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Abstract. This work introduces a novel approach to achieving uniform stability by applying a new and
more generalized derivative, the Caputo fractional delta Dini derivative of order α ∈ (0, 1). By developing
comparison results and uniform stability criteria for Caputo fractional dynamic equations, a unified
framework for stability analysis on time scales is created which bridges continuous and discrete time
domains. The established uniform stability results are demonstrated through an illustrative example,
showcasing their relevance, effectiveness, and applicability over traditional integer-order methods.
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1. Introduction

The study of dynamic systems and their stability is a cornerstone of research in control theory, signal
processing, and engineering, as these systems often operate under varying and complex conditions.
Ensuring predictable behavior andmaintaining stability, particularly uniform stability, where a system’s
response remains bounded and consistent despite fluctuations in initial conditions or external influences,
is critical for their reliable operation [18]. However, as dynamic systems become increasingly intricate,
traditional methods of analysis often fall short of capturing their full complexity. This has led to
growing interest in fractional calculus, a generalization of traditional calculus, which has proven to be
a powerful framework for modeling and analyzing complex systems. Fractional differential equations,
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in particular, offer enhanced flexibility by incorporating memory effects and hereditary properties,
characteristics frequently observed in real-world systems. Despite these advantages, extending stability
criteria such as uniform stability to fractional dynamic equations on arbitrary time scales remains a
significantly unexplored.

Time scale theory, introduced by Hilger in [9], provides a critical bridge between continuous and
discrete analysis, enabling a unified study of dynamic systems across different temporal domains. This
unification is particularly important for fractional dynamic equations, as it allows for the modeling of
systems that exhibit both smooth and abrupt changes, such as those encountered in hybrid or multi-
scale phenomena. By leveraging the time scale framework, researchers can analyze fractional systems
in a more comprehensive manner, addressing gaps in traditional stability analyses and advancing the
theoretical understanding of uniform stability in these contexts [12].

This work introduces a novel approach to the Lyapunov uniform stability of Caputo fractional
dynamic equations on time scales. The proposed method is based on a new generalized derivative,
which extends the Caputo fractional derivative to time scales. This generalized derivative, referred
to as the Caputo fractional delta derivative and the Caputo fractional delta Dini derivative of order
α ∈ (0, 1), provides a unified framework for analyzing stability across different time domains.

In [1, 13–17,19], the Dini fractional derivative defined as follows:

C
t0D

α
+V (t, χ(t)) = lim sup

κ→0+

1

κα

{
V (t, χ(t))− V (t0, χ(t0))

−
[
t−t0
κ

]∑
r=1

(−1)r+1 αCr[V (t− rκ, χ(t)− καf(t, χ(t)))− V (t0, χ(t0))]

}
, (1)

where V : R × Rn → R+ is continuous, f ∈ C[R × Rn,Rn], κ is a positive number, and αCr =

α(α−1)···(α−r+1)
r! , has been used to investigate several forms of stability for Caputo fractional differential

equations (FrDE) with continuous domain. This derivative maintains the concept of fractional deriva-
tives, depending on both the present point t, the initial point t0, and the initial state V (t0, χ0). However,
a comprehensive analysis that includes different time domains is still lacking. Previous works, such as
those by [1,18, 19], focused primarily on continuous time, often neglecting the intricacies of discrete
domains. On the other hand, studies like [6] have addressed stability in discrete domains.

The examination of fractional dynamic systems on time scales is a relatively recent and evolving area
of research, offering significant advantages in fields likemodeling, mechanics, and population dynamics.
Current literature on fractional dynamic systems on time scales primarily focuses on the existence
and uniqueness of solutions for fractional dynamic equations on time scale (FrDET), with Caputo-
type derivatives gaining prominence [7,8, 26, 29]. Notably, [24] explored the existence, stability, and
controllability of fractional dynamic systems on time scales with applications to population dynamics
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using Hyers-Ulam type stability, and [21] explored Lyapunov stability analysis of Caputo fractional
dynamic systems on time scales, but with focus on only stability and asymptotic stability.

By establishing comparison results and uniform stability criteria for Caputo fractional dynamic
equations, this approach not only extends the classical Lyapunov stability analysis to fractional-order
systems but also extends recent literature, [11, 20, 21]. This work provides a unified framework for
stability analysis on time scales, bridging continuous and discrete time domains. The significance of this
research lies in its potential to ensure predictable and consistent outcomes in dynamic systems, enabling
reliable applications and offering new insights and methodologies for researchers and practitioners in
the field.

For the purpose of this work, we consider the Caputo fractional dynamic system of order α with
0 < α < 1

CTDαx∆ = f(t, x), t ∈ T,

x(t0) = x0, t0 ≥ 0,
(2)

where f ∈ Crd[T× Rn,Rn], f(t, 0) ≡ 0 and CTDαx∆ is the Caputo fractional delta derivative of x ∈ Rn

of order α with respect to t ∈ T. Let x(t) = x(t, t0, x0) ∈ Cαrd[T,Rn] (the fractional derivative of order α
of x(t) exist and it is rd-continuous) be a solution of (2) and assume the solution exists and is unique
(results on existence and uniqueness of (2) are contained in [3,24, 31]), this work aims to investigate
the uniform stability and uniform asymptotic stability of the system (2).

To do this, we shall use the Caputo fractional dynamic system of the form
CTDαu∆ = g(t, u), u(t0) = u0 ≥ 0, (3)

where u ∈ R+, g : T× R+ → R+ and g(t, 0) ≡ 0. System (3) is called the comparison system. For this
work, wewill assume that the function g ∈ [T×R+,R+], is such that for any initial data (t0, u0) ∈ T×R+,
the system (3) with u(t0) = u0 has a unique solution u(t) = u(t; t0, u0) ∈ Cαrd[T,R+] see [3].

This work is organized as follows: Section 2 delves into essential terminologies, remarks, and
fundamental lemmas that form the basis for the subsequent developments. It also introduces definitions
and significant remarks. In Section 3, themain result (Uniform Stability) is presented, Section 4 provides
a practical example to illustrate the relevance and application of our approach. Lastly, Section 5 offers a
conclusion, summarizing the key findings and the implications of this study.

2. Preliminaries, Definitions, and Notations

In this section, we lay the groundwork by introducing key notations and definitions that will be
instrumental in developing the main results.

Definition 2.1. [5] For t ∈ T, the forward jump operator σ : T→ T is defined as

σ(t) = inf{s ∈ T : s > t},
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while the backward jump operator ρ : T→ T is defined as

ρ(t) = sup{s ∈ T : s < t}.

(i) if σ(t) > t, t is right scattered,

(ii) if ρ(t) < t, t is left scattered,

(iii) if t < maxT and σ(t) = t, then t is called right dense,

(iv) if t > minT and ρ(t) = t, then t is called left dense.

Definition 2.2. [5] The graininess function µ : T→ [0,∞) for t ∈ T is defined as

µ(t) = σ(t)− t.

Definition 2.3 (Delta Derivative). [2] Let h : T → R and t ∈ Tk.We define the delta derivative h∆ also

known as the Hilger derivative as

h∆(t) = lim
s→t

h(σ(t))− h(s)

σ(t)− s
, s 6= σ(t).

provided the limit exists.

The function h∆ : T→ R is called the (Delta) derivative of h on Tk.

If t is right dense, the delta derivative of h : T→ R, becomes

h∆(t) = lim
s→t

h(t)− h(s)

t− s
,

and if t is right scattered, the Delta derivative becomes

h∆(t) =
hσ(t)− h(t)

µ(t)
.

For a function h : T→ R, hσ denotes h(σ(t)).

Definition 2.4. [10] A function h : T → R is right dense continuous if it is continuous at all right dense

points of T and its left sided limits exist and is finite at left dense points of T. The set of all right dense continuous

functions are denoted by

Crd = Crd(T).

Remark 2.1. [10] All right dense continuous functions are delta integrable.

Definition 2.5. [10] A function φ : [0, r]→ [0,∞) is of class K if it is continuous, and strictly increasing on

[0, r] with φ(0) = 0.

Definition 2.6. [10] A continuous function V : Rn → R with V(0) = 0 is called positive definite(negative

definite) on the domainD if there exists a function φ ∈ K such that φ(|x|) ≤ V(x) (φ(|x|) ≤ −V(x)) for x ∈ D.
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Definition 2.7. [10] A continuous function V : Rn → Rwith V(0) = 0 is called positive semidefinite (negative

semi-definite) on D if V(x) ≥ 0 (V(x) ≤ 0) for all x ∈ D and it can also vanish for some x 6= 0.

Definition 2.8. [2] Let a, b ∈ T and h ∈ Crd, then the integration on a time scale T is defined as follows:

(i) If T = R, then ∫ b

a
h(t)∆t =

∫ b

a
h(t)dt,

where
∫ b
a h(t)dt is the usual Riemann integral from calculus.

(ii) If [a, b] consists of only isolated points, then

∫ b

a
h(t)∆t =


∑

t∈[a,b) µ(t)h(t) if a < b

0 if a = b

−
∑

t∈[b,a) µ(t)h(t) if a > b.

(iii) If there exists a point σ(t) > t, then∫ σ(t)

t
h(s)∆s = µ(t)f(t).

Definition 2.9. [22] Assume V ∈ C[T× Rn,R+], h ∈ Crd[T× Rn,Rn] and µ(t) is the graininess function

then the dini derivative of V (t, x) is defined as:

D−V
∆(t, x) = lim inf

µ(t)→0

V (t, x)− V (t− µ(t), x− µ(t)h(t, x))

µ(t)
, (4)

D+V ∆(t, x) = lim sup
µ(t)→0

V (t+ µ(t), x+ µ(t)h(t, x))− V (t, x)

µ(t)
. (5)

If V is differentiable, then D−V ∆(t, x) = D+V ∆(t, x) = V ∆(t, x).

Definition 2.10. (Fractional Integral on Time Scales) [4]. Let α ∈ (0, 1), [a, b] be an interval on T and h

an integrable function on [a, b]. Then the fractional integral of order α of h is defined by

T
aI

α
t h

∆(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)∆s.

Definition 2.11. (Caputo Derivative on Time Scale) [3] Let T be a time scale, t ∈ T, 0 < α < 1, and

h : T→ R. The Caputo fractional derivative of order α of h is defined by

T
aD

α
t h

∆(t) =
1

Γ(1− α)

∫ t

a
(t− s)−αh∆n

(s)∆s.

Lemma 2.1. [23] Let T be a time scale with minimal element t0 ≥ 0. Assume that for any t ∈ T, there is a

statement S(t) such that the following conditions are verified:

(i) S(t0) is true;

(ii) If t is right scattered and S(t) is true, then S(σ(t)) is also true;



Asia Pac. J. Math. 2025 12:6 6 of 16

(iii) For each right-dense t, there exists a neighborhood U such that whenever S(t) is true, S(t∗) is also true

for all t∗ ∈ U , t∗ ≥ t;

(iv) For left dense t, S(t∗) is true for all t∗ ∈ [t0, t) implies S(t) is true.

Then the statement S(t) is true for all t ∈ T.

Remark 2.2. When T = N, then Lemma 2.1 reduces to the well-known principle of mathematical induction.

That is,

(1) S(t0) is true is equivalent to the statement is true for n = 1;

(2) S(t) is true then S(σ(t)) is true is equivalent to if the statement is true for n = k, then the statement is

true for n = k + 1.

Now, we give the following definitions and remarks.

Definition 2.12. Let T be a time scale. A point t0 ∈ T is said to be a minimal element of T if, for any t ∈ T,

t > t0 whenever t 6= t0.

Remark 2.3. The concept of minimal element is essential in studying dynamic equations because it establishes a

starting point, a reference time from which the dynamics of the system evolve. In the study of difference equations

(a discrete-time setting), t0 represents the initial time step. Similarly, in differential equations (a continuous-time

setting), t0 represents the initial time instant.

Definition 2.13. Let h ∈ Cαrd[T,Rn], the Grunwald-Letnikov fractional delta derivative is given by

GLTDα
0 h

∆(t) = lim
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)rαCr[h(σ(t)− rµ)], t ≥ t0, (6)

and the Grunwald-Letnikov fractional delta dini derivative is given by

GLTDα
0+h

∆(t) = lim sup
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)rαCr[h(σ(t)− rµ)], t ≥ t0. (7)

where 0 < α < 1, αCr = q(q−1)...(q−r+1)
r! , and [ (t−t0)

µ ] denotes the integer part of the fraction (t−t0)
µ .

Observe that if the domain is R, then (7) becomes

GLTDα
0+h

∆(t) = lim sup
d→0+

1

dα

[
(t−t0)
d

]∑
r=0

(−1)rαCr[h(t− rd)], t ≥ t0.

Remark 2.4. It is necessary to note that the relationship between the Caputo fractional delta derivative and the

Grunwald-Letnikov fractional delta derivative is given by

CTDα
0 h

∆(t) =GLT Dα
0 [h(t)− h(t0)]∆, (8)
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substituting (6) into (8) we have that the Caputo fractional delta derivative becomes

CTDα
0 h

∆(t) = lim
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)rαCr[h(σ(t)− rµ)− h(t0)] t ≥ t0

CTDα
0 h

∆(t) = lim
µ→0+

1

µα

{
h(σ(t))− h(t0) +

[
(t−t0)
µ

]∑
r=1

(−1)rαCr[h(σ(t)− rµ)− h(t0)]

}
, (9)

and the Caputo fractional delta Dini derivative becomes

CTDα
0+h

∆(t) = lim sup
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)rαCr[h(σ(t)− rµ)− h(t0)], t ≥ t0. (10)

Which is equivalent to

CTDα
0+h

∆(t) = lim sup
µ→0+

1

µα

{
h(σ(t))− h(t0) +

[
(t−t0)
µ

]∑
r=1

(−1)rαCr[h(σ(t)− rµ)− h(t0)]

}
, t ≥ t0. (11)

For notation simplicity, we shall represent the Caputo fractional delta derivative of order α as CTDα

and the Caputo fractional delta dini derivative of order α as CTDα
+.

Now, we introduce the derivative of the Lyapunov function using the Caputo fractional delta Dini
derivative of h(t) given in (10).

Definition 2.14. We define the Caputo fractional delta Dini derivative of the Lyapunov function V (t, x) ∈

C[T× Rn,R+] (which is locally Lipschitzian with respect to its second argument and V (t, 0) ≡ 0) along the

trajectories of solutions of the system (2) as:

CTDα
+V

∆(t, x) = lim sup
µ→0+

1

µα

[ [
t−t0
µ

]∑
r=0

(−1)r(αCr)[V (σ(t)− rµ, x(σ(t))− µαf(t, x(t))− V (t0, x0)]

]
,

and can be expanded as

CTDα
+V

∆(t, x) = lim sup
µ→0+

1

µα

{
V (σ(t), x(σ(t))− V (t0, x0) (12)

−
[
t−t0
µ

]∑
r=1

(−1)r+1(αCr)[V (σ(t)− rµ, x(σ(t))− µαf(t, x(t))− V (t0, x0)]

}
,

where t ∈ T, x, x0 ∈ Rn, µ = σ(t)− t and x(σ(t))− µαf(t, x) ∈ Rn.

If T is discrete and V (t, x(t)) is continuous at t, the Caputo fractional delta Dini derivative of the Lyapunov

function in discrete times, is given by:

CTDα
+V

∆(t, x) =
1

µα

[ [
t−t0
µ

]∑
r=0

(−1)r(αCr)(V (σ(t), x(σ(t)))− V (t0, x0))

]
, (13)
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and if T is continuous, that is T = R, and V (t, x(t)) is continuous at t, we have that

CTDα
+V

∆(t, x) = lim sup
d→0+

1

dα

{
V (t, x(t))− V (t0, x0) (14)

−
[
t−t0
d

]∑
r=1

(−1)r+1(αCr)[V (t− rd, x(t))− dαf(t, x(t))− V (t0, x0)]

}
.

Notice that (14) is the same in [1] where d > 0.

Given that lim
N→∞

∑N
r=0(−1)rαCr = 0 where α ∈ (0, 1), and lim

µ→0+
[ (t−t0)

µ ] =∞ then it is easy to see that

lim
µ→0+

[
(t−t0)
µ

]∑
r=1

(−1)rαCr = −1. (15)

Also from (10) and since the Caputo and Riemann-Liouville formulations coincide when h(t0) = 0,
( [1]) then we have that

lim sup
µ→0+

1

µα

[
(t−t0)
µ

]∑
r=0

(−1)rαCr =RLT Dα(1) =
(t− t0)−α

Γ(1− α)
, t ≥ t0. (16)

Definition 2.15. The trivial solution of (2) is said to be Uniformly stable if for every ε > 0 and t0 ∈ T, there exist

δ = δ(ε) > 0(independent of t) such that for any x0 ∈ Rn, the inequality ‖x0‖ < δ implies ‖x(t; t0, x0)‖ < ε

for t ≥ t0.

Lemma 2.2. [see [21]] Assume that

(i) g ∈ Crd[T× R+,R+] and g(t, u)µ is non-decreasing in u.

(ii) V ∈ C[T× Rn,R+] be locally Lipschitzian in the second variable such that

CTDα
+V

∆(t, x) ≤ g(t, V (t, x)), (t, x) ∈ T× Rn. (17)

(iii) z(t) = z(t; t0, u0) is the maximal solution of (3) existing on T.

Then

V (t, x(t)) ≤ z(t), t ≥ t0, (18)

provided that

V (t0, x0) ≤ u0, (19)

where x(t) = x(t; t0, x0) is any solution of (2), t ∈ T, t ≥ t0.
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3. Main Result

In this section, we will obtain sufficient conditions for the uniform stability of system (12).

Theorem 3.1 (Uniform Stability). Assume the following

(1) g ∈ Crd[T× R+,R+] and g(t, u) is non-decreasing in u with g(t, u) ≡ 0.

(2) V (t, x(t)) ∈ C[T× Rn,R+] be such that

(i) V is locally Lipschitzian in x with V (t, 0) ≡ 0.

(ii) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) where a, b ∈ K.

(iii) For any points t, t0 ≥ 0 and x, x0 ∈ Rn, the inequality

CTDα
+V

∆(t, x(t)) ≤ g(t, V (t, x(t))),

holds.

(3) The trivial solution of FrDE (3) is uniformly stable.

Then the trivial solution of the FrDE (2) is uniformly stable.

Proof. Let ε ∈ (0, ρ) and t0 ∈ T be given. Assume that the trivial solution u = 0 of (3) is uniformly
stable. Then given b(ε) > 0 and t0 ∈ T, there exist a δ = δ(ε) > 0 such that

u0 < δ =⇒ u(t; t0, u0) < b(ε), for t ≥ t0, (20)

where u(t; t0, u0) is any solution of (3). Let z(t) = z(t; t0, u0) be the maximal solution of (3), then
consequent of (20),

u0 < δ =⇒ z(t) < b(ε), for t ≥ t0. (21)

V (t, 0) = 0 and V ∈ Crd this implies that V is continuous at the origin, then given δ > 0, we can find a
δ1 = δ1(δ) > 0, such that, for x0 ∈ RN , we have that,

‖x0‖ < δ1 =⇒ V (t0, x0) < δ. (22)

Let x(t) = x(t; t0, x0) be any solution of (2), with ‖x0‖ < δ1.
Claim:

‖x(t)‖ < ε, t ≥ t0. (23)

Assuming (23) is not true, then there would exist a time t1 > t0, such that ‖x(t1)‖ = ε and ‖x(t)‖ < ε

for all t ∈ [t0, t1).
Let V (t0, x0) ≤ u0, then it follows from Lemma 2.2 that

V (t, x(t)) ≤ z(t). (24)

Combining (21), (24) and from condition (ii) of the Theorem, we have that, at t = t1,

b(‖x(t1)‖) ≤ V (t1, x(t1)) ≤ z(t1) < b(ε).
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Then by our assumption that ‖x(t1)‖ = ε, we have that,

b(ε) ≤ V (t1, x(t1)) ≤ z(t1) < b(ε),

which is a contradiction. This contradiction proves that (23) is true. i.e for arbitrary ε ∈ (0, ρ), t0 ∈ R+,
there exist δ1(ε) (independent of t0) such that ‖x0‖ < δ1 implies ‖x(t)‖ < ε, for all t ≥ t0. Hence , we
conclude that the trivial solution x = 0 of (2) is uniformly stable. �

4. Application

Consider the system of dynamic equations
CTDαχ∆

1 (t) = χ1 − χ1 exp(χ1)− 2χ2 − χ1 exp(χ2) + χ1χ
2
2

CTDαχ∆
2 (t) = 2χ1 + χ2 − χ2 exp(χ1)− χ2 exp(χ2)− χ2

1χ2,
(25)

for t ≥ t0, with initial conditions

χ1(t0) = χ10 and χ2(t0) = χ20,

where χ = (χ1, χ2) and f = (f1, f2)

Consider V (t, χ1, χ2) = χ2
1 + χ2

2, for t ∈ T, (χ1, χ2) ∈ R2 and choose α = 1, so that (25) becomes an
integer (first) order system. Then we compute the delta Dini derivative of V (t, χ1, χ2) = χ2

1 + χ2
2 along

the solution path of (25) as follows:
From (5) we have that

D+V ∆(t, χ) = lim sup
µ(t)→0

V (t+ µ(t), χ+ µ(t)f(t, χ))− V (t, χ)

µ(t)

= lim sup
µ(t)→0

(χ1 + µ(t)f1(t, χ1, χ2))2 + (χ2 + µ(t)f2(t, χ1, χ2))2 − [χ2
1 + χ2

2]

µ(t)

= lim sup
µ(t)→0

χ2
1 + 2χ1µ(t)f1 + µ2(t)f2

1 + χ2
2 + 2χ2µ(t)f2 + µ2(t)f2

2 − [χ2
1 + χ2

2]

µ(t)

= lim sup
µ(t)→0

2χ1µ(t)f1 + µ2(t)f2
1 + 2χ2µ(t)f2 + µ2(t)f2

2

µ(t)

≤ 2χ1f1 + 2χ2f2

= 2χ1(χ1 − χ1 exp(χ1)− 2χ2 − χ1 exp(χ2) + χ1χ
2
2)

+2χ2(2χ1 + χ2 − χ2 exp(χ1)− χ2 exp(χ2)− χ2
1χ2)

= 2
[
χ2

1 − χ2
1 exp(χ1)− χ2

1 exp(χ2) + χ2
2 − χ2

2 exp(χ1)− χ2
2 exp(χ2)

]
= 2

[
χ2

1 + χ2
2 − (χ2

1 + χ2
2)(exp(χ1) + exp(χ2))

]
≤ 2

[
χ2

1 + χ2
2

]
D+V ∆(t, x) ≤ 2V 2(t, χ1, χ2).
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Now consider the consider the comparison equation

D+u∆ = 2u2 > 0, u(0) = u0. (26)

Even though conditions (i)-(iii) of [22] are satisfied that is V ∈ Crd[T × Rn,R+], D+V ∆(t, χ) ≤

g(t, V (t, χ)) and
√
χ2

1 + χ2
2 ≤ χ2

1 + χ2
2 ≤ 2(χ2

1 + χ2
2), for b(‖χ‖) = r and a(‖χ‖) = 2r2, it is obvious to

see that the solution of the comparison system (26) is not uniformly stable, so we can not deduce the
uniform stability properties of the system (25) by applying the basic definition of the Dini-derivative of
a Lyapunov function of dynamic equation on time scale to the Lyapunov function V (t, χ1, χ2) = χ2

1+χ2
2.

Let us consider (25) with α ∈ (0, 1) and apply the new definition (12).
For V (t, χ1, χ2) = χ2

1 + χ2
2, for t ∈ T and (χ1, χ2) ∈ R2. Then condition 1 of Theorem (3.1) is

satisfied, for b(‖χ‖) ≤ V (t, χ) ≤ a(‖χ‖), with b(r) = r, a(r) = 2r2, a, b ∈ K, so that the associated norm
‖χ‖ =

√
χ2

1 + χ2
2.

Since
V (t, χ1, χ2) = χ2

1 + χ2
2,

then
√
χ2

1 + χ2
2 ≤ χ2

1 + χ2
2 ≤ 2(χ2

1 + χ2
2). From (12), we compute the Caputo fractional Dini derivative

for V (t, χ1, χ2) = χ2
1 + χ2

2 as follows

CTDα
+V

∆(t, χ) = lim sup
µ→0+

1

µα

{
V (σ(t), χ(σ(t))− V (t0, χ0)

−
[
t−t0
µ

]∑
r=1

(−1)r+1(αCr)[V (σ(t)− rµ, χ(σ(t))− µαf(t, χ(t)))− V (t0, χ0)]

}

= lim sup
µ→0+

1

µα

{[
(χ1(σ(t)))2 + (χ2

2(σ(t)))2
]
−
[
(χ10)2 + (χ20)2

]

+

[
t−t0
µ

]∑
r=1

(−1)r(αCr)[(χ1(σ(t))− µαf1(t, χ1, χ2))2

+(χ2(σ(t))− µαf2(t, χ1, χ2))2((χ10)2 + (χ20)2)]

}
= lim sup

µ→0+

1

µα

{[
(χ1(σ(t)))2 + (χ2

2(σ(t)))2
]
−
[
(χ10)2 + (χ20)2

]

+

[
t−t0
µ

]∑
r=1

(−1)r(αCr)[(χ1(σ(t)))2 − 2χ1(σ(t))µαf1(t, χ1, χ2) + µ2α(f1(t, χ1, χ2))2

+(χ2(σ(t)))2 − 2χ2(σ(t))µαf2(t, χ1, χ2) + µ2α(f2(t, χ1, χ2))2 − ((χ10)2 + (χ20)2)]

}

= lim sup
µ→0+

1

µα

{
−

[
t−t0
µ

]∑
r=0

(−1)r(αCr)
[
(χ10)2 + (χ20)2

]
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+

[
t−t0
µ

]∑
r=0

(−1)r(αCr)
[
(χ1(σ(t)))2 + (χ2(σ(t)))2

]

−
[
t−t0
µ

]∑
r=1

(−1)r(αCr) [2χ1(σ(t))µαf1(t, χ1, χ2) + 2χ2(σ(t))µαf2(t, χ1, χ2)]

+

[
t−t0
µ

]∑
r=1

(−1)r(αCr)
[
µ2α(f1(t, χ1, χ2))2 + µ2α(f2(t, χ1, χ2))2

]}

= − lim sup
µ→0+

1

µα


[
t−t0
µ

]∑
r=0

(−1)r(αCr)
[
(χ10)2 + (χ20)2

]
+ lim sup

µ→0+

1

µα


[
t−t0
µ

]∑
r=0

(−1)r(αCr)
[
(χ1(σ(t)))2 + (χ2(σ(t)))2

]
− lim sup

µ→0+

1

µα

{ [
t−t0
µ

]∑
r=1

(−1)r(αCr)[2χ1(σ(t))µαf1(t, χ1, χ2 + 2χ2(σ(t))µαf2(t, χ1, χ2)

}
.

Applying (15) and (16) we have

= −(t− t0)−α

Γ(1− α)

(
(χ10)2 + (χ20)2

)
+

(t− t0)−α

Γ(1− α)
((χ1(σ(t)))2 + (χ2(σ(t)))2)

− [2x1(σ(t))f1(t, χ1, χ2) + 2χ2(σ(t))f2(t, χ1, χ2)]

≤ (t− t0)−α

Γ(1− α)
((χ1(σ(t)))2 + (χ2(σ(t)))2)

− [2χ1(σ(t))f1(t, χ1, χ2) + 2χ2(σ(t))f2(t, χ1, χ2)] ,

As t→∞, (t−t0)−α

Γ(1−α) ((χ1(σ(t)))2 + (χ2(σ(t)))2)→ 0, then

CTDα
+V

∆(t;χ1, χ2) ≤ − [2χ1(σ(t))f1(t, χ1, χ2) + 2χ2(σ(t))f2(t, χ1, χ2)]

= −2 [χ1(σ(t))f1(t, χ1, χ2) + χ2(σ(t))f2(t, χ1, χ2)] ,

applying χ(σ(t)) ≤ µCTDαx(t) + x(t)

= −2

[
µ(t)f2

1 (t, χ1, χ2) + χ1(t)f1(t, χ1, χ2) + µ(t)f2
2 (t, χ1, χ2) + χ2(t)f2(t, χ1, χ2)

]
= −2

[
µ(t)(χ1 − χ1 exp(χ1)− 2χ2 − χ1 exp(χ2) + χ1χ

2
2)2

+χ1(χ1 − χ1 exp(χ1)− 2χ2 − χ1 exp(χ2) + χ1χ
2
2)

+µ(t)(2χ1 + χ2 − χ2 exp(χ1)− χ2 exp(χ2)− χ2
1χ2)2

+χ2(2χ1 + χ2 − χ2 exp(χ1)− χ2 exp(χ2)− χ2
1χ2)

]
= −2

[
χ2

1 + χ2
2 + µ(t)(χ1 − χ1 exp(χ1)− 2χ2 − χ1 exp(χ2) + χ1χ

2
2)2
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+µ(t)(2χ1 + χ2 − χ2 exp(χ1)− χ2 exp(χ2)− χ2
1χ2)2

]
= −2

[
χ2

1 + χ2
2

]
− 2µ(t)

[
(χ1 − χ1 exp(χ1)− 2χ2 − χ1 exp(χ2) + χ1χ

2
2)2

+(2χ1 + χ2 − χ2 exp(χ1)− χ2 exp(χ2)− χ2
1χ2)2

]
. (27)

If T = R we have that µ = 0, so that (27) becomes;

= −2

[
χ2

1 + χ2
2

]
.

Therefore,
CTDα

+V
∆(t;χ1, χ2) ≤ −2V (t, χ1, χ2).

Consider the comparison system
CTDα

+u
∆ = g(t, u) ≤ −2u (28)

CTDα
+u

∆ + 2u = 0.

Applying the Laplace transform method, we obtain

u(t) = u0Eα,1(−2tα), for α ∈ (0, 1). (29)

Now, let u0 < δ, then from (29), we have u(t) = 2u0Eα,1 < 2Eα,1 < εwhenever u0 < δ = ε
2Eα,1

.
Therefore given ε > 0, we can find a δ(ε) > 0 (independent of t) such that u(t) < ε whenever u0 < δ

If T = N0 we have that µ = 1, so that (27) becomes;

= −2

[
χ2

1 + χ2
2

]
− 2

[
(χ1 − χ1 exp(χ1)− 2χ2 − χ1 exp(χ2) + χ1χ

2
2)2

+(2χ1 + χ2 − χ2 exp(χ1)− χ2 exp(χ2)− χ2
1χ2)2

]
≤ −2

[
χ2

1 + χ2
2

]
CTDα

+V
∆(t;x1, x2) ≤ −2

[
χ2

1 + χ2
2

]
.

We can also consider same comparison system as (28) leading to the same conclusion as (29) Since all
the conditions of Theorem 3.1 are satisfied, and trivial solution of the comparison system (28) is stable,
then we conclude that the trivial solution of system (25) is stable.
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Figure 1. Graph of u(t) = Eα,1(−2tα) against t for various values of α

Figure 1 above is the graphical representation of u(t) = Eα,1(−2tα). The behaviour of the curves
further buttresses the stability of the solution u(t) of over time for different values of α ∈ (0, 1).

5. Conclusion

In this paper, we have introduced a novel approach to establishing uniform stability criteria for
Caputo fractional dynamic equations on arbitrary time domains. By developing comparison results
and uniform stability criteria based on the Caputo fractional delta derivative and Caputo fractional
delta Dini derivative, we have created a unified framework for uniform stability analysis on time scales.
This framework bridges the gap between continuous and discrete time domains, providing a robust
tool for predicting stable behavior in complex dynamic systems. The significance of this research lies
in its potential to ensure reliable outcomes in various applications, including control theory, signal
processing, and engineering. By providing a unified framework for stability analysis, we have paved
the way for further research into the stability of fractional dynamic systems. We have also shown the
practical applicability of our results as well as effectiveness using system (25).
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Asia Pac. J. Math. 2025 12:6 15 of 16

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication
of this paper.

References

[1] R. Agarwal, D. O’Regan, S. Hristova, Stability of Caputo Fractional Differential Equations by Lyapunov Functions, Appl.
Math. 60 (2015), 653–676. https://doi.org/10.1007/s10492-015-0116-4.

[2] R. Agarwal, M. Bohner, D. O’Regan, A. Peterson, Dynamic Equations on Time Scales: A Survey, J. Comput. Appl. Math.
141 (2002), 1–26. https://doi.org/10.1016/S0377-0427(01)00432-0.

[3] A. Ahmadkhanlu, M. Jahanshahi, On the Existence and Uniqueness of Solution of Initial Value Problem for Fractional
Order Differential Equations on Time Scales, Bull. Iran. Math. Soc. 38 (2012), 241-252.

[4] A.B. Cherif, F.Z. Ladrani, New Properties of the Time-Scale Fractional OperatorsWith Application to Dynamic Equations,
Math. Morav.25 (2021), 123–136.

[5] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, Birkhäuser Boston, Boston, MA, 2001. https://doi.org/
10.1007/978-1-4612-0201-1.

[6] J. Čermák, T. Kisela, L. Nechvátal, Stability and Asymptotic Properties of a Linear Fractional Difference Equation, Adv.
Differ. Equ. 2012 (2012), 122. https://doi.org/10.1186/1687-1847-2012-122.

[7] S. Georgiev, Boundary Value Problems: Advanced Fractional Dynamic Equations on Time Scales, Springer, Cham, 2024.
https://doi.org/10.1007/978-3-031-38200-0.

[8] B. Gogoi, U.K. Saha, B. Hazarika, Impulsive Fractional Dynamic Equation with Non-Local Initial Condition on Time
Scales, Bol. Soc. Paran. Mat. 42 (2024), 1–13. https://doi.org/10.5269/bspm.65039.

[9] S. Hilger, Analysis on Measure Chains – A Unified Approach to Continuous and Discrete Calculus, Results Math. 18
(1990), 18–56. https://doi.org/10.1007/BF03323153.

[10] J. Hoffacker, C.C. Tisdell, Stability and Instability for Dynamic Equations on Time Scales, Comput. Math. Appl. 49
(2005), 1327–1334. https://doi.org/10.1016/j.camwa.2005.01.016.

[11] I.D. Kanu, M.P. Ihen, Results on Existence and Uniqueness of Solutions of Dynamic Equations on Time Scale via
Generalized Ordinary Differential Equations, Int. J. Appl. Math. 37 (2024), 1–20. https://doi.org/10.12732/ijam.
v37i1.1.

[12] D.K. Igobi, E. Ndiyo, M.P. Ineh, Variational Stability Results of Dynamic Equations on Time-Scales Using Generalized
Ordinary Differential Equations, World J. Appl. Sci. Technol. 15 (2024), 245–254. https://doi.org/10.4314/wojast.
v15i2.14.

[13] J.E. Ante, J.U. Atsu, E.E. Abraham, O.O. Itam, E.J. Oduobuk, A.B. Inyang, On a Class of Piecewise Continuous Lyapunov
Functions and Asymptotic Practical Stability of Nonlinear Impulsive Caputo Fractional Differential Equations via New
Modelled Generalized Dini Derivative, IEEE-SEM, 12 (2024), 1–21.

[14] J.E. Ante, O.O. Itam, J.U. Atsu, S.O. Essang, E.E. Abraham,M. P. Ineh, On theNovel Auxiliary Lyapunov Function andUni-
form Asymptotic Practical Stability of Nonlinear Impulsive Caputo Fractional Differential Equations via New Modelled
Generalized Dini Derivative, Afr. J. Math. Stat. Stud. 7 (2024), 11–33. https://doi.org/10.52589/AJMSS-VUNAIOBC.

[15] J.E. Ante, J.U. Atsu, A. Maharaj, E.E. Abraham, O.K. Narain, On a Class of Piecewise Continuous Lyapunov Functions
and Uniform Eventual Stability of Nonlinear Impulsive Caputo Fractional Differential Equations via New Generalized
Dini Derivative, Asia Pac. J. Math., 11 (2024), 99. https://doi.org/10.28924/APJM/11-99.

[16] J.E. Ante, A.B. Inyang, E.J. Oduobuk, U.P. Akai, On the Vector Lyapunov Functions and Eventual Stability of Nonlinear
Impulsive Differential Equations, Int. J. Math. Anal. Model. 7 (2024), 185–199.

https://doi.org/10.1007/s10492-015-0116-4
https://doi.org/10.1016/S0377-0427(01)00432-0
https://doi.org/10.1007/978-1-4612-0201-1
https://doi.org/10.1007/978-1-4612-0201-1
https://doi.org/10.1186/1687-1847-2012-122
https://doi.org/10.1007/978-3-031-38200-0
https://doi.org/10.5269/bspm.65039
https://doi.org/10.1007/BF03323153
https://doi.org/10.1016/j.camwa.2005.01.016
https://doi.org/10.12732/ijam.v37i1.1
https://doi.org/10.12732/ijam.v37i1.1
https://doi.org/10.4314/wojast.v15i2.14
https://doi.org/10.4314/wojast.v15i2.14
https://doi.org/10.52589/AJMSS-VUNAIOBC
https://doi.org/10.28924/APJM/11-99


Asia Pac. J. Math. 2025 12:6 16 of 16

[17] J.E. Ante, S.O. Essang, O.O. Itam, E.I. John, On the Existence of Maximal Solution and Lyapunov Practical Stability of
Nonlinear Impulsive Caputo Fractional Derivative via Comparison Principle, Adv. J. Sci. Technol. Eng. 4 (2024), 92–110.
https://doi.org/10.52589/AJSTE-9BWUJX9O.

[18] J.E. Ante, M.P. Ineh, J.O. Achuobi, U.P. Akai, J.U. Atsu, N.O. Offiong, A Novel Lyapunov Asymptotic Eventual Stability
Approach for Nonlinear Impulsive Caputo Fractional Differential Equations. AppliedMath 4 (2024), 1600-1617. https:
//doi.org/10.3390/appliedmath4040085.

[19] M.P. Ineh, J.O. Achuobi, E.P. Akpan, J.E. Ante, CDq on the Uniform Stability of Caputo Fractional Differential Equations
Using Vector Lyapunov Functions, J. Nigerian Assoc. Math. Phys. 68 (2024), 51–64.

[20] M.P. Ineh, E.P. Akpan, Lyapunov Uniform Asymptotic Stability of Caputo Fractional Dynamic Equations on Time Scale
Using a Generalized Derivative, Trans. Nigerian Assoc. Math. Phys. 20 (2024), 117–132. https://doi.org/10.60787/
TNAMP.V20.431.

[21] M.P. Ineh, E.P. Akpan, H.A. Nabwey, A Novel Approach to Lyapunov Stability of Caputo Fractional Dynamic Equations
on Time Scale Using a New Generalized Derivative, AIMS Math. 9 (2024), 34406–34434. https://doi.org/10.3934/
math.20241639.

[22] B. Kaymakçalan, Lyapunov Stability Theory for Dynamic Systems on Time Scales, Int. J. Stoch. Anal. 5 (1992), 275–281.
https://doi.org/10.1155/S1048953392000224.

[23] B. Kaymakcalan, Existence and Comparison Results for Dynamic Systems on a Time Scale, J. Math. Anal. Appl. 172
(1993), 243–255. https://doi.org/10.1006/jmaa.1993.1021.

[24] V. Kumar, M. Malik, Existence, Stability and Controllability Results of Fractional Dynamic System on Time Scales with
Application to Population Dynamics, Int. J. Nonlinear Sci. Numer. Simul. 22 (2021), 741–766. https://doi.org/10.
1515/ijnsns-2019-0199.

[25] V. Lakshmikantham, S. Sivasundaram, B. Kaymakçalan, Dynamic Systems on Measure Chains, Springer, 2013.
[26] N.K. Mahdi, A.R. Khudair, An Analytical Method for q-Fractional Dynamical Equations on Time Scales, Partial Differ.

Equ. Appl. Math. 8 (2023), 100585. https://doi.org/10.1016/j.padiff.2023.100585.
[27] K. Mekhalfi, D.F.M. Torres, Generalized Fractional Operators on Time Scales with Application to Dynamic Equations,

Eur. Phys. J. Spec. Top. 226 (2017), 3489–3499. https://doi.org/10.1140/epjst/e2018-00036-0.
[28] K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley& Sons,

1993.
[29] K.S. Nisar, C. Anusha, C. Ravichandran, A Non-Linear Fractional Neutral Dynamic Equations: Existence and Stability

Results on Time Scales, AIMS Math. 9 (2023), 1911–1925. https://doi.org/10.3934/math.2024094.
[30] M.R. Segi Rahmat, M.S. Md Noorani, Caputo Type Fractional Difference Operator and Its Application on Discrete Time

Scales, Adv. Differ. Equ. 2015 (2015), 160. https://doi.org/10.1186/s13662-015-0496-5.
[31] S.E. Ekoro, A.E. Ofem, F.A. Adie, J. Oboyi, G.I. Ogban, M.P. Ineh, On a Faster Iterative Method for Solving Nonlinear

Fractional Integro-Differential Equations with Impulsive and Integral Conditions, Palestine J. Math. 12 (2023), 477–484.

https://doi.org/10.52589/AJSTE-9BWUJX9O
https://doi.org/10.3390/appliedmath4040085
https://doi.org/10.3390/appliedmath4040085
https://doi.org/10.60787/TNAMP.V20.431
https://doi.org/10.60787/TNAMP.V20.431
https://doi.org/10.3934/math.20241639
https://doi.org/10.3934/math.20241639
https://doi.org/10.1155/S1048953392000224
https://doi.org/10.1006/jmaa.1993.1021
https://doi.org/10.1515/ijnsns-2019-0199
https://doi.org/10.1515/ijnsns-2019-0199
https://doi.org/10.1016/j.padiff.2023.100585
https://doi.org/10.1140/epjst/e2018-00036-0
https://doi.org/10.3934/math.2024094
https://doi.org/10.1186/s13662-015-0496-5

	1. Introduction
	2. Preliminaries, Definitions, and Notations
	3. Main Result
	4. Application
	5. Conclusion
	Authors' contributions
	Conflicts of Interest

	References

