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Abstract. In this paper, we give a new definition of the Conformable ARA Transform defined by
Gαn[f(t)](s) = s

∫∞
0

tα(n−1)e−s
tα

α f(t)tα−1dt. Where we show a set of properties, Examples, and the
relationship between the new concept and the ARA classical transform.
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1. Introduction

In recent years, the study of fractional calculus has gained significant attention due to its wide range
of applications in various fields such as engineering, physics, and signal processing [4, 7–11]. Among
the many tools developed in this area, ARA transforms have emerged as a powerful method for solving
fractional differential equations and analyzing systems with non-classical boundary conditions.

Building on the foundation of the classical ARA transform introduced by Saadeh et al. (2020) [1],
this paper presents a new definition of the conformable ARA transform and explores its properties and
applications. The conformable ARA transform extends the classical ARA transform by incorporating
fractional differentiation in a conformable setting, offering a more generalized framework for solving
complex problems. This generalization not only preserves the essential properties of the classical
transform, such as linearity and derivative rules, but also introduces new features like index reduction
and binomial-type properties, which are particularly useful in solving fractional-order differential
equations.

The conformable formable transform, another key focus of this work, further generalizes existing
integral transforms (such as Conformable Laplace transform [15], Conformable Fourier transform
[13, 14], and Conformable Sumudu transforms [2]) by incorporating fractional differentiation in a
conformable context. This extension has shown promise in solving problems involving fractional
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derivatives and has been successfully applied to the analysis of dynamical systems and differential
equations.

The primary objective of this paper is to establish the relationship between the conformable ARA
transform, the conformable formable transform, and their classical counterparts, while highlighting
their structural properties and practical applications. We will demonstrate how these transforms can be
used to solve generalized differential equations and model phenomena where fractional differentiation
plays a crucial role.

The paper is organized as follows:
- Preliminaries: We introduce the basic definitions and tools, including conformable derivatives and
the classical ARA transform.
- Key results and applications of the conformable ARA transform: We present the main formulas,
provide detailed proofs, and illustrate their effectiveness through examples and benchmark problems.
- Conformable formable transform: We propose a generalization of the classical formable transform,
discuss its structural properties, and compare its advantages with classical methods.

Finally, we conclude by summarizing the contributions of this work and suggesting future research
directions, such as exploring additional generalized transforms and applying them to broader classes
of differential equations. Through this work, we aim to provide a deeper understanding of conformable
transforms and their potential in advancing the field of fractional calculus.

In this context, we will particularly rely on the fact that the conformable ARA transform Gαn[g(t)](s)

can be expressed as a scaled version of the classical ARA transform applied to a function h(u) =

g
(
(αu)

1
α
). This relationship paves the way for properties analogous to those already known for the

“classical” ARA transform. As we will see, this principle has significant consequences for solving
fractional equations and constructing analytical solutions.

2. Basic Definitions and Tools

In this section, we introduce the definition of conformable derivative and its important properties,
and the classical ARA transform and its important properties.

Definition 2.1. [4] Let f : [0,∞)→ R and 0 < α ≤ 1. The conformable derivative of f is defined by:

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
, t > 0.

For examples and rules, see the reference above.

Definition 2.2. [3] The conformable integral of f is given by:

Iα(f)(t) =

∫ t

0
τα−1f(τ) dτ.
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Lemma 2.3. [3] Let 0 < α ≤ 1 . Assume that f : [0,+∞)→ R is continuous. Then, for all t > 0 we have

Tα(Iα(f)(t)) = f(t).

Lemma 2.4. [3] Let 0 < α ≤ 1 and assume that f : [0,+∞)→ R is α-differentiable. Then, for all t > 0 we

have

Iα(Tαf(t)) = f(t)− f(0)

with β > 0.

Theorem 2.5. [13] Let f : [0,∞)→ R be a function. Then

Lα(f)(s) = L
{
f(αx)

1
α

}
(s).

Where Lα is the Conformable Laplace transform defined by

Lα(f)(s) =

∫ +∞

0
e−s

tα

α tα−1f(t)dt.

Definition 2.6. The classical ARA transform of order n of a continuous function g(t) on (0,∞) is defined as:

Gn[g(t)](s) = G(n, s) = s

∫ ∞
0

tn−1e−stg(t) dt, s > 0.

Definition 2.7. The Formable Transform of the continuous function f(t) on the interval [0,∞) is a new integral

transform that is defined as below.

R[f(t)] =
s

u

∫ ∞
0

e−
s
u
tf(t)dt

In the next section, we present a new definition and some results of ARA-conformable.

3. Conformable ARA Transform and Property

Definition 3.1. Let g(t) be a continuous function on (0,∞). The conformable ARA transform of order n is

defined as:

Gαn[g(t)](s) = s

∫ ∞
0

tα(n−1)e−s
tα

α g(t)tα−1dt, s > 0,

Remark 3.2. Using dtα = tα−1dt, the transform simplifies to:

Gαn[g(t)](s) = s

∫ ∞
0

tαn−1e−s
tα

α g(t) dt.

Remark 3.3. When α = 1, the conformable ARA transform reduces to:

G1
n[g(t)](s) = s

∫ ∞
0

tn−1e−stg(t) dt,

Which is exactly the classical ARA transform:

Gn[g(t)](s) = G1
n[g(t)](s).

Thus, the conformable ARA transform generalizes the classical ARA transform, and when α = 1, both

transforms coincide.
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Example 3.4. Compute the Conformable ARA Transform of g(t) = tk, where k > −(n+ α− 1).

Starting from the new definition of the Conformable ARA Transform:

Gαn[g(t)](s) = s

∫ ∞
0

tαn−1e−
s
α
tαg(t) dt.

Substitute g(t) = tk:

Gαn[tk](s) = s

∫ ∞
0

tαn−1e−
s
α
tαtk dt = s

∫ ∞
0

tαn+k−1e−
s
α
tαdt.

Perform the change of variable:

u =
tα

α
=⇒ tα = αu =⇒ t = (αu)1/α.

Differentiating tα = αu:

αtα−1
dt

du
= α =⇒ tα−1

dt

du
= 1 =⇒ dt =

du

tα−1
.

Substitute into the integral:

Gαn[tk](s) = s

∫ ∞
0

tαn+k−1e−su
du

tα−1
= s

∫ ∞
0

tαn+k−1−(α−1)e−sudu.

Combine the exponents of t:

(αn+ k − 1)− (α− 1) = αn+ k − α.

Thus the integrand in terms of u is:

Gαn[tk](s) = s

∫ ∞
0

tαn+k−αe−sudu.

Now express t in terms of u:

t = (αu)1/α =⇒ tαn+k−α = [(αu)1/α]αn+k−α = (αu)
αn+k−α

α .

So:

Gαn[tk](s) = s

∫ ∞
0

(αu)
αn+k−α

α e−sudu.

Factor out α
αn+k−α

α :

Gαn[tk](s) = sα
αn+k−α

α

∫ ∞
0

u
αn+k−α

α e−sudu.

Set:

m =
αn+ k − α

α
= (n− 1) +

k

α
.

Thenm+ 1 = n+ k
α .

On the other hand, the gamma integral: ∫ ∞
0

ume−sudu =
Γ(m+ 1)

sm+1
.
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Substitute:

Gαn[tk](s) = sαm
Γ(m+ 1)

sm+1
= Γ(n+ k

α)α(n−1)+ k
α s1−(n+

k
α
).

Notice that:

1− (n+ k
α) = −((n− 1) + k

α).

Hence:

Gαn[tk](s) = Γ

(
n+

k

α

)
α(n−1)+ k

α

(
1

s

)(n−1)+ k
α

.

We can rewrite this neatly as:

Gαn[tk](s) = Γ

(
n+

k

α

)(α
s

)(n−1)+ k
α
.

Example 3.5. Calculating the ARA transform of certain usual functions

(1) For g(t) = e
tα

α , we have

Gαn

[
e
tα

α

]
(s) = s

∫ ∞
0

tαn−1e−
s
α
tαe

tα

α dt = s

∫ ∞
0

tαn−1e−
tα

α
(s−1) dt.

Let λ = s−1
α . The integral is of the form.∫ ∞

0
tαn−1e−λt

α
dt =

1

α
λ−nΓ(n).

Here, Γ(n) = (n− 1)! for n ∈ N. Hence:

Gαn

[
e
tα

α

]
(s) = s

1

α

(
α

s− 1

)n
(n− 1)!.

Simplifying :

Gαn

[
e
tα

α

]
(s) =

s αn−1(n− 1)!

(s− 1)n
.

(2) g(t) = sin
(
tα

α

)
We use the Taylor series of sin(x) :

sin(x) =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

Here x = tα

α , so

sin

(
tα

α

)
=

∞∑
k=0

(−1)k
(
tα

α

)2k+1

(2k + 1)!
.

Substitution in the integral :

Gαn[sin( t
α

α )](s) = s

∫ ∞
0

tαn−1e−
s
α
tα

( ∞∑
k=0

(−1)k
tα(2k+1)

α2k+1(2k + 1)!

)
dt.

= s
∞∑
k=0

(−1)k

(2k + 1)!α2k+1

∫ ∞
0

tαn−1+α(2k+1)e−
s
α
tαdt.

The total exponent is αn− 1 + α(2k + 1) = α(n+ 2k + 1)− 1. Positm = n+ 2k + 1. Then∫ ∞
0

tαm−1e−
s
α
tαdt =

1

α
Γ(m)

(α
s

)m
.
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Thus:

Gαn[sin( t
α

α )](s) = s

∞∑
k=0

(−1)k
Γ(n+ 2k + 1)

(2k + 1)!α2k+1

(α
s

)n+2k+1 1

α
.

(3) For g(t) = cos
(
tα

α

)
Similarly, for the cosine:

cos(x) =
∞∑
k=0

(−1)k
x2k

(2k)!
, x =

tα

α
.

cos

(
tα

α

)
=
∞∑
k=0

(−1)k
( t
α

α )2k

(2k)!
.

Substitution:

Gαn[cos( t
α

α )](s) = s

∞∑
k=0

(−1)k
1

(2k)!α2k

∫ ∞
0

tαn−1+α(2k)e−
s
α
tαdt.

= s

∞∑
k=0

(−1)k
1

(2k)!α2k

1

α
Γ(n+ 2k)

(α
s

)n+2k
.

Theorem 3.6. Let g(t) ∈ Gn,α(s). Then, the conformable ARA transform Gαn[g(t)](s) is related to the classical

ARA transform Gn by the following relation:

Gαn[g(t)](s) = αn−1Gn

[
g
(

(αu)
1
α

)]
(s),

where Gn the classical ARA transform.

Proof. By definition and leting u = tα

α .
We have

Gαn[g(t)](s) = s

∫ ∞
0

(αu)n−1e−sug
(

(αu)
1
α

)
du

= αn−1
∫ ∞
0

un−1e−suαn−1g
(

(αu)
1
α

)
du

= αn−1Gn[g((αt)
1
α )](s).

�

Theorem 3.7 (Linearity of Gαn). The operator Gαn is linear. For any functions g1(t) and g2(t), and scalars

c1, c2, we have:

Gαn
[
c1g1(t) + c2g2(t)

]
(s) = c1G

α
n

[
g1(t)

]
(s) + c2G

α
n

[
g2(t)

]
(s).

Proof. By definition of Gαn, the operator acts linearly on the integral transform of g(t). Applying the
linearity of integrals to c1g1(t) + c2g2(t) yields the desired result. �
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Theorem 3.8. Let α ∈ (0, 1] and n > 0. Suppose f is a function for which the conformable transform Gαn [f ]

exists. Then the inverse α-Laplace transform of Gαn [f ] is given by

L−1α
[
Gαn [f(t)](s)

]
(t) = α tα (n−2)

(
2H
(
tα

α

)
− 1

) [
(n− 1) f(t) + t

α f
′(t)
]
,

where

H(x) =

∫ x

−∞
δ(s) ds

It is the usual Heaviside step function (integral of the Dirac delta).

Proof. Recall that the conformable generalized ARA transform of order α and index n can often be
written as

Gαn [f(t)](s) =

∫ ∞
0

[
tα(n−1)

]
e− s t

α
f
(
t
)

d
(
tα
)
,

or, equivalently, in the form

Gαn [f(t)](s) = s

∫ ∞
0

tαn−1 e−s u f(t) dt after the substitution u = tα

α .

Let us make that substitution precisely:

u =
tα

α
=⇒ t = (αu)

1
α , dt = α

1
α u

1
α−1 du.

One finds (suppressing some constant factors for brevity) that.

Gαn [f(t)](s) = αn−1 Gn
[
h(u)

]
(s), where h(u) = f

(
(αu)

1
α
)
.

From known properties of the (ordinary) ARA-type transform Gn (sometimes called the generalized
Laplace transform of order n), its the inverse is given by

L−1
[
Gn[h(u)](s)

]
(u) = un−2

[
(n− 1)h(u) + uh′(u)

]
.

Substituting back u = tα

α and h(u) = f(t) recovers (up to the Heaviside factor) the expression

L−1
[
Gαn [f(t)](s)

]
(t) = α tα (n−2)

[
(n− 1) f(t) + t

α f
′(t)
]
.

Finally, in the context of conformable transforms on R+, one typically includes the factor 2H
(
tα

α

)
− 1

(which acts like a sign or step adjustment to ensure support or causality). Hence the full inverse
α-Laplace transform is

L−1α [Gαn [f(t)](s)](t) = α tα(n−2)
(

2H
(
tα

α

)
− 1

) [
(n− 1)f(t) + t

α f
′(t)
]
.

This completes the proof. �

Theorem 3.9. The operators Gαn satisfy the following relationships :

i) Gαn
[
{Dαg(t)}(s)

]
= sGαn

[
{g(t)}(s)

]
− Gαn

[
α(n−1) g(t) t−α

]
(s).

ii) Gαn
[
D2αg(t)

]
(s) = s2Gαn [g(t)] (s)− 2sαn−1Gαn−1 [g(t)] (s) + α2n−3Gαn−2 [g(t)] (s).
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Proof. i )

Gαn [Dαg(t)] (s)

= s

∫ +∞

0
tα(n−1)Dαg(t)e−s

tα

α tα−1dt

= s

∫ +∞

0
tα(n−1)g′(t)e−s

tα

α dt

= s
[
tα(n−1)e−

stα

α

]+∞
0
− s

∫ +∞

0

(
e−s

tα

α

[
α(n− 1)tα(n−1)−1 − stαn−1

]
g(t)

)
dt

= 0− sα(n− 1)

∫ +∞

0

(
e−s

tα

α tα(n−1)−1g(t) + stαn−1e−
stα

α g(t)
)
dt

= sGαn [g(t)] (s)−Gαn
[
α(n−1)g(t)t−α

]
(s).

Why
[
tα(n−1)e−

stα

α

]+∞
0

= 0: The integral ∫ +∞
0 tα(n−1)e−

stα

α dt converges for s > 0, as e− st
α

α

decays exponentially as t → ∞. Thus, the limit as t → ∞ of tα(n−1)e− st
α

α is 0, justifying that[
tα(n−1)e−

stα

α

]+∞
0

= 0.
ii)

Gαn
[
D2αg(t)

]
(s) = Gαn [Dα(Dαg(t))] (s)

= sGαn [Dαg(t)] (s)−Gαn
[
αn−1Dαg(t)t−α

]
(s)

= s
(
sGαn [g(t)] (s)−Gαn

[
αn−1g(t)t−α

]
(s)
)
− αn−1Gαn

[
Dαg(t)t−α

]
(s)

= s2Gαn [g(t)] (s)− sGαn
[
αn−1g(t)t−α

]
(s)− αn−1Gαn

[
Dαg(t)t−α

]
(s).

Now, observe that:

Gαn
[
Dαg(t)t−α

]
(s) = Gαn−1 [Dαg(t)] (s)

(Using the theorem Gαn

[
g(t)

tαm

]
(s) = Gαn−m[g(t)](s), herem = 1).

Thus:
Gαn
[
Dαg(t)t−α

]
(s) = Gαn−1 [Dαg(t)] (s).

Hence

Gαn
[
D2αg(t)

]
(s)

= s2Gαn [g(t)] (s)− sαn−1Gαn
[
g(t)t−α

]
(s)− αn−1

(
sGαn−1 [g(t)] (s)−Gαn−1

[
αn−2g(t)t−α

]
(s)
)

= s2Gαn [g(t)] (s)− sαn−1Gαn
[
g(t)t−α

]
(s)− αn−1sGαn−1 [g(t)] (s) + αn−1αn−2Gαn−1

[
g(t)t−α

]
(s)

= s2Gαn [g(t)] (s)− sαn−1Gαn
[
g(t)t−α

]
(s)− αn−1sGαn−1 [g(t)] (s) + α2n−3Gαn−1

[
g(t)t−α

]
(s)

= s2Gαn [g(t)] (s)− sαn−1Gαn−1 [g(t)] (s)− αn−1sGαn−1 [g(t)] (s) + α2n−3Gαn−2 [g(t)] (s)
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= s2Gαn [g(t)] (s)− sαn−1Gαn−1 [g(t)] (s)− αn−1sGαn−1 [g(t)] (s) + α2n−3Gαn−2 [g(t)] (s)

= s2Gαn [g(t)] (s)− 2sαn−1Gαn−1 [g(t)] (s) + α2n−3Gαn−2 [g(t)] (s).

Thus, we have:

Gαn
[
D2αg(t)

]
(s) = s2Gαn [g(t)] (s)− 2sαn−1Gαn−1 [g(t)] (s) + α2n−3Gαn−2 [g(t)] (s).

�

Theorem 3.10. For constants α, n, andm, the conformable Laplace transform exhibits the following shifting

property in the αn-domain:

Gαn
[
e−c

tα

α g(t)
]

(s) =
s

s+ c
Gαn(s+ c).

Proof.

Gαn
[
e−c

tα

α g(t)
]

(s) = s

∫ ∞
0

tn−1e−ste−c
tα

α g(t)dt = s

∫ ∞
0

tn−1e−(s+c)
tα

α g(t)dt

=
s

s+ c
(s+ c)

∫ ∞
0

tn−1e−(s+c)tg(t)dt

=
s

s+ c
Gαn (s+ c)

�

Theorem 3.11. Shifting in αn - Domain

Gαn [tαmg(t)] (s) = Gαn+m[g(t)](s).

Proof.

Gαn [tαmg(t)] (s) = s

∫ ∞
0

tαn−1e−s
tα

α tαmg(t)dt = s

∫ ∞
0

tα(m+n)−1e−s
tα

α g(t)dt

= Gαn+m[g(t)](s).

Also, Gαn
[
g(t)
tαm

]
(s) = Gαn−m[g(t)](s).

�

Theorem 3.12. Let f and h be appropriate functions. Then, the transform Gαn satisfies the following convolution

property:

Gαn [f(t) ∗ h(t)](s) = (−α)n−1s

n−1∑
j=0

cn−1j

(
L(j)α [f(t)](s)

)
·
(
L(n−1−j)α [h(t)](s)

)
.

Proof. Starting from the definition:

Gαn [(f ∗ h)(t)](s) = αn−1(−1)n−1s
n−1∑
j=0

cn−1j

(
L(j)α [f(t)](s)

)
·
(
L(n−1−j)α [h(t)](s)

)
.
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Noting that (−1)n−1 = (−α)n−1

αn−1 , we substitute to obtain:

Gαn [(f ∗ h)(t)](s) = (−α)n−1s

n−1∑
j=0

cn−1j

(
L(j)α [f(t)](s)

)
·
(
L(n−1−j)α [h(t)](s)

)
.

This proves the stated convolution property. �

Theorem 3.13. Let g be an appropriate function and uc(t) be the delayed unit step function defined by uc(t) =

u(t− c). Then:

Gαn [uc(t)g(t− c)] (s) = e−csαn−1Gα1
[
g(v)(v + c)n−1

]
.

Proof. We start by expressing:

Gαn [uc(t)g(t− c)] (s) = αn−1Gn [uc(t)g(t− c)] (s).

Using the classical Advanced Regular Analysis (ARA) results, we obtain:

Gn [uc(t)g(t− c)] (s) = e−csG1
[
g(v)(v + c)n−1

]
(s).

Substituting back, we have:

Gαn [uc(t)g(t− c)] (s) = αn−1e−csGα1
[
g(v)(v + c)n−1

]
,

Which establishes the translation property. �

Example 3.14. We consider the following conformal fractional equation:

Dαy(t) + ay(t) = 0, y(0) = y0, 0 < alpha ≤ 1, a > 0.

Apply Gα1 to the equation Dαy(t) + ay(t) = 0 :

Gα1 [Dαy(t)](s) + aGα1 [y(t)](s) = 0.

we have

Gα1 [Dαy(t)](s) = sGα1 [y(t)](s)− y0.

Hence

(sGα1 [y(t)](s)− y0) + aGα1 [y(t)](s) = 0.

(s+ a)Gα1 [y(t)](s) = y0 =⇒ Gα1 [y(t)](s) =
y0
s+ a

.

The inverse of this transform, by analogy with the conformable Laplace transform, gives :

y(t) = y0e
−a t

α

α .
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4. Conformable Formable Transform

Definition 4.1. . The Conformable Formable integral transform of a function g(t) of exponential order is defined

over the set of functions

W =

{
g(t) : ∃N ∈ (0,∞), τi > 0 for i = 1, 2, |g(t)| < N exp

(
tα

τi

)
, if t ∈ [0,∞)

}
,

Then the conformable fractional formable transform of g can be generalized by:

Rα[g(t)](s) = s

∫ ∞
0

e
−stα
α g(ut)dtα

This is equivalent to

Rα[g(t)](s) =
s

u

∫ ∞
0

e
−stα
uα g(t)tα−1dt

Rα[g(t)](s) =
s

u
lim
x→∞

∫ x

0
e
−stα
α g(ut)tα−1dt, s > 0, u > 0

Where s and u are the Formable transform’s variables, x is a real number, and the integral is taken along the

line t = x. A function g(t) is said to be of conformable exponential order c if there exist constantsM and T such

that |g(t)| ≤Mect
α for all t ≥ T .

Theorem 4.2. Let a, b ∈ C (or R) and f(t), g(t) be two functions belonging to the setW . Then,

Rα[a f(t) + b g(t)] = aRα[f(t)] + bRα[g(t)](s).

Proof.

Rα[a f(t) + b g(t)] = s

∫ ∞
0

e−
s tα

α [a f(u t) + b g(u t)] tα−1 dt

= a s

∫ ∞
0

e−
s tα

α f(u t) tα−1 dt+ b s

∫ ∞
0

e−
s tα

α g(u t) tα−1 dt

= aRα[f(t)] + bRα[g(t)](s).

�

Theorem 4.3. For any function g(t) ∈ W , the conformable formable transform Rα[g(t)](s) is related to the

classical formable transform R[g(t)] by the relation

Rα[g(t)](s) = R[g((αt)
1
α )]

Proof. Applying Definition 4.1 and; Letting v = tα

α We have

Rα[g(t)](s) =
s

u

∫ ∞
0

e
−st
u g((αv)

1
α )dv = R[g((αt)

1
α )]

�
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Remark 4.4. By analogy and by the change of variables tα 7→ (α v) that relates Rα to R, one obtains the inverse

for Rα:

R−1α [Rα[g(t)](s) ] = g(t) =
1

2πi

∫ c+i∞

c−i∞

1

s
exp
(
s tα

uα

)
B(s, u) ds.

Theorem 4.5. Assume g is such that all relevant integrals converge and g(0) is finite. Then

Rα
[
Dαg(t)

]
=

s

u
Rα[g(t)](s) − s

u
g(0).

Proof. Recall Dαg(t) = t1−α g′(t). Then by Definition 4.1,

Rα[Dαg(t)] =
s

u

∫ ∞
0

exp
(
− s tα

uα

)
g′(t) dt.

Use integration by parts. Let

Φ(t) = exp
(
− s tα

uα

)
, Φ′(t) =

d

dt
Φ(t).

Then ∫ ∞
0

Φ(t) g′(t) dt =
[
Φ(t) g(t)

]∞
0
−
∫ ∞
0

g(t) Φ′(t) dt.

Because Φ(∞) = 0 for s > 0 and Φ(0) = 1, the boundary term is [0 · g(∞)
]
−
[
1 · g(0)

]
= −g(0).

Next, one can check
Φ′(t) = − s t

α−1

u
exp
(
− s tα

uα

)
.

∫ ∞
0

Φ(t) g′(t) dt =
[
Φ(t) g(t)

]∞
0
−
∫ ∞
0

g(t) Φ′(t) dt.

= −g(0) +

∫ ∞
0

g(t)
s tα−1

u
exp
(
− s tα

uα

)
dt.

= Multiplying by s
u , we get

s

u

∫ ∞
0

exp
(
− s tα

uα

)
g′(t) dt = − s

u
g(0) +

s2

u2

∫ ∞
0

tα−1 g(t) exp
(
− s tα

uα

)
dt.

Note that

Rα[g(t)](s) =
s

u

∫ ∞
0

exp
(
− s tα

uα

)
g(t) tα−1 dt =⇒

∫ ∞
0

g(t) tα−1 e−
s tα

uα dt =
u

s
Rα[g(t)](s).

Hence
s2

u2

∫ ∞
0

tα−1 g(t) e−
s tα

uα dt =
s2

u2
u

s
Rα[g(t)](s) =

s

u
Rα[g(t)](s).

Putting it all together:
Rα[Dαg(t)] = − s

u
g(0) +

s

u
Rα[g(t)](s),

Which is precisely
Rα[Dαg(t)] =

s

u

[
Rα[g(t)](s)− g(0)

]
.

�
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Theorem 4.6. If Iα is the conformable fractional integral of order α and g satisfies suitable convergence conditions,

then

Rα[Iα g(t)] =
u

s
Rα[g(t)](s).

Proof. It is well known in conformable fractional calculus that Dα
[
Iα g(t)

]
= g(t) provided Iαg(0) = 0.

By linearity and Theorem 4.5,

Rα
[
Dα(Iα g(t))

]
= Rα[g(t)](s) =

s

u
Rα[Iα g(t)] − s

u
Iαg(0)︸ ︷︷ ︸

=0

.

Hence s
u Rα[Iα g(t)] = Rα[g(t)](s), yielding

Rα[Iα g(t)] =
u

s
Rα[g(t)](s).

�

Theorem 4.7. If the function g(αn)(t) is the αn-th conformable derivative of the function g(t), where g(αn)(t) ∈

W , for n = 0, 1, 2, . . . with respect to t, then

Rα

[
g(αn)(t)

]
=
sn

un
Rα[g(t)](s)−

n−1∑
k=0

( s
u

)n−k
g(αk)(0)

Proof. We have:

Rα

[
g(αn)(t)

]
=
s

u

[
Rα[gα(n−1)(t)]− gα(n−1)(0)

]
=
s

u

[ s
u

[Rα[gα(n−2)(t)]− gα(n−2)(0)]
]
]− gα(n−1)(0)

]
=
sn

un
Rα[g(t)](s)−

n−1∑
k=0

( s
u

)n−k
g(αk)(0)

�

Theorem 4.8. If Fα(s, u) and Gα(s, u) are the conformable Formable transforms of the functions f(t) and g(t),

respectively, then

Rα[f(t) ∗ g(t)] =
u

s
Fα(s, u)Gα(s, u),

Proof. ona
Rα
[
(f ∗ g)(t)

]
=
s

u

[
Rα[(f ∗ g(t)]

]
=
u

s
R
[
f
(
(αt)

1
α
)]
R
[
g
(
(αt)

1
α
)]
,

=
u

s
Fα(s, u) Gα(s, u).

�

Theorem 4.9. The conformable Formable transforms of the functions Dα(f ∗ g)(t) given by:

Rα[Dα(f ∗ g)(t)] = Fα(s, u)Gα(s, u),
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Proof. Applying the Facts in theorem 4.5 and 4.8, we get

Rα[Dα(f ∗ g)(t)] =
s

u

[
Rα[((f ∗ g)(t)]− (f ∗ g)(0)

]
,

=
s

u

u

s
Fα(s, u) Gα(s, u).

= Fα(s, u) Gα(s, u).

�

Theorem 4.10. If g(t) is such that tαn g(t) lies in the domain of Rα, then

Rα
[
tαn g(t)

]
= αn (−u)n s

∂n

∂sn

[
Rα[g(t)]

s

]
.

Proof.
Rα
[
tαn f(t)

]
= R

[
(αt)n f

(
(αt)

1
α
)]

= αnR
[
tn h(t)

]
where h(t) = f

(
(αt)

1
α
)
,

= αn
(
(−u)n s

) ∂n
∂sn

[
R
[
h(t)
]

s

]
= αn (−u)n s

∂n

∂sn

[
Rα[ f(t) ]

s

]
.

�

Theorem 4.11. Let c ∈ R. Then, for any function g(t) belonging to the setW ,

Rα
[
e−c

tα

α g(t)
]

=
s

s+ c
Rα[g(t)](s).

Example 4.12. (1)

Rα[c] = s

∫ ∞
0

e−
s tα

α c tα−1 dt

= c s

∫ ∞
0

e−
s tα

α tα−1 dt

= c s · 1

s
(by using

∫ ∞
0

e−zdz = 1 with substitute z =
s tα

α
)

= c.

(2)
Rα

[
tα

α

]
= s

∫ ∞
0

e−
s tα

α
tα

α
tα−1 dt

=
s

α

∫ ∞
0

e−
s tα

α t2α−1 dt

=
s

α
· Γ(2)(

s
α

)2 (with Γ(2) = 1! = 1)

=
s

α
· 1(

s
α

)2
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=
s

α
· α

2

s2

=
αs

s2

=
α

s
.

(3)

Rα

[
sin

(
tα

α

)]
= s

∫ ∞
0

e−
s tα

α sin

(
tα

α

)
tα−1 dt

= s

∫ ∞
0

e−sz sin(z) dz (with z =
tα

α
, dz =

αtα−1

α
dt = tα−1dt)

= s · 1

s2 + 1
(by using

∫ ∞
0

e−az sin(bz) dz =
b

a2 + b2
with a = s, b = 1)

=
s

s2 + 1
.

(4)

Rα

[
cos

(
tα

α

)]
= s

∫ ∞
0

e−
s tα

α cos

(
tα

α

)
tα−1 dt

= s

∫ ∞
0

e−sz cos(z) dz (with z =
tα

α
, dz = tα−1dt)

= s · s

s2 + 1
(en using

∫ ∞
0

e−az cos(bz) dz =
a

a2 + b2
with a = s, b = 1)

=
s2

s2 + 1
.

(5)
Rα

[
e
tα

α

]
= s

∫ ∞
0

e−
s tα

α e
tα

α tα−1 dt

= s

∫ ∞
0

e−
(s−1) tα

α tα−1 dt

= s · 1

α
· Γ(1) ·

(
α

s− 1

)1

(with Γ(1) = 0! = 1 and s > 1)

= s · 1

α
· 1 · α

s− 1

=
s

s− 1
.

Conclusion

This work introduces and rigorously analyzes the conformable ARA transform and conformable
formable transform, extending the classical ARA framework to fractional calculus. By establishing a
direct relationship between the conformable ARA transform Gαn . Its classical counterpart Gn, we demon-
strate that Gαn inherits desirable properties such as linearity, shift invariance, and convolution rules,
while incorporating fractional differentiation through conformable operators. Key results include the
explicit formula for transforming power functions, exponential functions, and trigonometric functions,
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as well as the resolution of fractional differential equations and others. The conformable formable
transform Rα, similarly, generalizes traditional integral transforms and offers a unified tool for solving
problems involving non-local derivatives. Its differentiation and integration rules (Theorem 3.5 and
Theorem 3.7) provide a foundation for future applications in anomalous diffusion or viscoelasticity.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication
of this paper.
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