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AsstrACT. This paper introduces intuitionistic fuzzy type of well-known iterative mappings. Additionally,
we present specific requirements for real-valued functions S, J : (0, 1] — (—o0, 00) for the existence of the
best proximity point (BPp) of generalized I F 5, j)-iterative mappings within the context of intuitionistic
fuzzy metric spaces (IFMS). Moreover, we employ intuitionistic fuzzy type of (S, J)-proximal contraction to
investigate common best proximity (CBP) points in intuitionistic fuzzy metric spaces. The paper concludes
with several non-trivial examples and our results are supported by an application.
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1. INTRODUCTION

FP theory stands out as a captivating field of study, particularly focusing on techniques for solving
nonlinear equations of the form Uu = u, where U represents a self-mapping. The discussions within
FP theory delve into various strategies for determining solutions. Despite the depth of exploration,
instances arise where a singular solution is non-existent. The resolution to such challenges often
involves leveraging best approximation theorem and best proximity point theorem. These theorems,
which have undergone diverse generalizations by numerous researchers, prove instrumental in deriving

approximate optimal solutions.

The year 1968 marked a pivotal moment when Kannan [ 7] introduced a novel type of contraction for
discontinuous mappings, yielding several FP results. This innovation provided researchers with an
alternative avenue to tackle FP problems. Subsequent advancements, such as the iterative Kannan Mier-

type contractions introduced by Karapinar [ 8], further established Rus Reich Ciric-type contractions
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using simulation functions and Hardy Rogers-type interpolative contractions (see in the references
[5=11]).

FP theory has been extensively generalized in various fuzzy and soft metric spaces, demonstrating
its broad applicability. Recent studies, such as those by Gupta et al. [4], establish fixed point results in
modified intuitionistic fuzzy soft metric spaces, highlighting their utility in mathematical modeling.
Similarly, Mani et al. [ 12] explore fuzzy b-metric spaces under different ¢-norms, revealing how alterna-
tive triangular norms influence fixed point outcomes. Shukla et al. [21] further extend this framework
to complex-valued fuzzy metric spaces, enriching the theory of contractive mappings. Most recently,
Shukla et al. [24] introduce vector-valued fuzzy metric spaces, unifying classical results with novel

axiomatic approaches.

Altun et al. [1, 2] contributed the best proximity point consequences for proximal contractions,
extending these results to interpolative proximal contractions, see also [ 17]. Shazad et al. [20] presented
CBP point results. Also, Deep and Betra [3] introduced additional results in this field. The investigation
expanded into proximal F-contraction, where Mondal and Dey [13] established results on CBP points in
complete MS. Shayanpour and Nematizadeh [ 19] made contributions within the field of complete FMS.
Hierro [6] presented Proinov-type FP results in FMS, later refined by Zhou et al. [26], also [5,22,23].

Uddin et al [23] offered integral equation solutions utilizing IFb metric like space [6] presented
findings in a new extension of IFM-like spaces. While Nazam etal. [ 14] studied generalized interpolative
contractions, Hussain et al. [6] looked into FPs in FMS. The analytical application of fractional delay
differential equations was the main emphasis of Naseem et al. [15].

2. PRELIMINARIES

Definition 2.1. [18] Consider a metric space (Z, H). The mappings G : P — Qand U : P — Q) are

considered to commute proximally if they satisfy the following condition:
[H(a®,Gu') = H(e’, Uu') = H(P, Q)] = Ge® = Ua®,
for all u‘, a®, " in P.

Definition 2.2. [18] Suppose (Z, H) be a metric space. A mapping U : P—Q proximally dominates

another mapping G : P—Qif,3a non-negative number o < 1 then
H(af, Gu'y) = H(P, Q) = H(e}, Uu'y),
H(a¥, Gu'y) = H(P, Q) = H(e}, Uu'y),
H(wy, w2) < oH(by,b2),

for all e'i, af, eg, u'y,ay,u's € P.
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Definition 2.3. [26] A binary operation * : [0,1]2 — [0, 1] is said to be a continuous t-norm (ctn) if it
satisfies the below axioms:

(1) w1 * we = w1 * wy and wy * (we * w3) = (w1 * wa) * w3 for all wy, wse, w3 € [0,1];

(2) = 1is continuous;

(3) w1 *1=sforallw €0,1];

(4) w1 * w2 < w3 x wy when wy < w3 and wy < @y, with @y, @y, @3, @y € [0, 1].

Definition 2.4. [14] Leto : [0, 1]? — [0, 1], is categorized as a continuous triangular co-norm if it meets
the following requirements:

(i) The operation ¢ exhibits associativity, commutativity and continuity;

(ii) w1 ¢ 0 = wy, forall @y € [0, 1];

(iii) w1 ¢ wy < w3 © w4, whenever w; < w3 and ws < wy Vwy, @y, w3, wy € [0, 1].

For example w; ¢ wy = min(w; + ws, 1), w1 ¢ wy = wy + wr — w1w2, w1 ¢ wp = max(wi, w2).

Definition 2.5. [18] Let Z denote a non-empty set. Consider a continuous triangular norm represented
by the symbol * and a fuzzy set H defined on Z x Z x (0, c0). The combination of set Z, fuzzy set H,
and the operation * is referred to as a fuzzy metric space if it fulfills the following conditions. For any
s,& >0, and for all w1, w9, w3 € Z:

(FMS1) H(wy, @3, &) > 0;

(FMS2) H(ww1, w9, &) = 1 if and only if @y = wy;
(FMS3) H(w1, w2, £) = H(ws, w1, £);

(FMS4) H(zw1, w2, €)

(FMS5) H(w, wo, ) : (0,00) — (0, 1] is continuous.

* H(WQ, w3, S ) < H(th:),,g‘i‘ S)/

Definition 2.6. [18] Let Z is an arbitrary set, * and ¢ are continuous t-norm and continuous t-conorm
respectively. Let H and O be fuzzy sets on Z x Z x (0, 0o) satisfying the below conditions for every

w1, Wo, W3 € 4:

(a) H(co, w2, &) + (th%g) <1
(b) H(wwy, w2, &) >
(c) H(wy, w2, &) = 1, iff w; = wo forall € > 0;

(d) H(w1, 3, €) = H(ws, 1, &), for all € > 0;

(e) H(cw1,ws, (€ + 5)) > H(wy, w2, €) * H(ws, ws, s), forall £, s > 0;
(f) H(wy, w2, .) : [0,00) — [0, 1] are continuous;

(8) O(w1, w2, £) > 0;

(h) O(wy, w2, &) =0, for all £ > 0 iff y = wo;

(i) O(w1, @9, &) = O(wa, w1, &), forall € > 0;

() O(w1, w3, (5—1— s)) < @(W17WQ,5) o O(w2, ws, s), for all £,5>0;
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(k) O(w1, w2, .) : [0,00) — [0, 1] are continuous map,

where O(w1, w2, &) and H(w, ws, £) represent the closeness between w; and ws with respect to &,

respectively. Also, limg_, H(w,ws2,&) = 1and limg_, O(wy,w2,€&) = 0. Then a 5-tuple (Z, H, O, *, )
is called an IFMS.

Definition 2.7. [19] A sequence {w,} in an IFMS (Z, H, O, %, ) is said to be convergent to w if every
¢ €(0,1)and € > 0,3 ap € N such that

H(w, @y, &) > 1 — ¢ and O(w, @y, ) < ¢ foralln > ag

ie,

lim H(ew,wp, &) =1 and li_>m O(w, @n, &) =0 forall £ > 0.

n—o0

Definition 2.8. [19] A sequence {w,, } in an IFMS (Z, H, O, %, ¢) is said to be Cauchy if for each ¢ and ¢,
J ag € N such that

H(wrm wn-ﬁ-pv g) >1- C and @(Wn, wn+p7 g) < g

for every p, n > ap where e > 0, ¢ € (0,1).

i.e, li_)rn H(wy,, @ntp, §) = 1 and li_}In O(w@n, Tntp, €) =0 for all € > 0.

In addition to, an IFMS(Z, H, O, x, ©) is said to be complete iff every Cauchy sequence is convergent.

Definition 2.9. [19] Let (Z,H, %) be an FMS and P, Q C Z. Consider

H(ﬁ7éag) = sup H(W1,WQ,€)7 5 > 07

w16ﬁ’,7ﬂ26@

Then the distance between P and @ is called fuzzy distance.

Definition 2.10. [19] Let (Z, H, ) be an EMS, P,Q C Z, and U, G : P — Q) be two mappings. A point
w € Pis called a CBP point of the mappings U and G, if
H(w, Uw,§) = H(P, Q,&) = H(w, G, ).
Definition 2.11. [19] Suppose (Z, H, %) be an FMS and P, C Z. The following sets are defined by us:
]50 ={w € P Jooy € Q s.t. V€ > O,H(whwmg) = H(ﬁvéag)},
Qo ={m2 € Q: 3w € Ps.t. V> 0,H(w, m2,8) = H(P,Q, &)}

Definition 2.12. [19] Let (Z, H, %) be an FMS, P,QC Z,and U,G : P — Q be two mappings are said

to be commute proximally if
H(w17 Uw? g) = H(ﬁ’ Qo7 g) = H(w27 Gw? 5_)? vg > 07

then Uwy = Gwy, where @, w1, ws € P.
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Definition 2.13. [19] Let (Z, H, *) be an FMS, ]5, Q CZ,and U,G : P Q be the mappings then the

mapping U is to dominate G proximally if

H(wh Uhl,f) = H(ﬁvé)vg) = H(bl’Gh%g)a
H(w2> Uh’lag) = H(ﬁa éag) = H(b27 Gh??é)a

for all ¢ > 0, then 3 « € (0,1) such that,
H(wy, w2, ) > H(by, by, €),

where w1, o, b1, by and hy, ho € P.

Definition 2.14. [20] Let £ represent the collection of pairs (.J, S), where J and S are functions defined
on (0, 1] — R and satisfy the specified properties outlined below:

(1) S(w) > J(w) for any w € (0,1);

(2) Jis non-decreasing;

(3) limg_,p— inf S(w) > lim,_,p- inf J(w) forany 0 < T~ < 1;

(4) if w € (0,1) is such that S(w) > J(1) then w = 1.

Lemma 2.1. [16] Suppose J : (0,1] — (—o0, 00) then the below conditions are mutually similar:

(I) infg, . J(€) > —oo forall e, where 0 < e < 1;

(I) Forany e € (0,1), limg_, — inf J(£) > —oo0;
(M) limy, 00 J(&,) = —o0 implies that lim,, . &, = 1.

3. MaIN Resutrs

Definition 3.1. Let (Z,H, O, , ¢) be an IFMS and P,Q C Z. Consider

H(ﬁvéag) = sup H(W17WQ,€)7
w1615,w26©
(D(ﬁ?c?)g):l_ sup ©(w17w27g)7 g>07
@ €P,wEQ

Then the distance between P and Q) is called intuitionistic fuzzy distance.

Definition 3.2. Let (Z,H, O, *,©) be an IFMS and P,Q C Z. The following sets defined by us:
Py={w € P: 3wy € Qs.t. V€ > 0,H(wy, s, €) = H(P,Q, )},
Qo = {w2 € Q : Jwy € Ps.t. V€ > 0, H(wy, w2, €) = H(P,Q, &)},
P = {w € P:3ws c Q s.t. V€ > 0,0(wy, w9, &) = @(15,602,5)},

Ql = {WQ c CO? : Elwl S ]‘E)S.t. Vé> 0,@(@1,7—72,5) - (O)(f)a@ag)}
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Definition 3.3. Let (Z,H, O, *, ¢) be an IFMS, 103, Q CZ,and U, G : P Q be two mappings. A point
w € P is called a CBP point of the mappings U and G, if

H(w, Uw, &) = H(P, Q,§) = H(w, Gw, £),

O(w, Uw, &) = O(P, Q,£) = O(w, Gw, &).

Definition 3.4. Let (Z,H, O, ,¢) be an IFMS, P,QC Z,and U,G : P — Q be two mappings are said

to be commute proximally if
H(w17 Uw7 g) = H(ﬁ, Q: é) = H(w27 Gwa 5)7

O(w1,Uw,€) = O(P,Q, &) = O(w2, Gw, £), VE> 0,

then Uwy = Gwy, where w, w1y, ws € P.

Definition 3.5. Let (Z,H, O, , ¢) be an IFMS, ]3, Q CZ,and U, G : P Q be two mappings then U is

to dominate G proximally if
H(w1, Uhi,€) = H(P,Q,€) = H(b1, Gha, ),

H(ws, Uh1,€) = H(P, Q,€) = H(by, Gha, &)

and

@(wly Uh17 g) = ©(ﬁ7 @7 g) = @(b17 Gh?) g)’
O(wy, Uhy,§) = O(P,Q, ) = O(ba, Gha, §),
for all € > 0, then 3 « € (0,1) such that,

H(wlv w2, Oéé) > H(bla b27 5)7

@(wla w2, ag) S @(b1> b27 g)v

where @1, o, by, bo and hy, ho € P.

Definition 3.6. Assume P and Q be subsets of (Z,H, O, %, ). The mappings U, G : P Q are called
intuitionistic fuzzy (.S, J)-proximal (I Fs.py — proximal) if

H(af, Guf, €) = H(P,Q, ) = H(e}, Uuy, §),

H(aF, GuF . €) = H(P,Q.€) = H(e}, Uu3, ), (1)

J(H(w1,w2,€)) > S(H(b1,b2,€))

and

0(af, Guf, €) = O(P,Q.€) = 0(e}, Uy, §),

0(aF, GuF . €) = O(P,Q,€) = 0(e3, Uu3, ), (2)

J(0(@1,@2,8)) < S(0(1,b2,)),
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for all eﬁ,a?,e%,uﬁ,a?,u% € Pand € > 0.

Example 3.1. Consider (Z,H, O, %, ¢) be an IFMS and H, O defined by
_ —|u® —n®|
H(ub,nw,g) =e £

b

—|u” —n7|

O’ ,n® &) =1—e ¢

Let Q = {1,3,5,7,9,11} and P= {0,2,4,6,8,10}. The mappings defined G : P> QandU:P—Q

as
U0) =3,U(2) =5,U(4) = 7,U(6) = 3,U(8) = 9, U(10) = 11,

G(0) =3,G(2) =1,G(4) = 9,G(6) = 7, G(8) = 5,G(10) = 11.

Then, H(P,Q,&) = e%, and O(P,Q,&) =1 — e%, Py=P,Qo=Qand P, = P, Q; = Q. Clearly,
G(Py) € Qo, U(Py) € Qoand G(P1) € Q1, U(P1) € Qr.
Define the functions J, S by

S(g) _ ln1§2 lff_e (071)7
2 ifé=1

@) = %5— if £ € (0,1),
1 ifé=1,

To show that G and U are I F{g ;) — prozimal in IFMS. Let w; = 0, w2 = 8, b1 = 4, by = 6, uﬁ =2,
uy, = 4,and £ = 1. Then,
H(0,G(2),1) = H(P, Q,§) = H(4,U(2),1),

H(8,G(4),1) = H(P,Q, &) = H(6,U(4),1),

and
0(0,G(2),1) = O(P,Q, ) = O(4,U(2), 1),
0(8,G(4),1) = O(P,Q,£) = 0(6,U(4),1).
This implies that,
J(H(Wl, w2, g)) 2 S(H(bla b?a g))a
J(H(0,8,1)) > S(H(4,6,1)),
—0.1233 > —0.2500,
and

)) < S(0(h1,52,)),
5 (1= ) <5 (1),

J (0.9996646) < S (0.86466471676) ,

— 2981.01458 < 47.2923386627,
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Therefore the mappings GG and U are [ F{g ;) — prozimal. After that, the following shows that G and U
are not proximal. We know that

H(0,G(2),1) = H(P, Q,€) = H(4,U(2), 1),

H(8,G(4),1) = H(P, Q,€) = H(6,U(4),1),
and

0(0,G(2),1) = O(P,Q,£) = O(4,U(2),1),

0(8,G(4),1) = O(P,Q,£) = 0(6,U(4), 1).

If we take, « = 0.5 € (0,1), then

H(wy, w2, a&) > H(by, b2, ),
(0,8, (0.5)1) > H(4,6,1),
0.00000 <€ 0.1353,

and

@(W1, w2, Oég) S @(bh b27 5)7
0(0,8, (0.5)1) < O(4,6,1),
1 > 0.86467.

Hence a contradiction (see equation (1-2)). Therefore, mappings G, U are not [F-proximal.

Example 3.2. Consider (Z,H, O, %, ¢) be an IFMS defined by

B _elu?—ug\+\n1—”2\

H(u’,n,£) = e g

and

- _ Juf —ubl+Ing —ng|

O, n,&)=1—e 3

with a continuous t-norm (ctn) and t-conorm as s % £ = s, s o £ = min{s, £} . Suppose Q = {(1,m) |

m € R}and P = {(0,m) | m € R}. The mappings defined G, U : P —Qas

U(0,m) = (1, %)
and
G(0,m) = (1, %) :

-1

Then/H(ﬁ’évg) = H(uban’g) = eT,and@)(]OD,@,g) = @(ub’nag) = 1—6%1150 = fo)l = -FO)/Ci)O = @1 =
Q. Clearly, G(ﬁg) C Qg, U(]-g’o) C Qo and G(]-g’l) C Ql, U(]?’l) C 621. The functions defined J, S by
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S(g) _ 211157 Zf 56 (071)7
2) lf g: 1>
IE) = swees if €€(0,1),

1, if £=1.
Therefore the mappings G and U are I Fig ;) — prowimal. After that, we prove that G and U are not
IF-proximal. let,
H((Ov 3)7 G(Ov 6)7 1) = H(ﬁv 627 5) = H((O7 2)7 U(O> 6)7 1)7
H((0,0),G(0,0),1) = H(P, Q,€) = H((0,0), U(0,6), 1),

and
0((0,0),G(0,0),1) = O(P, Q,€) = 0((0,0), U(0,6), 1),

0((0,3),G(0,6),1) = O(P, Q. ) = 0((0,2),U(0,6),1).
Then, there exists A = 0.2 such that
H(wy, w2, AE) > H(bl,bg,f_),
H((0,0), (0,3), (0.2)1) > H((0,0), (0,2),1),

0.0000 > 0.1353,

and _ _
@(w1, w2, )\E) S ©(b17 I)Qa g)a

0((0,0), (0,3), (0.2)1) < O((0,0), (0,2), 1),
1 < 0.8647,

this is a contradiction. Therefore, G and U are not IF-proximal.

Lemma 3.1. Suppose (Z,H, O, x,©) be an IFMS and w,, C Z be a sequence satisfying:

lim H(wna wn-ﬁ-lyﬁ) = 17

n—0o0

nh—>120 ©(wn; Wn+1, g) =0.

If the sequence {w,,} does not form a Cauchy sequence, then there exist sub-sequences oy, @q,, and x,z’ > 0

such that
fjim H(wng-l-l: wqg—l—h g) =, (3)
—00
ﬁ_lgilo H(wngv Wnes f) = ﬁ_lgilo H(wng—&—la Wae> g) = EILIEO J(wng) Wae+1, 5) = Z. (4)
,hm @(wng+1a wqurlv g) = :Elv (5)

E—o0
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z
glggo@(wng’ Wn, 5,5) = Elgn ®(wn5+1’ w(Z§’£) glggo J(wnngqurl 5) . (6)

Lemma 3.2. The mappings U, G : P — Q satisfying equation (1-2). Assume {,,} is a sequence such that

li_)m H(wn, @ni1,€) = 1, and hm O(w@n, Wni1,€) = 0 for any € > 0.
n o

If the functions S, J : (0,1] — R with

limsup S(€) < J(e+),
§_~>e+

and

lim (1 —sup S(€)) > J(e+).
E—et+

Then {wy,} is a Cauchy sequence.

Proof. Suppose {w,} is not a Cauchy sequence, then, by using Lemma 3.1, 3 two sub-sequences {w@,},

{wq} of {w,} such that the Equations (3-6) hold. From Equation (3) and (5), we have,
H(wng-l-la Weet+1, g) > €, and (O)(wng-l-l? Wag+1; E) < €.
Since/ for wngu wng-i—la wqga wqg-‘rla unp ung-‘rl) qua qu-i—l € P7 we getz

H(wng—&-la (Ung—i-l) ‘5_) (ﬁvéag) = H(wqg-i-laGuq&—Jrug)

H(@ng 41, U ting 1), &) = H(P, Q. €) = w1, Uiy,
and
O(@ngt1, Glung11),€) = O(P, Q, &) = O(wgz 1, Gugei1:8)
O(wpe+1, Ulungt1), §) = O(P,Q,¢) = @(qu+17Uuq5+lag)~
Thus, from Equation (1) and (2), we have
J(H(ngs1, Pag1),€) = S(H(gs 0, )
and
J(@(wn5+17wq§—+1)ag) < 5(@(anqugyg))
forall{ > 1. Let 9z = H(@pg41, @ge+1, ¢) and qz_1 = H(w@n,, g, §) and qé— = O(@ng+1, Wgt1s §) and
(Ié_l = ©(wng,wq2_,é). We have
J(qg) = S(qg_1) and J(qz) < S(qz_,) for any € > 1. (7)

From using Equations (3-6), we get,

lim gg =€, hmqg—e

E—00
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From Equation (7) we have,

J(e+) = lim J(qé—) < lim inf S(qé—_l) < liminf S(e), (8)
E—o0 E—o0 c—¢&
and
J(e+) = lim J(gg) > liminf S(gg_;) > liminf S(c). 9)
£—00 £—o0 c—¢
Hence a contradiction to condition (I). Therefore, the sequence {w, } is a Cauchy. O

Theorem 3.1. Suppose 1-9’, Q C (Z,H,0, *,¢) in Complete IFMS such that

lim H(wy, w2,€) = 1, lim O(wy, @2,£) =0

£—o0 £—o0
and Q is ACw.rt P. Let G : P — Qand U : P — Q satisfy the subsequently axiom:

(I) U dominates G and are I F| ; gy — prozimal,

(I1) limg_,., S(§) > J(e+) for any e > 0 and J is non-decreasing.
(I) G(Fo) € Qo, G(Py) C U(Py) and G(P1) € Qu, G(Pr) C U(Py), where P1, Qu, Py, Qo # 0
(IV) G and U are continuous and compact proximal,

Then, U and G have a unique u € P such that
H(u, Uu,§) = H(P, Q,€) and H(u, Gu,§) = H(P,Q,£),
O(u, Uu, €) = O(P, Q, &) and O(u, Gu, ) = O(P, Q. €).
Proof. Letug € Py, Py. Since G(Py) C U(Py) and G(P,) C U(P,) assurances the existence of an element
u] € 1030, 151 then
Gug = Uug.
Also, we have G(Py) C U(P,), G(Py) C U(P,) 3 an element uy € Py, P; such that
Guy = Uus.
Using the process of iteration there exist u,, C ]50, ]51 such that
Guy, = Utiy—1 for all n.
Since G(Py) € Qo,G(P1) C Q1,G(Py) C U(FRy), G(P) C U(Py) 3 an element w,, € Fy, P, such that
H(wy, Gun, ) = H(P, Q, £) and O(wy, Guy, £) = O(P,Q,€) foralln € N.

Certainly, it follows from the choice of u,, and {w, } that

H(wn+1a G(“n—f—l)v g) = H(]DD7 Qca g) = H(wm U(un+1)7 )7

H(wm GUnag) = H(Pa Qaf) = H(wn—la U(Un)ag)a
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and
O(w@p+1, G(unt1), &) = O(P, Q,€) = O(wy, U(uns1), ),
O(@n, Gup, &) = O(P, Q&) = O(wp_1,U(uy), ).
If,
H(wn, Gun, ) = H(P, Q,€) = H(wn—1,U(un), ), (10)
O(wn, Gun, §) = O(P, Q, &) = O(wn—1,U (un), ). (11)

From Equation (10-11), 3 n € N such that w,, = w,,_; then, w,, is a CBP point of G,U. Conversely, if
wWp—1 # wpy, then from Equation (10-11), implies that

H(wn-‘rl? G(un-f-l)v g) = H(ﬁv Q? g) = H(wnv U(un-‘rl)v 7)7

H(wm G(un)v g) = H(ﬁv ch g) = H(wn—ly U(un)a )7

and

(O)(wn-‘rla G(un-f—l)vf_) - @(ﬁv Qag> = @(wny U(un+1)7 _)7

(O)(wna G('I,Ln), g) = ©(ﬁ7 Qv g) = @(wn—h U(Un)7 )
Thus, from Equation (1-2) we have,

J(H(wnﬂ-lvwmg)) > S(H(wn’wn—lvf))’ (12)

J(@(wn-i—lywnvg)) < S((O)(wmwn—lvg))a (13)
for all Wn—1,Wny, Wntl, Untl, Un € 1—3

Let g, = H(@n41, @n, €), @), = O(@n41, @n, €) we have
J(gn) > S(gn-1) > J(gn-1),
J(qn) < S(gn-1) < J(gn1)-
From Equation (12-13), Also J is increasing function, we have
¢, < q_1 and g > qn—1V¥n € N.

To prove that {¢, }and {¢},} is strictly non-decreasing and strictly non increasing then, its converges to
¢ > 0and ¢’ < 1 respectively. To prove that ¢ = 0 and ¢’ = 1. In contrary suppose thatg > 0and ¢’ < 1

and from Equation (12-13), we have,
— 1 / < T / < .
J(et) = lim J(g,) < lim S(gy ) < lim sup S(t),
and

_— < I < I _
nllgi inf S(t) < nh_}ngo S(gn—1) < nh_}ngo J(qn) = J(e+).
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which is a contradiction to the condition (III). Therefore ¢ = 1, ¢ = 0 and

lim H(wnawnJrl?g) =1land lim @(wn,w,Hl,E) = 0.
n—00 —00

By Lemma 3.2 and condition (III), we prove that {w, } is a Cauchy sequence. Since (Z,H, O, *,¢) is a

complete IFMS, P C Z. Since G (}50) C 6020, G (Pl) C @1, 3 an element w* such that

lim H(cwy,,w,) =0and lim O(w,,w,) = 1.

Moreover,
H(w", G(un), &) > H(w", @n, ), H(wn, G(un), ),
H(w", U (un), €) > H(w", @, §) H(wn, Uun), £),
and

(O)(w*v G(“”)? g) S @(w*’ Wny g)v (O)(wn’ G(un)v g),

O(w*, U(uy),§) < H(w*, wn, £).0(wn, Ulu), €).

Therefore, H(cw*, U (uy), €) — H(w*, Q,€), and O(w*, U(un),§) — O(w*, Q, €)

and also

H(w", G(un), €) = H(w", Q. ),
and
O(w*, G(uy), &) — @(w*,@,é) as n — oo.

Given G and U commute proximally, Uw* and Gw* are identical. Also, Q is ACw.r.t 15, Jasub-sequence

Ul(un;) and G (un,) of U(uy), G(uy) respectively such that
Ulung) — éx € Q and G(ung) = éx € Q as &€ — co.

Furthermore, by allowing £ — oo in the following equation, we have,

H(é., G(un,), &) = H(P, Q,€) and H(é., Uuy,, §) = H(P, Q, §), (14)
and

O(év, G(ung), ) = O(P,Q, &) and O(é, Uy, §) = O(P, Q, §). (15)
Also,

H(é*’ W*7 g_) = H(ﬁ)v @’ 6_) and ©(é*a W*a g) = ©(ﬁ7 Qoa E)

Since, w* € ﬁo,ﬁl, so G(w*) € G(]f’o) C 6020 and 3z € By and G(w*) € G(If’l) C 6021 and 32’ € P,.

Similarly, @w* € Py, so U(w*) € U(Py) € Qo and 3z € By, w* € Py, s0 U(w*) € U(P,) C @, and
32’ € P, such that
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H(W*7 G(W*)a _) = H(ﬁ)a 6275_) = H(W*’ U(W*v _)v (16)
H(z, G(w"), &) = H(P, Q, &) = H(z,U(w", ),

and

O(w*, G(w"),€) = O(P, Q, &) = O(w*, U(w", ),
(17)

O, G(w*),§) = O(P,Q, &) = Oz, U(w*, ).
Now, by Equation (14-17) and (1-2), we get,

JH(w", z,8)) = S(H(w", z,£)) < J(H(w", z,8)),

J(O(@",/,€)) < S(0(w",2,€)) > J(O(=",2",£)).

Since J is non decreasing function, we get,

H(w", z,a€) > H(w", z,§) < H(w", z,£),

O(w*, 2, af) < O(w*, 2, &) > O(w*, 2/, €).

This implies @w* and z,z" are identical. Finally, by Equation (10-11), we have

H(w™*, U(w"),§)

H(}S7QO7E) = H(w*7G(w*)7§_)7

O(w*,U(w"),§) = O(P,Q,{) = O(w*, G(z*),§).
This shows that w* is a CBP point of mappings U and G.
U

Theorem 3.2. Suppose 15, Q C (Z,H, O, *,¢) in a complete IFMS such that Q is AC w.r.t P. Also, assume
that limg_,  H(wy, @2, €) = 1, limg_, o, O(ww1, w2, &) = 0and Py, Q1, Py, Qo # 0. Let G, U : P — Q satisfy
the following circumstance:
(I) U dominates G and is 1 F\ ; gy — prowimal;
(II) G and U are continuous and compact proximal;
(II1) G(Py) C Qo, G(Py) C U(Py) and G(Py) C Q1, G(Py) CU(Py);
(IV) {S(&,)} and {J (&)} are convergent sequences such that lim, o J(£,) = limy, o0 S(€,), then

limy,—s00 & = 1. Also J is non-decreasing.

Then U and G have a unique u € P such that
H(u, Uu,€) = H(P,Q,€), and H(u, Gu,€) = H(P, Q. ),

O(u, Uu, &) = O(P,Q,€), and O(u, Gu, &) = O(P, Q,€)
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Proof. As we proceed with Theorem 3.1’s proof, we obtain

J(Qn) > S(Qn—l) < J(Qn—l)a and J(q;) < S(Q;Lfl) > J(Q;Lfl)’ (18)

By using Equation (18), we concludes that {J(¢,)} is a non-decreasing sequence either, {J(gy)} is

bounded above, or not then
}f;fe J(qn) > —o0.

From Lemma 3.2 then ¢, — 1. Next, should {J(¢, )} be bounded, it implies that the sequence converges.

Similarly {.J(q,)} is non-increasing sequence either, {J(g},)} is bounded below, or not then

supJ(q,) < —oo foreverye > 0,n € N.
] n y
n>e

By using Lemma 3.2 then ¢, — 0. On the other side, if {J(g],)} is bounded below then it is a convergent

sequence.

By using Equation (18), the sequence {S(¢,)},{S(q,,)} also converges. Also, from condition (III), we
get

lim ¢, = 1,0r lim J(wp, unt1,€) =1,

lim ¢/, = 0,0r lim J(wy,,uni1,€) = o,
n—roo n—oo

for any sequence {w, }. Now, follow the proof of Theorem 3.1, we get,

H(w", U(w"),€) = H(P,Q, ) = H(w",G(="), §),

and

O(w",U(w"),€) = O(P,Q,§) = O(w", G(w"), ).

This prove that @™ is a CBP point of the mappings U and G. O

Now, first of all we have to construct some conditions:

(K1) The Kernel ¢; : Ig x Iz x R — R satisfies Carathéodory conditions, and |& (P, s, @w((s))| <
w(p, s) + e(p, s), where w, e € L2(Ig x IR), e(p,s) > 0.

(K2) The function f : I — [1, 00) is continuous and bounded.

(K8) The supyeg, | In 1£1(p, 8)| ds < C, where C a positive constant.

(K4) Let wp € P. Since G(P) C U(P) assurances the existence of w; € P such that Gy = Uw;.
Also, we have G(P) C U(P).
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(K5) The function g : Ip x Ir — R such that

a(p) =/I P(p,s)ds < ——

is non negative, measurable and integrable over /.

— 1) B3, ()~ &1 (Bo5.F ()] —a@s)  —|w(s)=f(s)]
3 3 3

>e

(& (&

forallp,s € Irand w, f € P.
Theorem 3.3. Let the mapping f and & satisfying the conditions (K1)—(K5), then, the integral Equation
@) =f@)+ | & s =[)(s))ds. (19)

Ig

has a singular solution.

Proof. Let us consider the mappings G, U : P — Q,

(Hw)(®) = f(0) + | & s w(s))ds, (20)

Ir

(0w=)(P) = f(0) + | &1(P,s,w(s))ds. (21)

Ir
Suppose w € P and for everyp € Ig,

(Hw)(p) = f(p) + i &1(p, s,(s)) ds > 1,

(0=)(P) =f@) + | &P s,w(s))ds <1.

Ir
Conditions (K1)—(K2) indicates that H,O is a continuous and compact mapping from Pto Q. Also,
check the contraction of Equation (12-13) of Theorem 3.1. For this by using (K4 -K5) and the Holder
inequality, we get,

‘ 2

—|(Hw) (B)— (Hf)(B)|2 *|f1R &1 (P,s,(s)) ds*ij £1(P,s,f(s)) ds
k k

(| /1 €1 s () =81 (B.s,£ () ds 12
3

>e

*(J}R Q(ﬁs)‘wfs‘f)*f(s)l ds)2

>e ¢

i @) g leE) @)
>e 3 .e £

—a@ g 1m@ =6

>e & e 3 i
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and
—1@=)®-©@N@I2 fip @B dofry @B o)) ds]
—e € =1-e 3
(/1 1 (Frs () —E1 5./ () ds |1
<l-e 3
— 2
~(J1 9B.3) = ()= (s)] ds)
<l-e 3
N R G I e QR AQL
<l-—{e 3 *e 3 s
By integrating above equation w.r.t p,
—|(Hw) (B)— (Hf)(P)|2dh —Jig (a@). Jigl@()=f(s) 2ds)dh
e € e 3

*IIR (a(?)e” fIR a(s)ds.e” v fIR a(s)ds fIR|W(S)*f(5) \st)d}l

>e g
7Hw7f\|% IIR (a(ﬁ)e“ JIR a(s)ds)dﬁ
>e 3
Il fl3e” [, a(s)dsds
>e vP2g,
and
—1(0=)(B)—(0f) (B)|2dh *f[R(Dé(ﬁ)-f[Rlﬂ?(S)ff(s) 2ds)dh
1—e g <l-—ce 3
*f[R(Dé(ﬁ)eU J1g a(s)ds.e™" [, a(s)ds [1 | (s)— f(s) |2d5)da
<l-—e 3
“lI=—S13 frp (2@)e® f1 a(s)ds )dh
<l-—e
Il fl13e" 1, a(s)dsds
S 1 — e v152§.

Thus, we have

2R O s g w113
e vg >e 3 ,
52RO 02 —llw—£113
1—e € <l—e ¢
This implies that,
_ P —@mn? —ll=—f113
e v€ >e 3 ,
and
_ PPl =) —@h)? —ll=—f113
1—e vg <1l-e 5 ,
ie,

L(w, f)dy(Hw, (Hf),§) = du(w, ),
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and
L(w, f)dy(0w, (0f),&) < dy(w, f).
Consider J(s) = ﬁ and S(s) = ﬁ then,

J(L(w, f)dy(Hew, (Jf),§)) = S(F1(p, f)),

and

J(L(w, f)dy(Ow, (J[),§)) < S(Fi(D, [))-

Hence J and S follow Theorem 3.1. Therefore the integral Equation (19) has a unique solution. [

4. APPLICATION

The integral Equation (19) and its subsequent analysis can be discussed in terms of its applications
in solving both Volterra and Fredholm integral equations. The provided framework and theorem offer
a rigorous mathematical foundation for ensuring the existence and uniqueness of solutions to the

integral equation:

@) =f@0)+ [ & s @[D)(s))ds, (22)

Ig
where Ir = (a, ), and a is fixed. This equation, depending on the region of integration, can represent

either a Volterra or Fredholm integral equation. We defined the norm on the space £?(Ig) and

demonstrated that it forms a Banach space.

The norm is defined by ||.|| : £2(Ir) — [0, 0)
||| = / o (s)2ds, forallw € £2(Ir), (23)
Ir

and equivalent norm is defined by:

kuz\/sup(/ e iy ale) s |w<s>|2ds), (24)
Ir Ir

L3(IR) = {w
Then, (£L2(IR), ||.]|2.+) is a Banach space.
Let Z = {w € L2(IR) : w(s) > 0 for all s}. The functions H and O is defined as

where

|w(s)|2ds < oo} and v > 1.

Ig

_ [le— £l [le=— £l

H(w, f,é)=e ¢ andQ(w, f,{)=1—¢ ¢ forallw,fcZ.

Then (Z,H, O, *, ¢) is a complete IFMS.
We also introduced functions H and O to construct an Intuitionistic Fuzzy Metric Space (IFMS), and
provided a set of conditions (K1-K5) that ensure the existence of a singular solution to the integral

equation.
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Through the application of these conditions and utilizing properties such as Carathéodory conditions,
continuity, boundedness, and integrability, we proved that the integral equation (19) has a unique
solution. This was done by showing that the mappings H and O are continuous and compact, and by
applying specific inequalities and integrability conditions.

Therefore, we have successfully established that under the given conditions, the integral equation
has a singular solution, contributing to the theory of integral equations and their applications in

various mathematical and applied contexts.

Abbreviations:

FP-fixed point

MS- metric space

FMS—fuzzy metric space
IFMS—intuitionistic fuzzy metric space
CBP-common best proximity
BPp-best proximity point

I Fg yy proximal-intuitionistic fuzzy (S, J) proximal
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