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Abstract. In this paper, we construct an iteration scheme involving a hybrid pair of the Suzuki generalized
nonexpansive single-valued and multi-valued mappings in a complete CAT(0) spaces. In process, we
remove a restricted condition (called end-point condition) in Akkasriworn and Sokhuma’s results [2] in
Banach spaces and utilize the same to prove some convergence theorems. The results in this paper, are
analogs of the results of Akkasriworn et al. [3] in Banach spaces.
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1. Introduction

Fixed point theory in a CAT(0) space was first studied by Kirk [10, 11]. He showed that every
nonexpansive mapping defined on a bounded closed convex subset of a complete CAT(0) space always
has a fixed point. Since then the existence problem of fixed point and the ∆−convergence problem
of iterative sequences to a fixed point for nonexpansive mappings, Suzuki generalized nonexpansive
mappings in a CAT(0) space have been rapidly developed and have appeared in many papers.

Let (X, d) be a geodesic metric space. We denote by 2K the family of nonempty subsets of K, by
FB(K) the collection of all nonempty closed bounded subsets of K, by KC(K) the collection of all
nonempty compact convex subsets ofK.

A subsetK of X is called proximinal if for each x ∈ X , there exists an element k ∈ K such that

d(x, k) = dist(x,K) = inf{d(x, y) : y ∈ K}.

We denote by PB(K), the collection of all nonempty bounded proximinal subsets ofK.
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Let H be the Hausdorff metric with respect to d, that is,

H(A,B) = max{ sup
x∈A

dist(x,B), sup
y∈B

dist(y,A) }, A,B ∈ FB(X),

where dist(x,B) = inf{d(x, y) : y ∈ B} is the distance from the point x to the subset B.
A mapping t : K → K is said to be nonexpansive if

d(tx, ty) ≤ d(x, y) for all x, y ∈ K.

A mapping t : K → K is said to be Suzuki generalized nonexpansive if
1

2
d(x, tx) ≤ d(x, y)⇒ d(tx, ty) ≤ d(x, y) for all x, y ∈ K.

A point x is called a fixed point of t if tx = x.
A multi-valued mapping T : K → FB(K) is said to be nonexpansive if

H(Tx, Ty) ≤ d(x, y) for all x, y ∈ K.

In 2010, Abkar and Eslamian [1] mentioned the Suzuki generalized multi-valued nonexpansive
mapping as follows:

A multi-valued mapping T : K → FB(K) is said to be a Suzuki generalized multi-valued nonexpansive

mapping if
1

2
dist(x, Tx) ≤ d(x, y)⇒ H(Tx, Ty) ≤ d(x, y) for all x, y ∈ K.

Let T : K → PB(K) be a multi-valued mapping and define the mapping PT for each x by

PT (x) := {y ∈ Tx : d(x, y) = dist(x, Tx)} .

A point x is called a fixed point for a multi-valued mapping T if x ∈ Tx.
We use the notation Fix(T ) stands for the set of fixed points of a mapping T and Fix(t) ∩ Fix(T )

stands for the set of common fixed points of t and T . Precisely, a point x is called a common fixed point
of t and T if tx = x ∈ Tx.

In 2009, Agarwal et al. [6] introduced the S-iteration following well-known iteration. For E a convex
subset of a linear spaceX and t a mapping of E into itself, the iterative sequence {xn} of the S-iteration
process is generated from x1 ∈ E and is defined by

yn = (1− βn)xn + βntxn

xn+1 = (1− αn)txn + αnyn,

for all n ∈ N, where {αn} and {βn} are real sequences in (0, 1) satisfying the condition:
∞∑
n=1

αnβn(1− βn) =∞.

In 2013, Sokhuma [15] proved the convergence theorem for a common fixed point in CAT(0) spaces
as follows:
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Theorem 1.1. Let K be a nonempty compact convex subset of a complete CAT(0) space X , and t : K → K

and T : K → FC(K) a single-valued nonexpansive mapping and a multi-valued nonexpansive mapping,

respectively, and Fix(t) ∩ Fix(T ) 6= ∅ satisfying Tw = {w} for all w ∈ Fix(t) ∩ Fix(T ). Let the iterative

sequence {xn} is generated by x1 ∈ K,

yn = (1− βn)xn ⊕ βnzn,

xn+1 = (1− αn)xn ⊕ αntyn,

for all n ∈ N, where zn ∈ Txn and {αn}, {βn} are sequences of positive numbers satisfying 0 < a ≤ αn, βn ≤

b < 1. Then the sequence {xn} converges strongly to a common fixed point of t and T .

In 2015, Akkasriworn and Sokhuma [2] proved the convergence theorem for a common fixed point
in a complete CAT(0) spaces as follow:

Theorem 1.2. LetK be a nonempty bounded closed convex subset of a complete CAT(0) space X , t : K → K

and T : K → FB(K) an asymptotically nonexpansive mapping and a multi-valued nonexpansive mapping,

respectively. Assume that t and T are commuting and Fix(t) ∩ Fix(T ) 6= ∅ satisfying Tw = {w} for all

w ∈ Fix(t) ∩ Fix(T ) and
∞∑
n=1

(kn − 1) <∞. Let {xn} be the sequence of the modified Ishikawa iteration defined

by

yn = (1− βn)xn ⊕ βnzn,

xn+1 = (1− αn)xn ⊕ αnt
nyn,

for all n ∈ N, where zn ∈ T (tnxn) and {αn}, {βn} ∈ [0, 1]. Then {xn} is ∆−convergent to a common fixed

point of t and T .

In 2019, Sokhuma [16] proved the convergence theorem for a common fixed point in CAT(0) spaces
as follow:

Theorem 1.3. LetK be a nonempty bounded closed convex subset of a complete CAT(0) space X , t : K → K

be a single-valued asymptotically nonexpansive mapping, and T : K → PB(K) be a multi-valued nonexpansive

mapping and

PT (x) = {y ∈ Tx : d(x, y) = dist(x, Tx)} .

For fixed x1 ∈ K. The sequence {xn} of the Ishikawa iteration is defined by

yn = (1− βn)xn ⊕ βnzn,

xn+1 = (1− αn)xn ⊕ αnt
nyn,

for all n ∈ N, where zn ∈ PT (tnxn) and {αn}, {βn} ∈ (0, 1). Then {xn} is ∆−convergent to a common fixed

point of t and T .

In 2011, Espinola et al. [9] proved the theorem for a common fixed point in CAT(0) spaces as follows:
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Theorem 1.4. LetX be a complete uniformly convex space with convex metric andK be a bounded closed convex

subset ofX. Suppose t : K → K and T : K → KC(X) be a Suzuki generalized nonexpansive single-valued and

a multi-valued mapping, respectively. If t and T are commute, then there exists w ∈ K such that tw = w ∈ Tw.

The purpose of this paper is to study the iterative process, called the Ishikawa iteration method with
respect to the Suzuki generalized nonexpansive single-valued and multi-valued mapping in a complete
CAT(0) spaces.

We also establish the convergence theorem of a sequence from such process in a nonempty bounded
closed convex subset of a complete CAT(0) spaces. We remove a restricted condition (called end-point
condition) in Akkasriworn et al. [3] and expand the results of Sokhuma [16] results.

Now, we introduce an iteration method modifying the above ones and call it the S-iteration method.

Definition 1.5. LetK be a nonempty bounded closed convex subset of a complete CAT(0) spaceX , t : K → K

and T : K → PB(K) be a Suzuki generalized nonexpansive single-valued and a multi-valued mapping,

respectively and

PT (x) = {y ∈ Tx : d(x, y) = dist(x, Tx)} .

For fixed x1 ∈ K. The sequence {xn} of the S-iteration is defined by

yn = (1− βn)xn ⊕ βnzn,

xn+1 = (1− αn)zn ⊕ αntyn,
(1.1)

for all n ∈ N, where zn ∈ PT (txn) and {αn}, {βn} ∈ (0, 1).

2. Preliminaries

With a view to make, our presentation self contained, we collect some relevant basic definitions,
results and iterative methods which will be used frequently in the text later.

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X is a map c from a closed interval
[0, s] ⊂ R to X such that c(0) = x, c(s) = y, and d(c(t), c(u)) = |t− u| for all t, u ∈ [0, s]. In particular,
c is an isometry and d(x, y) = s. The image α of c is called a geodesic (or metric) segment joining x
and y.When it is unique this geodesic segment is denoted by [x, y]. The space (X, d) is said to be a
geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic
if there is exactly one geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X is said to be convex if
Y includes every geodesic segment joining any two of its points.

A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (X, d) consists of three points x1, x2, x3
in X (the vertices of ∆) and a geodesic segment between each pair of vertices (the edges of ∆).
A comparison triangle for the geodesic triangle ∆(x1, x2, x3) in (X, d) is a triangle ∆(x1, x2, x3) :=

∆(x1, x2, x3) in the Euclidean plane E2 such that dE2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}.
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A geodesic space is said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy the
following comparison axiom.

Let ∆ be a geodesic triangle in X and let ∆ be a comparison triangle for ∆. Then ∆ is said to satisfy
the CAT(0) inequality if for all x, y ∈ ∆ and all comparison points x, y ∈ ∆, d(x, y) ≤ dE2(x, y). If
x, y1, y2 are points in a CAT(0) space and y0 = 1

2y1 ⊕
1
2y2, then the CAT(0) inequality implies that

d(x, y0)
2 ≤ 1

2
d(x, y1)

2 +
1

2
d(x, y2)

2 − 1

4
d(y1, y2)

2. (2.1)

This is the (CN) inequality of Bruhat and Tits [5]. In fact, a geodesic space is a CAT(0) space if and
only if it satisfies the (CN) inequality [4].

The following results and methods deal with the concept of asymptotic centers. LetK be a nonempty
closed convex subset of a CAT(0) space X and {xn} be a bounded sequence in X. For x ∈ X, define
the asymptotic radius of {xn} at x as the number

r(x, {xn}) = lim sup
n→∞

d(xn, x).

Let r ≡ r(K, {xn}) := inf {r(x, {xn}) : x ∈ K} and A ≡ A(K, {xn}) := {x ∈ K : r(x, {xn}) = r} .

The number r and the set A are called the asymptotic radius and asymptotic center of {xn} relative
toK, respectively.

It is easy to know that if X is a complete CAT(0) spaces and K is a closed convex subset of X ,
then A(K, {xn}) consists of exactly one point. A sequence {xn} in CAT(0) space X is said to be
∆−convergent to x ∈ X if x is the unique asymptotic center of every subsequence of {xn}. A bounded
sequence {xn} is said to be regular with respect toK if for every subsequence {x′n}, we get

r(K, {xn}) = r(K, {x′n}).

We now give the definition of ∆−convergence.

Definition 2.1. [11,13] A sequence {xn} in a CAT(0) spaceX is said to be ∆−convergent to x ∈ X if x is the

unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case we write ∆− lim
n→∞

xn = x

and call x the ∆−limit of {xn}.

We now collect some elementary facts about CAT(0) spaces which will be used in the proofs of our
main results. The following lemma can be found in [7,8, 11].

Lemma 2.2. [7] IfK is a closed convex subset of a complete CAT (0) space and {xn} is a bounded sequence in

K, then the asymptotic center of {xn} is inK.

Lemma 2.3. [8] Let (X, d) be a CAT (0) space.
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(i) For x, y ∈ X and u ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = ud(x, y) and d(y, z) = (1− u)d(x, y). (2.2)

We use the notation (1− u)x⊕ ty for the unique point z satisfying (2.2).

(ii) For x, y, z ∈ X and u ∈ [0, 1], we have

d((1− u)x⊕ uy, z) ≤ (1− u)d(x, z) + ud(y, z).

Lemma 2.4. [11] Every bounded sequence in a complete CAT (0) space has a ∆−convergent subsequence.

We now collect some basic properties of Suzuki generalized nonexpansive mapping. Although the
proofs follow the idea of the proofs in [17]. The following two propositions are very easy to verify.

Proposition 2.5. LetK be a nonempty subset of aCAT (0) spaceX and t : K → K be a nonexpansive mapping.

Then t is a Suzuki generalized nonexpansive mapping.

Proposition 2.6. Let K be a nonempty subset of a CAT (0) spaceX. Suppose t : K → K is a Suzuki generalized

nonexpansive mapping and has a fixed point. Then t is a quasi-nonexpansive mapping.

Lemma 2.7. LetK be a nonempty subset of a CAT(0) space X . Suppose t : K → K is a Suzuki generalized

nonexpansive mapping. Then

d(x, ty) ≤ 3d(tx, x) + d(x, y)

holds for all x, y ∈ K.

The existence of fixed points for generalized Suzuki nonexpansive mappings in CAT(0) spaces was
proved by Nanjaras et al. [14] as the following result.

Theorem 2.8. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space X . Suppose

t : K → K is a Suzuki generalized nonexpansive mappings. Then t has a fixed point inK.

Lemma 2.9. Let K be a closed and convex subset of a complete CAT (0) space X and let t : K → X be a

generalized Suzuki nonexpansive mappings. Let {xn} be a bounded sequence inK such that lim
n→∞

d(txn, xn) = 0

and ∆− lim
n→∞

xn = w. Then tw = w.

The following fact is well-known [12].

Lemma 2.10. Let X be a complete CAT (0) space and let x ∈ X . Suppose {αn} is a sequence in [a, b] for

some a, b ∈ (0, 1) and {xn}, {yn} are sequences inX such that lim sup
n→∞

d(xn, x) ≤ r, lim sup
n→∞

d(yn, x) ≤ r, and

lim
n→∞

d((1− αn)xn ⊕ αnyn, x) = r for some r ≥ 0. Then lim
n→∞

d(xn, yn) = 0.
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Lemma 2.11. Let X be a CAT(0) space,K be a nonempty compact convex subset of X and {xn} be a sequence

inK. Then,

dist(y, Ty) ≤ d(y, xn) + dist(xn, Txn) +H(Txn, T y)

where y ∈ K and T be a multi-valued mapping fromK in to FB(K).

3. Main Results

We first prove the following lemmas which play very important roles in this section.

Lemma 3.1. Let T : K → PB(K) be a multi-valued mapping and

PT (x) = {y ∈ Tx : d(x, y) = dist(x, Tx)} . Then the followings are equivalent:

(1) x ∈ Fix(T ), that is x ∈ Tx;

(2) PT (x) = {x}, that is x = y for each y ∈ PT (x);

(3) x ∈ Fix(PT ), that is x ∈ PT (x).

Further, Fix(T ) = Fix(PT ).

Proof. (1)⇒ (2). Since x ∈ Tx, d(x, Tx) = 0. Therefore, for any y ∈ PT (x),
d(x, y) = dist(x, Tx) = 0 and so x = y. That is, PT (x) = {x}.

(2)⇒ (3). Since PT (x) = {x}, x ∈ Fix(PT ) and we get x ∈ PT (x).
(3)⇒ (1). Since x ∈ Fix(PT ), x ∈ PT (x). Therefore, d(x, x) = dist(x, Tx) = 0 and so

x ∈ Tx by the closedness of Tx. This implies that Fix(T ) = Fix(PT ). �

Lemma 3.2. LetK be a nonempty bounded closed convex subset of a complete CAT(0) space X , t : K → K

and T : K → PB(K) be a single-valued and a multi-valued of Suzuki generalized nonexpansive mapping,

respectively, with Fix(t) ∩ Fix(T ) 6= ∅ such that PT is nonexpansive. Let {xn} be the sequence of S-iteration

defined by (1.1). Then lim
n→∞

d(xn, w) exists for all w ∈ Fix(t) ∩ Fix(T ).

Proof. Let x1 ∈ K and w ∈ Fix(t) ∩ Fix(T ), in view of Lemma 3.1 we have w ∈ PT (w) = {w}. Since,
1
2d(tw,w) = 0 ≤ d(xn, w), d(txn, tw) ≤ d(xn, w). Similarly, we obtain 1

2d(tw,w) = 0 ≤ d(yn, w), and
then we get d(tyn, tw) ≤ d(yn, w). Now consider,

d(yn, w) = d((1− βn)xn ⊕ βnzn, w)

≤ (1− βn)d(xn, w) + βnd(zn, w)

= (1− βn)d(xn, w) + βndist(zn, PT (w))

≤ (1− βn)d(xn, w) + βnH(PT (txn), PT (w))

≤ (1− βn)d(xn, w) + βnd(txn, w)

≤ (1− βn)d(xn, w) + βnd(xn, w)

= d(xn, w).
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Hence, d(yn, w) ≤ d(xn, w). It implied that

d(xn+1, w) = d((1− αn)zn ⊕ αntyn, w)

≤ (1− αn)d(zn, w) + αnd(tyn, w)

≤ (1− αn)dist(zn, PT (w)) + αnd(yn, w)

≤ (1− αn)H(PT (txn), PT (w)) + αnd(yn, w)

≤ (1− αn)d(xn, w) + αnd(xn, w)

= d(xn, w).

Since {d(xn, w)} is bounded below and decreasing sequence, we obtain the limit of {d(xn, w)}. �

Lemma 3.3. LetK be a nonempty bounded closed convex subset of a complete CAT (0) space X , t : K → K

and T : K → PB(K) be a single-valued and a multi-valued of Suzuki generalized nonexpansive mapping,

respectively, with Fix(t) ∩ Fix(T ) 6= ∅ such that PT is nonexpansive. Let {xn} be the sequence of S-iteration

defined by (1.1). If 0 < a ≤ αn ≤ b < 1 for some a, b ∈ R. Then lim
n→∞

d(tyn, zn) = 0.

Proof. Let x1 ∈ K and w ∈ Fix(t) ∩ Fix(T ), in view of Lemma 3.1 we have w ∈ PT (w) = {w}. From
Lemma 3.2, we setting lim

n→∞
d(xn, w) = c. Recall that, d(tzn, w) ≤ d(zn, w) ≤ d(xn, w). Then we have,

lim sup
n→∞

d(tzn, w) ≤ lim sup
n→∞

d(zn, w) ≤ lim sup
n→∞

d(xn, w) = c. (3.1)

Hence, d(tyn, w) ≤ d(yn, w) ≤ d(xn, w). It implied that

lim sup
n→∞

d(tyn, w) ≤ lim sup
n→∞

d(yn, w) ≤ lim sup
n→∞

d(xn, w) = c. (3.2)

Since, c = lim
n→∞

d(xn+1, w) = lim
n→∞

d((1 − αn)zn ⊕ αntyn, w), it follows from the condition of αn and
Lemma 2.10 that lim

n→∞
d(tyn, zn) = 0. �

Lemma 3.4. LetK be a nonempty bounded closed convex subset of a complete CAT (0) space X , t : K → K

and T : K → PB(K) be a single-valued and a multi-valued of Suzuki generalized nonexpansive mapping,

respectively, with Fix(t) ∩ Fix(T ) 6= ∅ such that PT is nonexpansive. Let {xn} be the sequence of S-iteration

defined by (1.1). If 0 < a ≤ αn ≤ b < 1 for some a, b ∈ R. Then lim
n→∞

d(xn, zn) = 0.

Proof. Let x0 ∈ K andw ∈ Fix(t)∩Fix(T ), in view of Lemma 3.1 we havew ∈ PT (w) = {w}. Consider,

d(xn+1, w) = d((1− αn)zn ⊕ αntyn, w)

≤ (1− αn)d(zn, w) + αnd(tyn, w)

≤ (1− αn)dist(zn, PT (w)) + αnd(yn, w)

≤ (1− αn)H(PT (txn), PT (w)) + αnd(yn, w)
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≤ (1− αn)d(txn, w) + αnd(yn, w)

≤ (1− αn)d(xn, w) + αnd(yn, w)

and hence
d(xn+1, w)− d(xn, w)

αn
≤ d(yn, w)− d(xn, w).

Therefore, since 0 < a ≤ αn ≤ b < 1,(
d(xn+1, w)− d(xn, w)

αn

)
+ d(xn, w) ≤ d(yn, w).

Thus,

lim inf
n→∞

{(
d(xn+1, w)− d(xn, w)

αn

)
+ d(xn, w)

}
≤ lim inf

n→∞
d(yn, w).

It follows that c ≤ lim inf
n→∞

d(yn, w). Since, from (3.2), lim sup
n→∞

d(yn, w) ≤ c, we have

c = lim
n→∞

d(yn, w) = lim
n→∞

d((1− βn)xn ⊕ βnzn, w). (3.3)

Recall that
d(zn, w) = dist(zn, PT (w)) ≤ H(PT (txn), PT (w)) ≤ d(xn, w).

Hence we have
lim sup
n→∞

d(zn, w) ≤ lim sup
n→∞

d(xn, w) = c.

Since 0 < a ≤ αn ≤ b < 1 for some a, b ∈ R and (3.3) we obtain lim
n→∞

d(xn, zn) = 0. �

Lemma 3.5. LetK be a nonempty bounded closed convex subset of a completeCAT (0) spaceX , t : K → K and

T : K → PB(K) be a single-valued and a multi-valued of Suzuki generalized nonexpansive mapping, respec-

tively, with Fix(t) ∩ Fix(T ) 6= ∅ such that PT is nonexpansive. Let {xn} be the sequence of S-iteration defined

by (1.1). If 0 < a ≤ αn, βn ≤ b < 1 for some a, b ∈ R. Then lim
n→∞

d(tyn, xn) = 0 and lim
n→∞

d(txn, xn) = 0.

Proof. Recall that d(tyn, xn) ≤ d(tyn, zn) + d(zn, xn). Hence we have

lim sup
n→∞

d(tyn, xn) ≤ lim sup
n→∞

d(tyn, zn) + lim sup
n→∞

d(zn, xn).

Since, from Lemma 3.3 and Lemma 3.4, we have

lim
n→∞

d(tyn, xn) = 0. (3.4)

By Lemma 2.7, we obtain

d(txn, xn) ≤ d(txn, yn) + d(yn, xn)

≤ 3d(tyn, yn) + d(xn, yn) + d(xn, yn)

= 3d(tyn, yn) + 2d(xn, yn)
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≤ 3d(tyn, xn) + 3d(xn, yn) + 2d(xn, yn)

= 3d(tyn, xn) + 5d(xn, yn)

= 3d(tyn, xn) + 5d(xn, (1− βn)xn ⊕ βnzn)

≤ 3d(tyn, xn) + 5(1− βn)d(xn, xn) + 5βnd(xn, zn)

= 3d(tyn, xn) + 5βnd(xn, zn).

Therefore, we have

lim
n→∞

d(txn, xn) ≤ lim
n→∞

3d(tyn, xn) + lim
n→∞

5βnd(xn, zn).

Hence, by (3.4) and Lemma 3.4, lim
n→∞

d(txn, xn) = 0. �

Theorem 3.6. LetK be a nonempty bounded closed convex subset of a complete CAT (0) space X , t : K → K

and T : K → PB(K) be a single-valued and a multi-valued of Suzuki generalized nonexpansive mapping,

respectively, with Fix(t) ∩ Fix(T ) 6= ∅ such that PT is nonexpansive. Let {xn} be the sequence of S-iteration

defined by (1.1). If 0 < a ≤ αn, βn ≤ b < 1 for some a, b ∈ R, then {xn} is ∆−convergent to y in

Fix(t) ∩ Fix(T ).

Proof. Since {xn} is ∆−convergent to y, from Lemma 3.5, lim
n→∞

d(txn, xn) = 0. By Lemma 2.9, y ∈ K
and ty = y, it follows that y ∈ Fix(t). By Lemma 2.11, which implies that

dist(y, PT (y)) ≤ d(y, xn) + dist(xn, PT (txn)) +H(PT (txn), PT (y))

≤ d(y, xn) + d(xn, zn) + d(txn, y)

≤ d(xn, y) + d(xn, zn) + d(txn, xn) + d(xn, y)→ 0 as n→∞.

It follows that, y ∈ Fix(PT ) then y ∈ Fix(T ). Therefore y ∈ Fix(t) ∩ Fix(T ) as desired. �

Theorem 3.7. LetK be a nonempty bounded closed convex subset of a complete CAT (0) space X , t : K → K

and T : K → PB(K) be a single-valued and a multi-valued of Suzuki generalized nonexpansive mapping,

respectively, with Fix(t) ∩ Fix(T ) 6= ∅ such that PT is nonexpansive. Let {xn} be the sequence of S-iteration

defined by (1.1). If 0 < a ≤ αn, βn ≤ b < 1 for some a, b ∈ R, then {xn} is ∆−convergent to a common fixed

point of t and T .

Proof. Since Lemma 3.5 guarantees that {xn} is bounded and lim
n→∞

d(txn, xn) = 0. We now let ωw(xn) :=⋃
A({un}) where the union is taken over all subsequences {un} of {xn}. We claim that ωw(xn) ⊂

Fix(t) ∩ Fix(T ), then there exists a subsequence {un} of {xn} such that A({un}) = {u}. By Lemma
2.2 and Lemma 2.3 there exists a subsequence {vn} of {un} such that ∆ − lim

n→∞
vn = v ∈ K. Since



Asia Pac. J. Math. 2025 12:61 11 of 13

lim
n→∞

d(tvn, vn) = 0, then v ∈ Fix(t). Hence,

dist(v, PT (v)) ≤ dist(v, PT (tvn)) +H(PT (tvn), PT (v))

≤ d(v, zn) + d(tvn, v)

≤ d(v, vn) + d(vn, zn) + d(tvn, v)→ 0 as n→∞.

It follows that v ∈ Fix(PT ), we get v ∈ Fix(T ) by Lemma 3.1. Therefore v ∈ Fix(t) ∩ Fix(T ) as
desired. We claim that u = v. If not, since t is a single-valued Suzuki generalized mapping and
v ∈ Fix(t) ∩ Fix(T ) such that lim

n→∞
d(xn, v) exists by Lemma 3.2, then by the uniqueness of asymptotic

centers,

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, u)

≤ lim sup
n→∞

d(un, u)

< lim sup
n→∞

d(un, v)

≤ lim sup
n→∞

d(xn, v)

= lim sup
n→∞

d(vn, v)

which is a contradiction, and hence u = v ∈ Fix(t) ∩ Fix(T ).
To show that {xn} is ∆−convergent to a common fixed point, it suffices to show that ωw(xn) consists

of exactly one point. Let {un} be a subsequence of {xn}. By Lemma 2.2 and Lemma 2.3 there exists a
subsequence {vn} of {un} such that ∆− lim

n→∞
vn = v ∈ K. Let A({un}) = {u} and A({xn}) = {x}. We

have seen that u = v and v ∈ Fix(t) ∩ Fix(T ).
We can complete the proof by showing that x = v. If not, since lim

n→∞
d(xn, v) exists, by the uniqueness

of asymptotic center,

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, v)

= lim sup
n→∞

d(vn, v)

which is a contradiction, and hence the conclusion follows. �

Acknowledgments. The authors would like to thank the anonymous reviewers for their careful reading
and valuable suggestions which led to the present form of the paper. This research was supported by
Faculty of Education, Shinawatra University.



Asia Pac. J. Math. 2025 12:61 12 of 13

Authors’ Contributions. All authors have read and approved the final version of the manuscript. The
authors contributed equally to this work.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication
of this paper.

References

[1] A. Abkar, M. Eslamian, Fixed Point Theorems for Suzuki Generalized Nonexpansive Multivalued Mappings in Banach
Spaces, Fixed Point Theory Appl. 2010 (2010), 457935. https://doi.org/10.1155/2010/457935.

[2] N. Akkasriworn, K. Sokhuma, Convergence Theorems for a Pair of Asymptotically and Multivalued Nonexpansive
Mapping in Cat(0) Spaces, Commun. Korean Math. Soc. 30 (2015), 177–189. https://doi.org/10.4134/ckms.2015.
30.3.177.

[3] N. Akkasriworn, K. Sokhuma, K. Chuikamwong, Ishikawa Iterative Process for a Pair of Suzuki Generalized Nonexpan-
sive Single Valued and Multivalued Mappings in Banach Spaces, Int. J. Math. Anal. 19 (2012), 923–932.

[4] M.R. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999. https://doi.org/10.
1007/978-3-662-12494-9.

[5] F. Bruhat, J. Tits, Groupes Réductifs Sur Un Corps Local, Publ. Math. Inst. Hautes Études Sci. 41 (1972), 5–251. https:
//doi.org/10.1007/BF02715544.

[6] D.R. Sahu, D. O’Regan, R.P. Agarwal, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Springer
New York, 2009. https://doi.org/10.1007/978-0-387-75818-3.

[7] S. Dhompongsa, W.A. Kirk, B. Panyanak, Nonexpansive Set-Valued Mappings in Metric and Banach Spaces, J. Nonlinear
Convex Anal. 8 (2007), 35–45.

[8] S. Dhompongsa, W. Kirk, B. Sims, Fixed Points of Uniformly Lipschitzian Mappings, Nonlinear Anal.: Theory Methods
Appl. 65 (2006), 762–772. https://doi.org/10.1016/j.na.2005.09.044.

[9] R. Espínola, P. Lorenzo, A. Nicolae, Fixed Points, Selections and Common Fixed Points for Nonexpansive-typeMappings,
J. Math. Anal. Appl. 382 (2011), 503–515. https://doi.org/10.1016/j.jmaa.2010.06.039.

[10] W.A. Kirk, Geodesic Geometry and Fixed Point Theory, in: Seminar of Mathematical Analysis (Malaga/Seville,
2002/2003). Colecc. Abierta, vol. 64, pp. 195–225. Univ. Sevilla Secr. Publ., Seville (2003).

[11] W. Kirk, B. Panyanak, A Concept of Convergence in Geodesic Spaces, Nonlinear Anal.: Theory Methods Appl. 68 (2008),
3689–3696. https://doi.org/10.1016/j.na.2007.04.011.

[12] W. Laowang, B. Panyanak, Approximating Fixed Points of Nonexpansive Nonself Mappings in Cat(0) Spaces, Fixed
Point Theory Appl. 2010 (2009), 367274. https://doi.org/10.1155/2010/367274.

[13] T.C. Lim, Remarks on Some Fixed Point Theorems, Proc. Amer. Math. Soc. 60 (1976), 179–179. https://doi.org/10.
1090/s0002-9939-1976-0423139-x.

[14] B. Nanjaras, B. Panyanak, W. Phuengrattana, Fixed Point Theorems and Convergence Theorems for Suzuki-generalized
Nonexpansive Mappings in Cat(0) Spaces, Nonlinear Anal.: Hybrid Syst. 4 (2010), 25–31. https://doi.org/10.1016/
j.nahs.2009.07.003.

[15] K. Sokhuma,∆-Convergence Theorems for a Pair of Single valued and Multivalued Nonexpansive Mappings in CAT(0)
spaces, J. Math. Anal. 4 (2013), 23–31.

[16] K. Sokhuma, An Ishikawa Iteration Scheme for Two Nonlinear Mappings in CAT(0) Spaces, Kyungpook Math. J. 59
(2019), 665–678. https://doi.org/10.5666/KMJ.2019.59.4.665.

https://doi.org/10.1155/2010/457935
https://doi.org/10.4134/ckms.2015.30.3.177
https://doi.org/10.4134/ckms.2015.30.3.177
https://doi.org/10.1007/978-3-662-12494-9
https://doi.org/10.1007/978-3-662-12494-9
https://doi.org/10.1007/BF02715544
https://doi.org/10.1007/BF02715544
https://doi.org/10.1007/978-0-387-75818-3
https://doi.org/10.1016/j.na.2005.09.044
https://doi.org/10.1016/j.jmaa.2010.06.039
https://doi.org/10.1016/j.na.2007.04.011
https://doi.org/10.1155/2010/367274
https://doi.org/10.1090/s0002-9939-1976-0423139-x
https://doi.org/10.1090/s0002-9939-1976-0423139-x
https://doi.org/10.1016/j.nahs.2009.07.003
https://doi.org/10.1016/j.nahs.2009.07.003
https://doi.org/10.5666/KMJ.2019.59.4.665


Asia Pac. J. Math. 2025 12:61 13 of 13

[17] T. Suzuki, Fixed Point Theorems and Convergence Theorems for Some Generalized Nonexpansive Mappings, J. Math.
Anal. Appl. 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023.

https://doi.org/10.1016/j.jmaa.2007.09.023

	1. Introduction
	2. Preliminaries
	3. Main Results
	Acknowledgments
	Authors' Contributions
	Conflicts of Interest

	References

