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Abstract. During the COVID-19 pandemic, governments around the world resorted to the imposition of
varying levels of lockdown measures to mitigate the spread of the disease. Mathematically, such measures
can be incorporated in COVID-19 transmission models by using a switching transmission rate, where the
switching times correspond to the dates when the imposed lockdown measures change in stringency. In
this work, we employ such a switching transmission rate in a Susceptible-Vaccinated-Exposed-Infectious-
Quarantined-Recovered (SVEIQR) compartmental model and carry out an analysis of this model and its
solutions. We first discuss fundamental properties of solutions and determine the unique equilibrium
that corresponds to the disease-free state. Using tools from the theory of switched systems, we then
establish sufficient conditions for the global attractivity of this disease-free equilibrium. We also present
several simulations to illustrate our results and to explore the rich dynamics of solutions in some scenarios.
This paper extends previous studies in the literature that have focused on SIR, SEIR, and SEIQR models
with switching transmission and provides a better understanding of the effects of lockdown measures on
long-term disease transmission dynamics.
2020 Mathematics Subject Classification. 34C60; 37N25; 34D05; 34A12.
Key words and phrases. compartmental models; nonautonomous systems; switching systems; global
attractivity.

1. Introduction

During the COVID-19 pandemic, governments around theworld resorted to the imposition of varying
levels of lockdown measures to mitigate the spread of the disease. In the Philippines, for example,
a crucial component of the government’s pandemic response plan is the imposition of Community
Quarantines (CQs). These are policy restrictions that inhibit public mobility via lockdowns and
restrict operations of various work sectors. CQs are classified into four levels according to their
degree of stringency. Listed from most restrictive to least, the classifications are Enhanced Community
Quarantine or ECQ; Modified Enhanced Community Quarantine or MECQ; General Community
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Quarantine or GCQ; and Modified General Community Quarantine or MGCQ. The guidelines for each
CQ classification can be found in [1].

Throughout the pandemic, different CQ policies have been imposed based on the policymakers’
assessment of the COVID-19 situation. To illustrate, we recount the changes in CQ policies for the
National Capital Region (NCR) of the Philippines starting March 2020. Shortly after the announcement
regarding the first local COVID-19 transmission in NCR, ECQ was imposed in the region to prevent
further spread of the COVID-19 disease. This policy intervention constituted stay-at-home orders,
school closures, skeletal workforce on agencies that provide essential services, among others. However,
as this was not a sustainable intervention strategy, policymakers had to carefully consider how to
safely exit from ECQ. This eventually led to the imposition of MECQ two months after ECQ was first
announced. And then on June 1, 2020, the community quarantine restriction was further relaxed to
GCQ, which increased human mobility and economic activity. However, this eventually led to a large
wave of infections that threatened to overwhelm the health system in NCR. Thus, the government
reverted the CQ level to MECQ on August 4, 2020, with health officials encouraging the general public
to follow minimum health standards [2]. The CQ level was relaxed to GCQ after 2 weeks, when case
numbers in NCR started to decline.

Mathematically, these multiple shifts in CQ policies (i.e., shifts in the stringency level of lockdown
measures) can be incorporated in COVID-19 transmission models by using a switching transmission
rate, where the switching times correspond to the dates when the imposed lockdown measures change
in stringency. Particularly, compartmental models with this feature have been analyzed in the literature.
In [3–5], SIR and SEIR models involving switching transmission rates have been analyzed. In [6],
similar analysis has been carried out for a compartmental model that incorporates a quarantined state
for individuals. In this work, we extend these previous studies by considering a Susceptible-Vaccinated-
Exposed-Infectious-Quarantined-Recovered (SVEIQR) model with a switching transmission rate.

In the next section, we provide the details of the SVEIQR model to be studied in this paper. Fun-
damental properties of solutions to the SVEIQR model are then discussed in Section 3. Particularly,
it will be determined that the model has a unique equilibrium that corresponds to the disease-free
state. In Section 4, we use tools from the theory of switched systems (particularly [7]) to establish
sufficient conditions for the global attractivity of this disease-free equilibrium. Finally, in Section 5, we
present several simulations to illustrate our results and to explore the rich dynamics of solutions in
some scenarios.

Pronouncements on community quarantine restrictions in NCR over the period of March 2020 to August 2020 are based on
IATF Resolution Nos. 11, 12, 13, 20, 28, 35, 40, 41, 63 and 66. These documents are found in https://doh.gov.ph/diseases/covid-
19/iatf-resolutions.
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2. The SVEIQR Model

2.1. Compartmental Structure. The focus of this study is a nonautonomous nonlinear system of
differential equations that correspond to an SVEIQR compartmental structure [8] for modelling the
dynamics of an infectious disease in a population. We present a schematic of the compartmental
model in Figure 1. The model’s compartments and parameters are summarized in Table 1 and Table 2,
respectively. Note that aside from the transmission rate β(t), all other model parameters are assumed
to be positive constants. Additional details on the model may be found in [8]. This compartmental
structure has also been studied in [9] in the case where all model parameters are assumed to be constant.

Figure 1. The SVEIQR model. The arrows depict inflows or outflows for each compart-
ment. Shown on each arrow is the model parameter that represents the corresponding
transfer rate. With the exception of Λ, all the transfer rates in the model are proportional
rates.

Table 1. Compartments in the SVEIQR Model

Symbol Compartment Description
S Susceptible Individuals who are susceptible to the disease.
V Vaccinated Individuals who are susceptible to the disease but are vaccinated,

which provides partial protection against infection.
E Exposed Individuals who have been infected with the disease

but are yet to become infectious (i.e., disease is still in latency).
I Infectious Individuals who have been infected with the disease

and have become infectious.
Q Quarantined Individuals who have quarantined (e.g., in a medical facility

or self-isolating at home) and are thus assumed
no longer capable of infecting others with the disease.

R Recovered Individuals who have recovered from the disease and are assumed
to have received lasting immunity to the disease.
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Table 2. Parameters of the SVEIQR Model

Parameter Description

β(t) Time-varying transmission rate
Λ Recruitment rate (i.e., number of individuals who enter S per unit time)
α Progression rate (i.e., reciprocal of the average length of the latency period)
q Rate for an infectious individual to go into quarantine
v Vaccination rate
ρ Vaccine effectiveness parameter
µ1 Natural death rate (i.e., not due to the disease) for the entire population
µ2 Disease-caused death rate for individuals in I
µ3 Disease-caused death rate for individuals in Q
σ1 Recovery rate for individuals in I
σ2 Recovery rate for individuals in Q

2.2. System of Differential Equations and Initial Value Problem. At time t, denote by
S(t), V (t), E(t), I(t), Q(t), R(t) the number of individuals in the compartments S, V,E, I,Q,R, respec-
tively. The system of differential equations corresponding to the SVEIQR Model is then given by the
following:

S′(t) = Λ− β(t)S(t)I(t)− (µ1 + v)S(t), (1)

V ′(t) = vS(t)− β(t)ρV (t)I(t)− µ1V (t), (2)

E′(t) = β(t)[S(t) + ρV (t)]I(t)− (µ1 + α)E(t), (3)

I ′(t) = αE(t)− (µ1 + µ2 + q + σ1)I(t), (4)

Q′(t) = qI(t)− (µ1 + µ3 + σ2)Q(t), (5)

R′(t) = σ1I(t) + σ2Q(t)− µ1R(t), (6)

with equations (1)-(6) required to hold for all t in some interval that corresponds to the relevant period
of interest.

We introduce the biologically feasible region D for the system (1)-(6):

D =

{
(S, V,E, I,Q,R) ∈ R6

≥0 : S + V + E + I +Q+R ≤ Λ

µ1

}
.

Moving forward, we consider only initial value problems whose initial condition is inD. Now, let t0 ≥ 0

and (S(t0), V (t0), E(t0), I(t0), Q(t0), R(t0)) ∈ D. By designating t0 as the initial time, the system (1)-(6)
and the initial condition (S(t0), V (t0), E(t0), I(t0), Q(t0), R(t0)) = (St0 , Vt0 , Et0 , It0 , Qt0 , Rt0) form an
initial value problem, which we refer to as IVP (SVEIQR)t0 .
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3. Properties of Solutions

3.1. Continuous Time-varying Transmission Rate. Before we consider a switching transmission rate,
we first establish properties of solutions when β(t) is an arbitrary continuous function of t. More
precisely, we assume that:

(C1) β(t) is continuous on [t0,+∞);
(C2) there are nonnegative constants L,M such that L ≤ β(t) ≤M on [t0,∞).

Thus, our focus in this section is the initial value problem (SVEIQR)t0 with the additional constraint
that β(t) must satisfy (C1)-(C2). For convenience, let us refer to this new IVP as (SVEIQR)contt0 . Note
that any solution to this IVP, if it exists, must be continuously differentiable on [t0,∞).

We now state the existence, uniqueness, and boundedness properties for solutions to the IVP
(SVEIQR)contt0 . These results have appeared in [8] but they are presented here for completeness and for
their relevance to the current work. We begin with the following local existence and uniqueness result.

Proposition 1 ( [8]). For some δ > 0, there is a unique solution to (SVEIQR)contt0 on [t0, t0 + δ].

Proposition 1 implies the following expected property pertaining to the trivial case where the system
begins with zero individuals in both E and I compartments.

Lemma 2 ( [8]). Suppose E(t0) = I(t0) = 0. Then (SVEIQR)contt0 has a unique solution X(t) =

(S(t), V (t), E(t), I(t), Q(t), R(t)) on [t0,∞). Moreover, E(t) = I(t) = 0 for all t ≥ t0.

Next, we establish the nonnegativity of solutions to (SVEIQR)contt0 . In the following proposition, we
use X(t) = (S(t), V (t), E(t), I(t), Q(t), R(t)) to denote a solution to (SVEIQR)contt0 on [t0,∞).

Proposition 3 ( [8]). If X(t) is a solution to (SVEIQR)contt0 on [t0,∞), then X(t) ≥ 0 on [t0,∞).

We also establish that any solution to (SVEIQR)contt0 is bounded above by Λ/µ1. More precisely, we
have the following result.

Proposition 4 ( [8]). If X(t) is a solution to (SVEIQR)contt0 on [t0,∞), then X(t) ∈ D for all t ≥ t0. In other

words, D is positively invariant with respect to (SVEIQR)contt0 .

Finally, using a similar approach as for Proposition 1 and applying Proposition 4 and Theorem 3.3
from [10, p. 94], we obtain the following global existence and uniqueness result for (SVEIQR)contt0 .

Corollary 5. The initial value problem (SVEIQR)contt0 has a unique solution on [t0,+∞).
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3.2. Piecewise Continuous Time-varying Transmission Rate. We now turn our attention to the
case when β(t) is a piecewise continuous function of t. We consider (SVEIQR)t0 with the following
additional conditions on β(t):

(PC1) β(t) can be characterized using a sequence {tk}k≥0 of real numbers and a sequence {bk(t)}k≥0

of continuous functions, where t0 < t1 < t2 < · · · with tk →∞, and for each k = 0, 1, 2, ...,
we have β(t) = bk(t) for all t ∈ [tk, tk+1);

(PC2) there are nonnegative constants L,M such that L ≤ β(t) ≤M on [t0,∞).

An example of a function β(t) satisfying (PC1)-(PC2) is illustrated in Figure 2.

Figure 2. An example of a function y = β(t) satisfying assumptions (PC1)-(PC2).

Let us denote by (SVEIQR)
pc-cont
t0

the IVP (SVEIQR)t0 with the additional conditions (PC1)-(PC2).
In this case, a solution to the IVP, if it exists, must be piecewise continuously differentiable on [t0,∞).
By applying the properties for the IVP (SVEIQR)contt0 , we can obtain the following result.

Theorem 6. The initial value problem (SVEIQR)
pc-cont
t0

has a unique solution X(t) on [t0,+∞). Moreover,

X(t) ∈ D for all t ≥ t0.

Proof. We construct a sequence {Xk(t)}k≥0 of vector-valued functions. First, consider the IVP
(SVEIQR)contt0 with initial condition xt0 at t = t0, where the continuous transmission rate β(t) is taken
to be b0(t); let us call this IVP I0(t0, xt0 , b0(t)) (or simply, I0). By Corollary 5, I0 has a unique solution
on [t0,+∞); let X0(t) be this solution. By Proposition 4, X0(t) ∈ D for all t ≥ t0.

Now, set xt1 = X0(t1) and consider the IVP (SVEIQR)contt1 with initial condition xt1 at t = t1 and
β(t) taken to be b1(t). We refer to this IVP as I1 = I1(t1, xt1 , b1(t)). We can then define X1(t) to be
the unique solution of I1 on [t1,∞). Similarly, X1(t) ∈ D for all t ≥ t1. By repeating this process, we
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are able to construct the sequence {Xk(t)}k≥0, with each Xk(t) being the unique solution to the IVP
Ik(tk, xtk , bk(t)) and possessing the property that Xk(t) ∈ D for all t ≥ tk.

DefineX(t) to be the piecewise function such that for each k ≥ 0, we haveX(t) = Xk(t) on [tk, tk+1).
Then X(t) is continuous on [t0,∞) and X(t0) = X0(t0) = xt0 . Moreover, in each interval [tk, tk+1),
X(t) = Xk(t) while, from (PC1), β(t) = bk(t); thus, X(t) satisfies x′(t) = f(t, x(t)) on each such
interval. Therefore, X(t) is a solution to (SVEIQR)

pc-cont
t0

on [t0,∞). The uniqueness of X(t) follows
immediately from the uniqueness of solution to each of the IVPs I1, I2, .... Finally, it is clear that, by
construction, X(t) ∈ D for all t ≥ t0. �

4. Analysis of the SVEIQR Model with Switching Transmission Rate

4.1. The IVP (SVEIQR)switch
t0 . We now turn our attention to the SVEIQR Model with a switching

transmission rate β(t). We use definitions from [7]. A switched system can be defined as x′(t) =
N∑
p=1

up(t)fp(x), where each fp(x) is a distinct continuous vector field of Rn and u = (u1, u2, ..., uN ) :

[0,+∞) → U , with U denoting the set of all canonical basis vectors of RN . A switched solution is a
continuous function ϕ(t) : [0,+∞) → Rn for which there is a positive divergent sequence of times
0 = τ0 < τ1 < τ2 < · · · (called switching times) and a sequence of indices pk, each one in P , such that
ϕ′(t) = fpk(x) on (τk, τk+1) (equivalently, this means that on (τk, τk+1), u(t) is equal to the vector with
a 1 in the pkth position and 0 in all other positions).

Thus, we can say that in solving a switched system, we considerN possible modes (i.e., f1, f2, ..., fN)
and only exactly one of these is active at each time t as dictated by the switching signal u(t). The
function u(t) can be equivalently described by the function σ(t) : [0,+∞) → P defined as follows:
σ(t) = p if and only if the vector u(t) has a 1 in the pth position and 0 in all other positions. The function
σ(t) is typically assumed to be right continuous.

For our study, the switching happens at the level of the parameter β(t). Thus, given an initial time
t0 ≥ 0, we simply assume that β(t) is a piecewise-constant function on [t0,+∞). We then make the
following additional assumptions:

(S1) β(t) can be characterized using two sequences {tk}k≥0 and {βk}k≥0, where tk →∞, t0 < t1 < t2 <

· · · , and for each k = 1, 2, ..., we have β(t) = βk for all t ∈ [tk, tk+1);
(S2) the range of β(t) is B := {B1, B2, ..., Bm}, where 2 ≤ m <∞ and each Bk is a positive constant;
(S3) there exists an h > 0 such that infk≥1(tk − tk−1) ≥ h.

An example of a function β(t) satisfying the discussed assumptions (S1)-(S3) is illustrated in Figure
3. In light of assumption (S2), which implies that β(t) only hasm possible values, we can say that our
model hasm distinct modes, each one corresponding to the different possible values of the transmission
rate β(t). For any time interval I , we also say that our model is in mode p when β(t) = Bp for all t ∈ I .
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Figure 3. An example of a function y = β(t) satisfying assumptions (S1)-(S3)

To summarize, our study will now focus on IVP (SVEIQR)switch
t0 , which is simply the IVP (SVEIQR)t0

but with β(t) required to satisfy conditions (S1)-(S3).
To represent IVP (SVEIQR)switch

t0 as a switched system, let x = (S, V,E, I,Q,R) be a variable in R6

and for each mode p ∈ {1, 2, ...,m}, define fp : R6 → R6 by

fp(x) =



Λ−BpSI − (µ1 + v)S

vS −BpρV I − µ1V

Bp(S + ρV )I − (µ1 + α)E

αE − (µ1 + µ2 + q + σ1)I

qI − (µ1 + µ3 + σ2)Q

σ1I + σ2Q− µ1R


.

Moreover, for each t ∈ [t0,+∞), define u(t) as the unit vector (u1(t), ..., um(t)) with a 1 in the pth
position if β(t) = Bp. Then IVP (SVEIQR)switch

t0 can be written as

x′(t) =

m∑
p=1

[up(t) · fp(x(t))] , t ∈ [t0,+∞),

x(t0) = (St0 , Vt0 , Et0 , It0 , Qt0 , Rt0).

Note that when we fix a β(t) satisfying (S1)-(S3), a solution X(t) to (SVEIQR)switch
t0 is trivially a

switched solution of the corresponding switched system. In light of (S3), we can say further that X(t)

is a switched solution with a nonvanishing dwell time [7]. Note that a transmission rate β(t) satisfying
(S1)-(S3) also satisfies (PC1)-(PC2). Thus, Theorem 6 immediately implies the following.

Corollary 7. The initial value problem (SVEIQR)switch
t0 has a unique solution X(t) on [t0,+∞). Moreover,

X(t) ∈ D for all t ≥ t0.
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Following standard methods (such as those done in [8,9]), we find that (SVEIQR)switch
t0 has a unique

equilibrium solution that corresponds to the DFE; this is given by

DFE =

(
Λ

µ1 + v
,

vΛ

µ1(µ1 + v)
, 0, 0, 0, 0

)
. (7)

The uniqueness of this equilibrium point is due to β(t) being non-constant (by (S2)).
We will investigate asymptotic properties of the DFE. In the autonomous case, such studies are

typically done in relation to a threshold parameter such as the basic reproduction number. If β(t) is
replaced by a constant parameter, for instance, then the basic reproduction number of the resulting
system can easily be obtained, as in [9]. Particularly, using the next-generation matrix (NGM) approach
in [11], each mode p of our model has basic reproduction number

Rp0 =
BpΛ(µ1 + ρv)α

µ1(µ1 + v)(µ1 + α)(µ1 + µ2 + q + σ1)
. (8)

However, as (SVEIQR)switch
t0 involves a nonautonomous system, there is no general method for

computing its basic reproduction number. Thus, we will carry out our analysis with respect to the
following quantities: (1) the maximum reproduction numberRmax, and (2) the time-weighted average
Rave of the basic reproduction numbers of the system’s modes.

4.2. Analysis with respect to Rmax. The quantity Rmax is obtained by replacing Bp in (8) by the
maximum possible value of β(t); that is,

Rmax =
max{B1, B2, ..., Bm} · Λ(µ1 + ρv)α

µ1(µ1 + v)(µ1 + α)(µ1 + µ2 + q + σ1)
. (9)

The conditionRmax < 1 is then equivalent toRp0 < 1 for all p ∈ {1, 2, ...,m}. Thus, under these equiva-
lent conditions, we expect that for any initial condition xt0 ∈ D, the unique solution to (SVEIQR)switch

t0

will converge to the DFE. We establish exactly this fact in this section.
We begin by considering the subsystem (SVEI)t0 given by

y′(t) =

m∑
p=1

[up(t) · gp(x(t))] , t ∈ [t0,+∞),

where, for each mode p ∈ {1, 2, ...,m}, gp : R4 → R4 is defined as

gp(x) =


Λ−BpSI − (µ1 + v)S

vS −BpρV I − µ1V

Bp(S + ρV )I − (µ1 + α)E

αE − (µ1 + µ2 + q + σ1)I

 .

The biologically feasible region associated with (SVEI)t0 is

DSVEI =

{
(S, V,E, I) ∈ R4

≥0 : S + V + E + I ≤ Λ

µ1

}
.



Asia Pac. J. Math. 2025 12:60 10 of 24

Corollary 7 implies that the IVP defined by (SVEI)t0 and with initial condition y(t0) = (St0 , Vt0 ,

Et0 , It0) ∈ DSVEI has a unique solution that lies entirely in DSVEI. Moreover, the unique equilibrium of
(SVEI)t0 is given by

(
Λ

µ1+v ,
vΛ

µ1(µ1+v) , 0, 0
)
, which corresponds to the DFE.

We now write DSVEI = D1 ∪ D2 ∪ D3 ∪ D4, where

D1 =

{
(S, V,E, I) ∈ DSVEI : S ≤ Λ

µ1 + v
, V ≤ vΛ

µ1(µ1 + v)

}
,

D2 =

{
(S, V,E, I) ∈ DSVEI : S ≥ Λ

µ1 + v
, V ≤ vΛ

µ1(µ1 + v)

}
,

D3 =

{
(S, V,E, I) ∈ DSVEI : S ≤ Λ

µ1 + v
, V ≥ vΛ

µ1(µ1 + v)

}
,

D4 =

{
(S, V,E, I) ∈ DSVEI : S ≥ Λ

µ1 + v
, V ≥ vΛ

µ1(µ1 + v)

}
.

In the next two lemmas, we establish the attractivity of the DFE for all initial conditions in D1 or D2.
In both lemmas, we apply the invariance principle for nonlinear switched systems developed in [7].

Lemma 8. SupposeRmax < 1. Then every solution Y (t) to (SVEI)t0 for which Y (t0) ∈ D1 converges to the

DFE.

Proof. We perform the change of variables given by (S̄, V̄ , Ē, Ī) =
(

Λ
µ1+v − S,

vΛ
µ1(µ1+v) − V,E, I

)
. Thus,

the subsystem (SVEI)t0 is equivalent to system (SVEI)D1
t0

given by the following:

y′(t) =
m∑
p=1

[up(t) · ḡp(x(t))] , t ∈ [t0,+∞),

where, for each mode p ∈ {1, 2, ...,m}, ḡp : R4 → R4 is defined as

ḡp(x) =


Bp

(
Λ

µ1+v − S̄
)
Ī − (µ1 + v)S̄

vS̄ +Bp

(
ρvΛ

µ1(µ1+v) − ρV̄
)
Ī − µ1V̄

Bp

(
Λ(µ1+ρv)
µ1(µ1+v) − S̄ − ρV̄

)
Ī − (µ1 + α)Ē

αĒ − (µ1 + µ2 + q + σ1)Ī

 .

Note that the corresponding feasible region for the converted system is given by

D1 :=

{
(S̄, V̄ , Ē, Ī) ∈ R4

≥0 : S̄ ≤ Λ

µ1 + v
, V̄ ≤ vΛ

µ1(µ1 + v)
, Ē + Ī ≤ S̄ + V̄

}
.

Moreover, we note that Ē0 = (0, 0, 0, 0) is the unique equilibrium solution of (SVEI)D1
t0

. Now, define
V : D1 → [0,+∞) as

V (S̄, V̄ , Ē, Ī) =
1−Rmax

Rmax
· α(S̄ + V̄ ) + αĒ + (µ1 + α)Ī .
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Clearly, V is of class C1 (i.e., it is continuously differentiable) and is positive definite (i.e., V > 0 on
D1 − (0, 0, 0, 0)). Furthermore, for each p ∈ {1, 2, ...,m} and x = (S̄, V̄ , Ē, Ī) ∈ D1, we have

∇V (x) · ḡp(x) = −1−Rmax

Rmax
αµ1(S̄ + V̄ )− 1

Rmax
αBp

(
S̄ + ρV̄

)
Ī

+

[
1

Rmax
· BpΛ(µ1 + ρv)α

µ1(µ1 + v)
− (α+ µ1)(µ1 + µ2 + q + σ1)

]
Ī

= −1−Rmax

Rmax
αµ1(S̄ + V̄ )− 1

Rmax
αBp

(
S̄ + ρV̄

)
Ī (10)

− (α+ µ1)(µ1 + µ2 + q + σ1)

(
Rmax −Rp0
Rmax

)
Ī (11)

≤ 0

sinceRp0 ≤ Rmax < 1. Thus, V is a common weak Liapunov function, following Definition 3 in [7, p.
1110].

Consider the set

Z =
{
x ∈ D1 : ∃p ∈ {1, 2, ...,m} such that ∇V (x) · ḡp(x) = 0

}
.

Note that ∇V (x) · ḡp(x) is given by (10)-(11). We consider two cases depending on the value of p.
First, for values of p for whichRp0 < Rmax, all the coefficients in (10)-(11) are strictly negative; thus,
V (x) · ḡp(x) if and only if S̄ = V̄ = Ī = 0. For the second case, we consider values of p for which
Rp0 = Rmax. Then

∇V (x) · ḡp(x) = − αµ1

Rmax

[
1−Rmax +

Bp
µ1
Ī

]
S̄ − αµ1

Rmax

[
1−Rmax + ρ

Bp
µ1
Ī

]
V̄ .

SinceRmax < 1, the entire expression multiplied to S̄ (resp. V̄ ) is strictly negative. Thus, in this case,
V (x) · ḡp(x) = 0 if and only if S̄ = V̄ = 0. Combining the results of the two cases, we therefore have
Z =

{
x ∈ D1 : S̄ = V̄ = 0

}
= {(0, 0, 0, 0)},where the last equality follows from the definition of D1.

We now choose a large enough l so that Ωl := {x ∈ D1 : V (x) < l} = D1, which is connected and
bounded. LetM be the union of all the compact, weakly invariant sets that are contained inZ∩Ωl. Since
Z = {(0, 0, 0, 0)} = {Ē0}, it follows thatM = {Ē0} as well. By Theorem 1 in [7, p. 1112], we conclude
that if ϕ(t) is a solution of (SVEI)D1

t0
such that ϕ has nonvanishing dwell time and ϕ(t0) ∈ Ωl = D1,

then ϕ(t) is attracted byM = {Ē0}.
Returning to the original subsystem (SVEI)t0 , we find that every solution Y (t) for which Y (t0) ∈ D1

converges to the DFE
(

Λ
µ1+v ,

vΛ
µ1(µ1+v) , 0, 0

)
. �

Lemma 9. SupposeRmax < 1. Then every solution Y (t) to (SVEI)t0 for which Y (t0) ∈ D2 converges to the

DFE.

Proof. We proceed similarly as in the proof of Lemma 8. We first perform the change of variables given
by ( ¯̄S, ¯̄V, ¯̄E, ¯̄I) =

(
S − Λ

µ1+v ,
vΛ

µ1(µ1+v) − V,E, I
)
. Thus, the subsystem (SVEI)t0 is equivalent to system
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(SVEI)D2
t0

given by the following:

y′(t) =
m∑
p=1

[up(t) · ¯̄gp(x(t))] , t ∈ [t0,+∞),

where, for each mode p ∈ {1, 2, ...,m}, ¯̄gp : R4 → R4 is defined as

¯̄gp(x) =


−Bp

(
¯̄S + Λ

µ1+v

)
¯̄I − (µ1 + v) ¯̄S

−v ¯̄S +Bpρ
(

vΛ
µ1(µ1+v) −

¯̄V
)

¯̄I − µ1
¯̄V

Bp

(
Λ(µ1+ρv)
µ1(µ1+v) + ¯̄S − ρ ¯̄V

)
¯̄I − (µ1 + α) ¯̄E

α ¯̄E − (µ1 + µ2 + q + σ1) ¯̄I

 .

Note that the corresponding feasible region for the converted system is given by

D2 :=

{
( ¯̄S, ¯̄V, ¯̄E, ¯̄I) ∈ R4

≥0 : ¯̄S ≤ vΛ

µ1(µ1 + v)
, ¯̄V ≤ vΛ

µ1(µ1 + v)
, ¯̄E + ¯̄I ≤ ¯̄V − ¯̄S

}
.

Moreover, we note that ¯̄E0 = (0, 0, 0, 0) is the unique equilibrium solution of (SVEI)D2
t0

. Now, define
V2 : D2 → [0,+∞) as

V2( ¯̄S, ¯̄V, ¯̄E, ¯̄I) = α ¯̄S +
1−Rmax

Rmax
α ¯̄V + α ¯̄E + (µ1 + α) ¯̄I.

Clearly, V2 is of class C1 and is positive definite. Furthermore, for each p ∈ {1, 2, ...,m} and each
x = ( ¯̄S, ¯̄V, ¯̄E, ¯̄I) ∈ D2, we have

∇V2(x) · ¯̄gp(x) = −α(µ1 + v) ¯̄S − 1−Rmax

Rmax
αv ¯̄S − 1−Rmax

Rmax
αµ1

¯̄V (12)

− 1

Rmax

[
Λ

µ1 + v
+ ρ ¯̄V

]
αBp

¯̄I (13)

− (µ1 + α)(µ1 + µ2 + q + σ1)

(
Rmax −Rp0
Rmax

)
¯̄I (14)

≤ 0

sinceRp0 ≤ Rmax < 1. Thus, V2 is a common weak Liapunov function.
Consider the set

Z2 =
{
x ∈ D2 : ∃p ∈ {1, 2, ...,m} such that ∇V2(x) · ¯̄gp(x) = 0

}
.

Noting that ∇V2(x) · ¯̄gp(x) is given by (12)-(14), we find that Z2 =
{
x ∈ D2 : ¯̄S = ¯̄V = ¯̄I = 0

}
=

{(0, 0, 0, 0)}.
We now choose a large enough l so that Ω2,l := {x ∈ D2 : V2(x) < l} = D2, which is connected

and bounded. Let M2 be the union of all the compact, weakly invariant sets that are contained in
Z2 ∩ Ω2,l. Since Z2 = {(0, 0, 0, 0)} = { ¯̄E0}, it follows thatM2 = { ¯̄E0} as well. By Theorem 1 in [7, p.
1112], we conclude that if ϕ(t) is a solution of (SVEI)D2

t0
such that ϕ has nonvanishing dwell time and

ϕ(t0) ∈ Ω2,l = D2, then ϕ(t) is attracted byM2 = { ¯̄E0}.
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Returning to the original subsystem (SVEI)t0 , we find that every solution Y (t) for which Y (t0) ∈ D2

converges to the DFE
(

Λ
µ1+v ,

vΛ
µ1(µ1+v) , 0, 0

)
. �

We are left to consider (SVEI)t0 when the initial condition y(t0) = (St0 , Vt0 , Et0 , It0) is in D3 or D4.
We need the following lemma.

Lemma 10. If St0 + Vt0 <
Λ
µ1

and St0 ≤ Λ
µ1+v , then there exists t∗ ≥ t0 such that the unique solution Y (t) to

(SVEI)t0 is in D1 for all t ≥ t∗.

Proof. First, note that equations (1) and (2) are respectively equivalent to

S(t) =
Λ

µ1 + v
+

[
St0 −

Λ

µ1 + v

]
e(µ1+v)(t0−t) −

∫ t

t0

β(θ)S(θ)I(θ)e(µ1+v)θdθ

e(µ1+v)t
, (15)

V (t) = Vt0e
µ1(t0−t) +

∫ t

t0

[vS(θ)− β(θ)ρV (θ)I(θ)]eµ1θ dθ

eµ1t
. (16)

Since S, I , and β are nonnegative everywhere, (15) implies

S(t) ≤ Λ

µ1 + v
+

[
St0 −

Λ

µ1 + v

]
e(µ1+v)(t0−t), t ∈ [t0,+∞). (17)

Given that St0 ≤ Λ
µ1+v , we have S(t) ≤ Λ

µ1+v for all t ≥ t0, as desired.
We are left to establish that V (t) ≤ vΛ

µ1(µ1+v) on [t∗,+∞), for some t∗ ≥ t0. Using (17) and again
applying the nonnegativity of S, I , and β, (16) implies

V (t) ≤ Vt0eµ1(t0−t) +
1

eµ1t

∫ t

t0

v

[
Λ

µ1 + v
+

[
St0 −

Λ

µ1 + v

]
e(µ1+v)(t0−θ)

]
eµ1θ dθ

=
vΛ

µ1(µ1 + v)
+

[
Vt0 −

vΛ

µ1(µ1 + v)

]
eµ1(t0−t)

+

[
St0 −

Λ

µ1 + v

]
eµ1(t0−t)(1− ev(t0−t)), t ∈ [t0,+∞). (18)

Since St0 < Λ
µ1+v , it follows that if Vt0 ≤ vΛ

µ1(µ1+v) , then the desired inequality follows for all t ≥ t0.
We now assume that Vt0 > vΛ

µ1(µ1+v) . Then V (t) ≤ vΛ
µ1(µ1+v) holds whenever[

Vt0 −
vΛ

µ1(µ1 + v)

]
eµ1(t0−t) +

[
St0 −

Λ

µ1 + v

]
eµ1(t0−t)(1− ev(t0−t)) ≤ 0,

which is equivalent to

t ≥ t0 −
1

v
ln

[
Λ
µ1
− St0 − Vt0
Λ

µ1+v − St0

]
.

Note that the argument of ln above is positive due to the assumption that St0 + Vt0 <
Λ
µ1
. Therefore, by

choosing t∗ = max

{
t0, t0 − 1

v ln

[
Λ
µ1
−St0−Vt0
Λ

µ1+v
−St0

]}
, the desired inequality for V (t) holds on [t∗,+∞). �

Now, supposeRmax < 1. If the initial condition y(t0) = (St0 , Vt0 , Et0 , It0) is in D3, then we have two
cases:
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(i) If St0 + Vt0 = Λ
µ1
, then Et0 = It0 = 0. Following similar arguments as in Lemma 2, it can be

shown that E(t) = I(t) = 0 for all t ≥ t0. We can then easily verify, using (15) and (16), that
the solution Y (t) to (SVEI)t0 approaches the DFE.

(ii) If St0 + Vt0 <
Λ
µ1
, then we can apply Lemma 10; that is, for some t∗ ≥ t0, the solution Y (t) is in

D1 for t ≥ t∗. By applying Lemma 8 to the IVP defined by (SVEI)t∗ and the initial condition
y(t∗) = Y (t∗), we see that Y (t) must also converge to the DFE.

Lastly, noting the definition of DSVEI, we see that D4 is simply equal to the singleton{(
Λ

µ1+v ,
vΛ

µ1(µ1+v) , 0, 0
)}

. Hence, the case when y(t0) ∈ D4 is equivalent to the case addressed in
(i) above. We have thus proven the following.

Lemma 11. SupposeRmax < 1. Then every solution Y (t) to (SVEI)t0 for which Y (t0) ∈ DSVEI converges to

the DFE.

With the preceding lemma, we are now ready to establish this section’s main result—the global
attractivity of the DFE of (SVEIQR)switch

t0 whenRmax < 1.

Theorem 12. SupposeRmax < 1. Then every solutionX(t) to (SVEIQR)switch
t0 for whichX(t0) ∈ D converges

to the DFE given in (7); that is, the DFE is globally attractive.

Proof. In light of Lemma 11, we have S(t)→ Λ
µ1+v , V (t)→ vΛ

µ1(µ1+v) , E(t)→ 0, and I(t)→ 0 as t→∞.
Thus, we are left to prove that Q(t)→ 0 and R(t)→ 0 as t→∞. Using (5) and (6), we find that

Q(t) =
Q(t0)e(µ1+µ3+σ2)t0

e(µ1+µ3+σ2)t
+

1

e(µ1+µ3+σ2)t

∫ t

t0

e(µ1+µ3+σ2)θqI(θ) dθ

and
R(t) =

R(t0)eµ1t0

eµ1t
+

1

eµ1t

∫ t

t0

eµ1θ[σ1I(θ) + σ2Q(θ)] dθ.

It can be easily verified that lim
t→∞

Q(t) = 0, which leads to lim
t→∞

R(t) = 0 as desired. �

4.3. Analysis with respect toRave. Consider the following periodic switching transmission rate:

β(t) =



0.0125, if t ∈
∞⋃
k=0

[150k, 30 + 150k)

0.016, if t ∈
∞⋃
k=0

[30 + 150k, 50 + 150k)

0.0115, if t ∈
∞⋃
k=0

[50 + 150k, 90 + 150k)

0.012, if t ∈
∞⋃
k=0

[90 + 150k, 115 + 150k)

0.0115, if t ∈
∞⋃
k=0

[115 + 150k, 150 + 150k)

. (19)
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Moreover, set t0 = 0 and Λ = 20, ρ = 0.15, v = 0.2, α = 0.7, q = 0.7, σ1 = 0.2, σ2 = 0.3,
µ1 = 0.1, µ2 = 0.075, and µ3 = 0.05. Using (8), we find that the basic reproduction numbers of the
system’s five modes are 0.8817829, 1.128682, 0.8112403, 0.8465116, and 0.8112403; thus, by (9), we have
Rmax = 1.128682. Thus, Theorem 12 does not apply. Solving (SVEIQR)switch

t0 numerically given the
above parameters, we obtain the solution illustrated in Fig. 4.

(a) (b)

Figure 4. A numerical solution to (SVEIQR)switch
t0 given a set of model parameters for

whichRmax > 1. In (A), all compartments are plotted while in (B), a zoomed-in plot
for I(t) is presented. It can be observed that the solution approaches the DFE.

The preceding example implies that the conditionRmax < 1, while sufficient for the global attractivity
of the DFE of (SVEIQR)switch

t0 , is not necessary for the convergence of a solution to the DFE. This opens
exploration for other sufficient conditions. In this section, we provide such a sufficient condition in the
case that β(t) is also periodic; that is, aside from satisfying assumptions (S1)-(S3), β(t) is also assumed
to satisfy:
(S4) β (t) is a periodic function with a period of length ω, i.e. β (t+ ω) = β (t).

We now define τk = tk − tk−1 for each k ≥ 0, where {tk}k≥0 is the sequence of times defined in (S1).
Since β (t) also satisfies (S4), then there exists ` ∈ N such that τk+` = τk for all k and∑`

i=1 τi = ω. This
implies that we can represent β (t) as

β (t) =



β1, if t ∈
∞⋃
k=0

[tk`, tk`+1) = [t0, t1) ∪ [t`, t`+1) ∪ · · · ,

β2, if t ∈
∞⋃
k=0

[tk`+1, tk`+2) = [t1, t2) ∪ [t`+1, t`+2) ∪ · · · ,

...

β`, if t ∈
∞⋃
k=0

[t(k+1)`−1, t(k+1)`) = [t`−1, t`) ∪ [t2`−1, t2`) ∪ · · · .
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It should be noted that β1, β2, . . . , β` are not necessarily distinct and that βk ∈ B := {B1, B2, . . . , Bm},
where B is as defined in (S2). Hence, ` ≥ m. Moreover, βk+` = βk for all k. Given β (t) satisfying
(S1)-(S4), denote the corresponding IVP as (SVEIQR)periodict0

.
We next investigate the asymptotic properties of the DFE corresponding to (SVEIQR)periodict0

by defin-
ing the threshold parameterRave. LetRk0 represent the basic reproduction number of IVP (SVEIQR)t0
where β (t) is replaced by a particular βk (note that β(t) is constant in this case). Then by (8), we have

Rk0 =
βkΛ(µ1 + ρv)α

µ1(µ1 + v)(µ1 + α)(µ1 + µ2 + q + σ1)
.

We can now define the threshold parameterRave of (SVEIQR)periodict0
as

Rave =
1

ω

∑̀
k=1

τkRk0; (20)

that is,Rave is defined as theweighted average ofR1
0,R2

0, . . . ,R`0 withweights τ1ω , τ2ω , . . . , τ`ω , respectively.
We will establish a sufficient condition, in relation toRave, for the global attractivity of the DFE. But

before this, we establish the following result.

Lemma 13. For any solution X (t) to (SVEIQR)periodict0
with X (t0) ∈ D and St0 + Vt0 <

Λ
µ1
, there exists

t∗ ≥ t0 such that

S(t) + ρV (t) ≤ Λ(µ1 + ρv)

µ1(µ1 + v)
, ∀t ≥ t∗.

Proof. From inequalities (17) and (18) in the proof of Lemma 10, we have

S (t) + ρV (t) ≤ Λ(µ1 + ρv)

µ1(µ1 + v)
+ (1− ρ)

(
St0 −

Λ

µ1 + v

)
e(µ1+v)(t0−t) + ρ

(
St0 + Vt0 −

Λ

µ1

)
eµ1(t0−t).

Case 1: Suppose St0 ≤ Λ
µ1+v . Since St0 + Vt0 < Λ

µ1
by assumption, then the desired inequality

immediately follows for all t ≥ t0. Thus, we can simply choose t∗ = t0.
Case 2: Suppose St0 > Λ

µ1+v . Note that S (t) + ρV (t) ≤ Λ(µ1+ρv)
µ1(µ1+v) holds whenever

(1− ρ)

(
St0 −

Λ

µ1 + v

)
e(µ1+v)(t0−t) + ρ

(
St0 + Vt0 −

Λ

µ1

)
eµ1(t0−t) ≤ 0.

which is equivalent to

t ≥ t0 −
1

v
ln

 ρ
[

Λ
µ1
− St0 − Vt0

]
(1− ρ)

(
St0 − Λ

µ1+v

)
 .

Note that the argument of the ln above is positive due to the assumption that St0 + Vt0 <
Λ
µ1
. Therefore,

the desired inequality holds on [t∗,+∞) by setting

t∗ = max

t0, t0 − 1

v
ln

 ρ
[

Λ
µ1
− St0 − Vt0

]
(1− ρ)

(
St0 − Λ

µ1+v

)
 .

�
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For the succeeding discussion, we utilize the periodic function λ defined by

λ (t) = β (t) · Λ(µ1 + ρv)

µ1(µ1 + v)
− (µ1 + µ2 + q + σ1).

In addition, we denote by λk the value of λ (t) whenever β (t) assumes the value βk. Since λ also has a
period of length ω, it follows that λk+` = λk for all k. Moreover, the integral of λ over any interval of
length ω has a fixed value; specifically, ∫ b

a
λ (θ) dθ =

∑̀
k=1

λkτk

whenever b− a = ω.

Lemma 14. Suppose Rave · µ1+α
α < 1 and λ (t) ≥ −µ1 for all t ≥ t0. Every solution

X (t) = (S (t) , V (t) , E (t) , I (t) , Q (t) , R (t)) to (SVEIQR)periodict0
for which X (t0) ∈ D is such that

lim
t→∞

(E (t) + I (t)) = 0.

Proof. Let U(t) = E(t) + I(t). It follows that U ′(t) = E′(t) + I ′(t) and

U ′(t) = [β (t) (S(t) + ρV (t))− (µ1 + µ2 + q + σ1)] I(t)− µ1E(t).

From Lemma 13, there exists T ∗ = t0 + rω for some sufficiently large positive integer r such that
S(t) + ρV (t) ≤ Λ(µ1+ρv)

µ1(µ1+v) for all t ≥ T ∗. Thus, for all t ≥ T ∗, we have

U ′(t) ≤
[
β (t) · Λ(µ1 + ρv)

µ1(µ1 + v)
− (µ1 + µ2 + q + σ1)

]
I(t)− µ1E(t)

= λ (t) I(t)− µ1E(t)

≤ max {λ (t) ,−µ1} (I(t) + E(t)).

Since λ (t) ≥ −µ1 for all t ≥ t0 by assumption, then U ′(t) ≤ λ (t)U(t) for all t ≥ T ∗.
Let w(t) = exp

(∫ t

T ∗
λ(θ)dθ

)
, then w(T ∗) = 1, w(t) > 0 for all t ≥ T ∗, and w′(t) = w(t)λ(t). Thus,

for all t ≥ T ∗, we have
d

dt

(
U(t)

w(t)

)
=
w(t)U ′(t)− U(t)w′(t)

(w(t))2
=
U ′(t)− U(t)λ(t)

w(t)
≤ 0

since w(t) > 0 and U ′(t) − U(t)λ(t) ≤ 0. Since d
dt

(
U(t)
w(t)

)
is always nonpositive, then U(t)

w(t) is a nonin-
creasing function, and hence is bounded above by its initial value at t = T ∗. Thus, we have

U(t)

w(t)
≤ U(T ∗)

w(T ∗)
=
U(T ∗)

1
= U(T ∗).

Hence, the resulting inequality for U(t) is given by

U(t) ≤ U(T ∗) exp

(∫ t

T ∗
λ(θ) dθ

)
. (21)



Asia Pac. J. Math. 2025 12:60 18 of 24

Now consider the sum
∑̀
k=1

λkτk, which can be expressed in terms ofRave as

∑̀
k=1

λkτk = ω(µ1 + µ2 + q + σ1)

(
Rave · µ1 + α

α
− 1

)
.

Since Rave · µ1 + α

α
< 1 by assumption, then it follows that η := exp

[∑̀
k=1

λkτk

]
< 1. Now suppose

t = T ∗ + hω + ε, where h ∈ N and for any ε ∈ [0, ω). Applying inequality (21), we have

U(T ∗ + hω + ε) ≤ U(T ∗) exp

(∫ T ∗+hω+ε

T ∗
λ (θ) dθ

)
.

But since T ∗ = t0 + rω for some r ∈ N, then

U(T ∗ + hω + ε) ≤ U(T ∗) exp

(∫ t0+hω+ε

t0

λ (θ) dθ

)

= U(T ∗) exp

(
h∑
i=1

∫ t0+iω

t0+(i−1)ω
λ(θ) dθ

)
× exp

(∫ t0+hω+ε

t0+hω
λ (θ) dθ

)

= U(T ∗)

[
exp

(
h∑
i=1

(∑̀
k=1

λkτk

))]
exp

(∫ t0+ε

t0

λ (θ) dθ

)

= U(T ∗)ηh exp

(∫ t0+ε

t0

λ (θ) dθ

)
≤ U(T ∗)ηhC

where C := exp

(∫ t0+ω

t0

|λ (θ)| dθ
)
. Note that C is finite as λ (t) is bounded. Since C is independent of

ε, the inequality U(T ∗ + hω + ε) ≤ U(T ∗)ηhC holds for any ε ∈ [0, ω). Now, observe that the sequence{
U(T ∗)ηhC

}
h≥0

approaches 0 as h→∞. It now follows that limt→∞ U (t) = limt→∞ (E (t) + I (t)) =

0. �

We are now ready to present and prove the following sufficient condition for the global attractivity
of the DFE for IVP (SVEIQR)periodict0

.

Theorem 15. Suppose Rave · µ1+α
α < 1 and λ (t) ≥ −µ1 for all t ≥ t0. Then every solution X (t) to

(SVEIQR)periodict0
for whichX (t0) ∈ D converges to the DFE given in (7); that is, the DFE is globally attractive.

Proof. The nonnegativity of E(t) and I(t), and Lemma 14 imply that lim
t→∞

E(t) = lim
t→∞

I(t) = 0. In
addition, as presented in the proof of Theorem 12, we have lim

t→∞
Q(t) = 0 and lim

t→∞
R(t) = 0. Using

equations (1) to (6), we get N ′(t) = Λ− µ2I(t)− µ3Q(t)− µ1N(t). Solving for N(t) yields

N(t) =
Λ

µ1
+

[
N(t0)− Λ

µ1

]
eµ1(t0−t) − 1

eµ1t

∫ t

t0

[µ2I(θ) + µ3Q(θ)]eµ1θ dθ.
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It can then be easily shown that

lim
t→∞

N(t) =
Λ

µ1
+ lim
t→∞

µ2I(t) + µ3Q(t)

µ1
=

Λ

µ1
.

Next we consider the implicit equation of S (t) in (15). Given the boundedness of S(t) by Proposition
4, the boundedness of β(t) by assumption, and lim

t→∞
I(t) = 0, it can be shown that lim

t→∞
β(t)S(t)I(t) = 0.

Thus, taking the limit of (15) as t →∞, we arrive at lim
t→∞

S(t) =
Λ

µ1 + v
. Since V (t) = N(t)− S(t)−

E(t)− I(t)−Q(t)−R(t), then lim
t→∞

V (t) =
vΛ

µ1(µ1 + v)
. �

To illustrate Theorem 15, consider IVP (SVEIQR)periodict0
with β(t) given by (19). It can be shown

thatRave · µ1+α
α = 0.9983 < 1 and λ(t) ≥ −µ1 for all t ≥ t0, and as presented in Figure 4, the solution

indeed approaches the DFE.

5. Simulations

In this section, we present several simulations to illustrate our results and to explore the rich dynamics
of solutions in some scenarios. All simulation figures were made using the software RStudios. We set
t0 = 0 and the initial condition as

X(t0) =

(
0.6

Λ

µ1
, 0.3

Λ

µ1
, 0.095

Λ

µ1
, 0.005

Λ

µ1
, 0, 0

)
.

For the first set of simulations, we use the transmission rate

β(t) =



β1, if t ∈
∞⋃
k=0

[150k, 30 + 150k) ,

β2, if t ∈
∞⋃
k=0

[30 + 150k, 50 + 150k),

β3, if t ∈
∞⋃
k=0

[50 + 150k, 90 + 150k) ,

β4, if t ∈
∞⋃
k=0

[90 + 150k, 115 + 150k),

β5, if t ∈
∞⋃
k=0

[115 + 150k, 150 + 150k),

which is a periodic piecewise-constant function. Given the values of (β1, β2, β3, β4, β5) in Table 3, we
obtain numerical solutions to (SVEIQR)periodict0

using the parameters shown in Table 4, in which the
corresponding values forRmax andRave · µ1+α

α are also indicated. Graphs of these numerical solutions
are then presented in Figs. 5, 6, and 7. All parameters used are hypothetical.

The solution presented in Fig. 5 arises from parameters for which bothRmax andRave · µ1+α
α are less

than 1, and λ(t) ≥ −µ1 for all t ≥ t0. Thus, Theorem 12 or Theorem 15 guarantee the convergence of
the solution to the DFE and this is evident in the graphs shown in Fig. 5.
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Table 3. Beta values used for the numerical solutions presented in Figs. 5, 6, and 7.

Fig. β1 β2 β3 β4 β5

5 0.01345 0.01365 0.01515 0.01525 0.01535
6 0.008 0.00975 0.01075 0.00925 0.01025
7 0.008 0.01 0.009 0.01 0.009

Table 4. Parameter values used for the numerical solutions presented in Figs. 5–7.
Corresponding values forRmax andRave · µ1+α

α are also indicated.

Fig. Rmax Rave · µ1+α
α Λ ρ v α q σ1 σ2 µ1 µ2 µ3

5 0.9058 0.9896 20 0.15 0.3 0.7 0.7 0.2 0.3 0.1 0.075 0.05
6 1.1375 1.173 30 0.15 0.2 0.7 0.7 0.2 0.3 0.1 0.075 0.05
7 1.0581 1.1005 30 0.15 0.2 0.7 0.7 0.2 0.3 0.1 0.075 0.05
8 2.0714 2.4799 40 0.15 0.3 0.5 0.5 0.2 0.3 0.1 0.075 0.05

(a) (b)

Figure 5. A numerical solution to (SVEIQR)periodict0
given a set of model parameters

for which Rmax < 1 and Rave · µ1+α
α < 1. In (A), the graphs of all compartments are

shown while in (B), a zoomed-in graph for I(t) is presented. It can be observed that the
solution approaches the DFE.

The solution presented in Fig. 6 arises from parameters for which both Rmax and Rave · µ1+α
α are

greater than 1. Thus, Theorem 12 and Theorem 15 do not apply. As evident in Fig. 6, the solution
eventually exhibits a periodic nature, with fluctuations that seem to persist over time. Thus, in this
case, we anticipate that the solution does not converge to an equilibrium point.
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(a) (b)

Figure 6. A numerical solution to (SVEIQR)periodict0
given a set of model parameters

for which Rmax > 1 and Rave · µ1+α
α > 1. In (A), the graphs of all compartments are

shown while in (B), a zoomed-in graph for I(t) is presented. It can be observed that
the solution eventually enters a periodic (or periodic-like) state, with fluctuations that
seem to persist over time.

In the next example (Fig. 7), again we use parameters for which both Rmax and Rave · µ1+α
α are

greater than 1. Thus, Theorem 12 and Theorem 15 do not apply. However, as evident in Fig. 7, the
solution still converges to the DFE. This implies that conditionsRmax < 1 andRave · µ1+α

α < 1 are not
necessary for the solution to approach the DFE.

(a) (b)

Figure 7. A numerical solution to (SVEIQR)periodict0
given a set of model parameters

for which Rmax > 1 and Rave · µ1+α
α > 1. In (A), the graphs of all compartments are

shown while in (B), a zoomed-in graph for I(t) is presented. It can be observed that the
solution approaches the DFE.
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For the last example (Fig. 8), a numerical solution is obtained using the corresponding parameter
values in Table 4 and the following transmission rate:

β2(t) =



0.014, if t ∈
∞⋃
k=0

[500k, 10 + 500k) ,

0.0145, if t ∈
∞⋃
k=0

[10 + 500k, 25 + 500k) ,

0.015, if t ∈
∞⋃
k=0

[25 + 500k, 500 + 500k) .

Notice that β2(t) is again periodic, with period of length 500, and that β2(t) = 0.015 for 95% of one
period; that is, the system is in the third mode (in which β2(t) = 0.015) majority of the time. Despite
this deliberate setup for the transmission rate, the graphs in Fig. 8 suggest that the solution still does
not converge (e.g., to an equilibrium point of the third mode). Instead, the solution again eventually
enters a periodic or periodic-like state in which the system’s two other modes cause fluctuations that
persist over time. It is worth noting that, in this case,Rmax > 1 andRave · µ1+α

α > 1 as well.

(a) (b)

Figure 8. A numerical solution to (SVEIQR)periodict0
given a set of model parameters

for which Rmax > 1 and Rave · µ1+α
α > 1. In (A), the graphs of all compartments are

shown while in (B), a zoomed-in graph for I(t) is presented. It can be observed that
the solution eventually enters a periodic (or periodic-like) state, with fluctuations that
seem to persist over time.

6. Discussion and Conclusion

This work focused on the mathematical analysis an SVEIQR model with a switching transmission
rate. Representing the model as a nonautonomous nonlinear system of differential equations, we
discussed fundamental properties of the solutions including existence, uniqueness, boundedness, and
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the existence of a unique DFE. Mainly using tools from theory of switched systems ( [7]), we then
established two sufficient conditions for the global attractivity of this DFE. The first condition (Theorem
12) involves the maximum reproduction number Rmax, which is simply the maximum among the
basic reproduction numbers of the system’s different modes. The second condition (Theorem 15),
on the other hand, involves the time-weighted average Rave of the basic reproduction numbers of
the system’s modes and applies when the switching rate is periodic. More precisely, under some
general assumptions, the conditions Rmax < 1 and Rave · µ1+α

α < 1 were established to be sufficient
for the global attractivity of the DFE of (SVEIQR)switch

t0 and (SVEIQR)periodict0
, respectively. The second

condition, motivated by the example in Fig. 4, implies that, despite periods of higher transmission rates,
the system is still guaranteed to enter the disease-free state eventually as long as the time-weighted
average of the modes’ reproduction numbers is sufficiently small.

We illustrated our results using simulations and also explored scenarios when the aforementioned
sufficient conditions did not hold. In two simulated outputs wherein Rmax > 1 and Rave · µ1+α

α >

1, we saw that the numerical solutions, as may be expected, did not converge to an equilibrium
solution. However, we observed that the solutions eventually became periodic (or periodic-like), with
fluctuations that seemed to persist over time. It is worth-noting that this remained the case even when
we deliberately used a transmission rate for which the system spends majority of the time in one mode.
From a mathematical perspective, further work on this eventual periodic nature of solutions may prove
to be interesting and relevant.

In another simulation, again withRmax > 1 andRave · µ1+α
α > 1, we saw that the numerical solution

converged to the DFE. Thus, the conditionsRmax < 1 andRave · µ1+α
α < 1 are sufficient but not necessary

for the convergence of solutions to the DFE.
As switching transmission rates can be used to model public health interventions (such as the

imposition of lockdown measures whose stringency level may shift over time), our results provide
a better understanding of the effects of such measures on long-term disease transmission dynamics.
Particularly, the sufficient conditionRave · µ1+α

α < 1 and the simulation results discussed previously
suggest that even if higher transmission rates are allowed over certain periods (i.e., to the point that
Rmax > 1, as was the case for the example presented in Figure 4), it is still possible for the system to
reach a disease-free state eventually. This is a relevant insight to public health decision-makers who
have to balance public health outcomes with other considerations such as economic and social costs.
However, for these results to be more practical, we hope that future work can establish alternative or
stronger sufficient conditions and/or explore necessary conditions for the global attractivity of the DFE.

For future work, we also recommend studies that focus on applications of switched compartmen-
tal models for forecasting the prevalence or incidence of infectious cases, and for quantifying the
effectiveness of some public health interventions.
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