closed
FATNR((IT™[£(IT7])) is closed
FATNg(IT*)R(f(IT™])) is closed
FATNg(IT)R(|T™]) is closed
FTNg(IT*)R(U) is closed
FUTNR(g(IT*)U) is closed

FUT)R(Ug(|T])) isclosed by Lemma 2.1, (7)

el

FUT)RUg(|T])) is closed

I

R(Afq4(T)) is closed .

<= Suppose that R(A¢ 4(T)) is closed and R(T’) is not closed. Then R(|T’|) is not closed. It follows from
Proposition 2.15 that R(g(T')) is nonclosed and so there exists a sequence of unit vectors z,, € N'(g(|T|))*
such that g(|T'|)x, — 0. This implies that Af,(T)x, = f(|T|)Ug(|T|)xn, — 0. Now, we show that
zn € N(Ag,(T))%, for all n. It is enough to prove that N'(Af 4 (T)) € N (g(|T|)). Let z € N (As4(T)).
Then f(|T)Ug(|T|)x = 0, which means that
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Ug(IT)z € N(f(IT)) NR(U) = N(IT|) N RT) € N(T*) N R(T) = {0}.

So Ug(|T|)x = 0. By using P(1) and Lemma 2.2, we deduce that g(|T|)z = U*Ug(|T|)z = 0. Hence,
z € N(g(|T))). Finally, each x,, € N(Af4(T))* and Ay ,(T)x,, — 0, which is a contradiction with the
fact that R(A4(T')) is closed. O

3. ON THE POLAR DECOMPOSITION OF THE ( f, ¢)-ALUTHGE TRANSFORM

We show below that under some conditions the (f, g)-Aluthge transform possesses the polar de-

composition. The proof of Theorem 3.1, in the particular case f(z) = g(z) = 2, (x > 0) can be found

in [4].

Theorem 3.1. Let T' = U|T| be the polar decomposition of T' € B(H) and f, g € C; such that f(x)g(z) = x,
forall x > 0and let f(|T|)g(|T*|) = V|f(|T])g(|T*|)| be the polar decomposition too. Then

Apg(T) = VU[Afy(T)]
is also the polar decomposition of Ay 4(T).
Proof. (i) Firstly, we show that Ay ,(T) = VU|Af4(T')|. By Lemma 2.1 (ii), we easily obtain
Ug(IT)Sg(ITHU)" = Ug(IT)Sg(IT])"U™,
for any positive operator S € B(#) and all n € N*. Which implies
PUg(IT)Sg(IT)U™) = UP(g(IT))Sg(IT])U™,

for any polynomial P(t) with no constant term. Since K (¢) = t%, (v > 0) is a continuous function
in [0, 00|, so there exist a sequence of polynomial (P, ),en+ such that P,(0) = 0, for each n € N*, and

(Py(t))nen+ converges uniformly to K (¢) on the interval [0, |||T|||]. Hence,

KUg(TNSgITU) = lm_Pa(Ug(|T)Sg(IT))U")
= lim UP(g(IT)Sg(T))U"

= UK(g(IT)Sg(|T]))U".

So,

Ug(ITHSg(ITHU)* = U(g(IT)S9(IT))*U™, (3.1)
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for any positive operator S € B(#H) and all a > 0. It follows that
VU|As(T)| = VOUU(g(IT)U* F(IT) (I THU(|T]))z
= VU(g(T)U*F(T) F(THU(T])2U*U
= V(Ug(T)U*F(T)F(THU(ITHUMZU by (3.1)
= V(g(T* (TN F(Tg(IT*)))2U by Lemma 2.1 (v)
= VIf(ITDg(ITNIU
= f(TNg(IT* U
= f(T)NUg(IT|) by Lemma 2.1(i)
= Ay, (7).
(i) Secondly, we will show that N (A 4(T)) = N(VU). For x € B(H), we have
VUz=0 < [f(TDhg(|IT*)Uz =0 since N(V)=N(f(IT)g(IT"]))
& f(ITNHUg(|T))z =0 by Lemma 2.1 ()
& Apy(T)z=0.

Therefore, N(VU) = N (A 4(T)).
(#4i) Finally, we shall prove that VU is a partial isometry. By (ii), we get that

NVU)= =N(Azg(T))* =R(IAz4(T)))-

So, for every x € R(|Ay4(T)|), there exists a sequence (y,), C H such thatz = ll}rf |Af.(T) |-

Hence, we have
VU] = VU lm A (Tl
= | Jim VU|A;y(T) g
= | fim Apy(T)yall by (1)
= lim [[Ag, (T
= Jim [[A7(T)lynl
= || Jim (A (Tl

= [lll;

thatis VU is a partial isometry.



Asia Pac. J. Math. 2025 12:57 16 of 19

The following is a new characterization of binormal operators which is an extension of Theorem 3.1

in [4].

Theorem 3.2. Let T' = U|T| be the polar decomposition of T € B(H) and let f,g € C be two increasing
functions such that f(z)g(x) =z, forall z > 0. Then

T is binormal <= Ay (T) = U|Ay4(T)|.

Proof.
(:>)f. This implication is true without the increasing condition of f and g. Suppose that T" is binormal.
This means that |T||T*| = |T*||T|. Since f,g € Cy, by the continuous functional calculus we have
FUTg(T*]) = g(IT*) (| T]). Tt follows that f(|T|)g(|T*) > 0and so f(|T|)g(|T*|) = |F(IT)g(|T*])|
From this equality and Lemma 2.1, we get
Apg(T) = F(THUG(IT))

= F(TDg(T U

= |F(TDg(T* U

= UU(g(T* ST F(TNg(|T])ZU

= U g(IT*)F(TN (T g(IT)U) 2

= U((g(T*)U)* F(TD F(TNg(IT*)U)*

= U(WUg(IT))* F(T)F(T)HUg(IT]))?

= U(g(ThU* F(IT)) F(THUg(IT]))

= U((Arg(T))"Aye(T))

= UlAsy(T)]-

[N

(). Assume that A¢ ,(T') = U|Af4(T')|. Then we have
F(TNg(T*) = F(ITHUg(ITNU" = Afo(T)U" = U|As,4(T)U™,

and
g(IT*Nf(|T]) = Ug(ITDU F(IT]) = U(Apg(T))" = U(U|Asg(T)])" = UlAy,o(T)|U”.

Hence, f(|T))g(|T*|) = g(|T*|)f(|T]). Since f and g are increasing, they have inverses. So by the

continuous functional calculus, we get

ST (1) = g g(IT*) 1 FIT)).

Therefore, |T'||T*| = |T™||T'| and so T  is binormal.
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The binormality of a bounded operator on Hilbert spaces does not imply the binormality of its
(f, g)-Aluthge transform. As shown in [4, Example 3.4], for f(t) = g¢(t) = tz, (t > 0). Recently
in [12], we showed that if 7" is a binormal operator such that the partial isometry factor U of its polar
decomposition is unitary and satisfies U%|T| = |T|U?, then A(T) is binormal, for any A €]0, 1[. In our

final result, we will show the binormality of Ay ,(T") under the same conditions.

Proposition 3.3. let f,g € C; such that f(x)g(z) =z (z > 0) and let T = U|T| be the polar decomposition
of a binormal operator T € B(H). If in addition U is unitary and U*|T| = |T|U?, then Ay 4(T) is binormal.

Proof. From the hypothesis U?|T| = |T|U? and using the continuous functional calculus, we obtain
Uf(|IT|) = f(T|)U?, for f € Cy . This implies Uf(|T*|)U = f(|T|)U? by Lemma 2.1 part (i).
Multiplying this equality by U* on the right side and since U is unitary, we get

vr(Te)) = f(TNu, (3.2)
and by taking the adjoint, we get also
FATHU™ = U (). (3.3)
Therefore, we have

[Apg(T)PlArg(DIP = FITHUg(T)g(ITHU|TIU* F(IT1) F(THU(IT))
= SUTDg(IT*Dg(IT*hUUTIU" f(IT)F(THU(IT]) by Lemma 2.1(i)
= fATDlg(T*NPITIO* (TN FITU9(IT1)
(DT DIITICFATHU)* F(THU(IT])
(TDlg(T*NPITIF(T*NU*F(TU(IT]) by (3.2)

f
f
= fATDIg(T*NPITIFAT* ) FAT*HUUg(IT]) by (3.3)

= FUTDI(T DPITIFT)?9(IT1).- (3.4)

On the other hand, since 7" is binormal, i.e. |T'||T™*| = |T||T"|, By using again the continuous functional

calculus, we have
IT1f(T*]) = f(IT*DIT| and [T*|g(|T']) = g(|T])[T™]. (3.5)
Then, by (3.4) and (3.5), we obtain

Asg(T)*P|Asg (TP = TP T
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With the same calculus, we have

[Arg(D)PA g (D) = g(THU* F(ITNF(THUITIU(IT)g(ITU* F(IT])
= g(ITNUFATDLATNUITIg(IT*NDUg(ITHU™ F(IT')
= g(THU* AT LATHUITIg(IT™ Ng(IT*)UU™ f(|T]) by Lemma 2.1(i)
= g(ThU*f(IT)FATHUIT|[g(IT*)*F(IT1)
= g(TH(FTHO)* FATHUIT|[9(|T*)]* F(IT1)
= g(ITNSAT* DU F(THUITI9(IT* N> f(IT]) by (3.2)
= g(T) AT AT HUUIT|[g(IT*NI* f(IT]) by (3.3)
= g(TDIFIT* DT g(I T F(IT1)
= |TPIT*|* by (35).

And finally we deduce that A ,(T) is binormal. O
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