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AssTRACT. In the present paper, we study a class of abstract elliptic transmission problems family, posed in
unbounded heterogeneous domains | —oo, 6], with non-homogeneous Dirichlet boundary conditions at
—o00, when the right-hand side is a Holder continuous function. Our approach is based on the generalized
analytic semigroup theory and Sinestrari’s results, to ensure existence, uniqueness, and maximal regularity
of the strict solution.
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1. INTRODUCTION
Consider the following abstract transmission problem for a positive parameter ¢ € (0, 1]:

u"(z) + Au(x) = ¢°(x), x € ]—00,0[U]0,d[,

w(0-) = u(04), pan(04) = p_w/(0-) (Py)
dim ()= f-, /(5) = f1.

where p_ and iy are two real positive numbers, fﬁ and f_ are two given elements in a complex Banach
space E. The operator A is a closed linear operator with domain D (A) not necessarily dense in F, and
which satisfies that: The resolvent set p(A) satisfies p(A) D [0, +oo|, and there exists a constant C' > 0

such that
o = 5
LE) — 1+ A
This assumption allows us to define v/— A the square root of (—A), for more details, see Balakrishnan [ 1]

YA € [0, +oof : H(A—)\I (H)

for dense domains and Martinez [13] for nondense domains. Furthermore, the operator B := —/—A

generates an analytic semigroup which is not strongly continuous at 0 when D(A) # E (see, for
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instance [4] and [7]). This semigroup satisfies that: forallt > 0 and z € E, e'%z € D (B*) holds for
every k € N*. Moreover, it satisfies the negative exponential property, see [7] and [14]; foreach k € N,

there exist constants M, > 0 and a > 0 such that
HthketBH < Mye®,  Vit>0.
L(E)

Given the heterogeneity of the domain |—o0, 4] , and the permeability of the interface at 0, it is possible

to allow a discontinuity in the second member ¢°(0~) # ¢°(0"). More precisely, we assume that
g- € BUC® (|-00,0]; E), g% € C**([0,6]; E),

for 0 < 2a < 1, where g_ and g denote the restrictions of ¢° to ]—o0, 0] and [0, 6] , respectively. Recall
that C2“ ([0, 6] ; F) is the Banach space of vector-valued function f : [0, §] — E which satisfy the Holder

condition
o s M@ SOl
2a z,y6¢[0,5] ’fL‘ _ y|2a ’
zH#y

with exponent 2«, equipped with the norm || f{l5,, = [|fll¢(j0,51:1) + [f]24- The space BUC?**(]—c0,0]; E)
is the space of bounded uniformly Hélder continuous function from |—oo, 0] into £. The present study
will focus on the existence, uniqueness and maximal regularity for the strict solution of (F5); we seek a

solution u equal to u_ on |—o0, 0] and u4 on [0, §], and fulfills

u_ € BUC? (]—00,0]; E) N BUC (]—00,0]; D (A))
uy € C2([0,0]; E) N C ([0,4]; D (4)),

which satisfies the maximal regularity property
u”, Au_ € BUC?* (]—00,0]; E) and v/}, Auy € C**([0,0]; E).

Several researchers have contributed to this subject in different spaces, with diverse boundary
conditions. For instance, within the continuous framework, F. Bouziani et al. [3] have studied a family
of abstract transmission problems with variable operator coefficients, verifying the Labbas-Terreni
hypothesis inspired by sum theory, by using the Dunford functional calculus, and interpolation spaces
to prove the regularity of the strict solution.

In LP spaces, Dore et al. [5] obtained maximal regularity results for an elliptic transmission problem,
which is considered on juxtaposition of two bounded intervals, by using impedance and admittance
operators, and H* functional calculus. In [10], the author used the analytic semigroups theory
and the Dore-Venni’s theorem to study the same problem (), but in a UMD Banach space with a
homogeneous boundary condition near infinity. In the same framework, R. Labbas et al. [9] have
studied some transmission problems concerning conductivity in a biological cell by transforming; it
into an unbounded heterogeneous cylindrical body via natural changes of variables. The study utilized

analytic semigroup theory to establish the existence, uniqueness, and maximal regularity of the classical
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solution.
Recently, in [2], the study has explored elliptic transmission problems on heterogeneous unbounded
domains in UMD spaces. The authors examine the impact of two spectral parameters, one in the
differential equation and the other in the interface permeability condition, to establish conditions
ensuring maximal solution regularity.

In this study, within the framework of Holder spaces, to establish the regularity of the strict solution,
our approach is essentially based on semigroup theory, Sinestrari’s results, and real Banach interpolation
spaces Dp (a, 00), for 0 < a < 1, which are well known in many concrete cases. When B generates an

analytic semigroup, these spaces can be characterized as

Dp (a,0) = {a: € E:[x], =sup Htl_O‘BetB:L‘H < oo},

t>0

(e

and equipped with the norm |[z([ 5, (4. 00) = [1%ll20 = 2]l 5 + [2], -

The following theorems present our main results.
Theorem 1. Let A satisfy (H). For a € ]0, % [, assume that
gy € C?([0,0]; E)and g— € BUC?**((—00,0]; E) , with g_ (—oc) = 0.
Then, for any f— € D (A), f+ € D (V—A), the problem (Fy) has a unique strict solution if
g+ (0) —g_(0),V—Af,, and Af_ belong to D (A).
Theorem 2. Let A satisfy (H). For a € ] 0, % [, assume that
g+ € C*([0,0]; E)and g_ € BUC** ((—00,0]; E), with g_ (—o0) = 0.

Then, for any f— € D (A), f+ € D (v/—A), the unique strict solution of (Ps) satisfies the maximal regularity
property:
u'l, Auy € C**([0,0]; E), and u”, Au_ € BUC** ((—00,0]; E)

ifg+ (0) —g-(0),v—Afy ,and Af_ belong to D4 (o, 0) .

The organization of this paper is as follows:
Section 2 is devoted to several technical lemmas that will be useful in the analysis of the abstract
problem. In Section 3, we use analytic semigroup theory to determine an explicit representation of
the solution, after solving two auxiliary problems via the Krien transformation. Section 4 presents the

proofs of the fundamental theorems, while Section 5 illustrates their practical applications.
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2. TecunicaL LEmMMmas

In this study, we will consider several technical lemmas, taking into consideration that B := —/—A,
and the fact that the function z — |z|*® is Holder continuous with the exponent 0 < 2a < 1, so there

exists a positive constant C' such that
o[ — [y**| < C'lz —y**.
Some techniques used in proving these technical lemmas are inspired by the works [15], [6], and [&].

Lemma 1. Let A verify (H ). Then for ¢ € D(B) we have
1) z +— BeV=®By 1 Be*By € C([0,0], E) ifand only if Bp € D(A).

2) 2+ Be®?)By 2 BeByp € C?((0,6], E) ifand only if o € D4(1/2 + a, +00).

Proof. We use Sinestrari’s results [ 15, Theorem 3.1 and Remark, p. 39], and the fact that D(B) := D(A)

for the first point and the reiteration theorem, which establishes that
Dp(2a,+o0) := Dp2(a, +00) = D g(a, +00).
for the second point. U

Remark 1. Du to [15, Proposition 1.5, p. 24], for each o € 10, 1], we have
D(A) € Da(a,00) C D(A).
Lemma 2. Let A verify (H).If g5 € C**([0,6]; E), then
w1 008 (g8 () - 67(5)) € C** ([0,0] B).
Proof. Let g5 € C?*([0,0]; F).Porall 0 < s < z < §, we write
7P (gh(9) ~ 5.(9)) — O (4 (@) ~ 4}.9))

= 0798 (gl (5) = gL (@) + (0797 — 0798 ) (g (@) - }.(9))

It is clear that He((S_S)B (9%.(s) — g (2)) H < My (z —s)* Hgf_HQQ. For the second term, we use the

o—x
relation e(0—9)B — ¢(6-2)B — B i e™Bdr, from which we get

o—s

o—x
(6-)B _ (6-2)B\ (.6 5 5 dr 2
o ) st -t < o, ] o
d—s
6—s d
5 T 20 || &
<ol [ ot <an oo,

o—x

therefore, z — e*# (g9 (z) — ¢%.(6)) is Hélder continuous on [0, ] . O
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Lemma 3. Let A verify (H). We hold

1. If p € D(A), then z — e =By — g € BUC (J—00,0]; E),
2. If o € Da(a, +00), then z +— e *Byp — p € BUC?* (|—0,0]; E)

3.If o € D(A), and Ap € D(A), then x — A (e "By — ¢) € BUC (]—-00,0]; E)

4. If p € D(A) and Ap € Da(a, +00), then z — A (e7*Byp — ¢) € BUC?* (]—00,0]; E) .

Proof. 1) For z € |—o0, —1] and h > 0, we have

T T
_+B —(z—h)B —sB e "ds
H(e go—cp) _ (e @—QQ)H < ||B e Pods|| < M 5 el
z—h z—h
x
< M / ds |lell < Mih ||l

z—h

thus, the function z — e~*By — ¢ is Lipschitz on | —oo, —1] . Consequently, it is uniformly continuous on
|—00, —1]. That is, for every € > 0, there exists 7; > 0 such that for all z,y € |—o0, —1], if |z — y| < m,
then

—xB

e —e P, < <.

On the compact interval [—1,0], and under the assumption that ¢ € D (B) = D (A), the continuity
of the function x — e *B ¢ — ¢ follows directly from Sinestrari’s result. Consequently, it is uniformly
continuous. That is, for every ¢ > 0, there exists 1, > 0 such that for all z,y € [—1,0], if |z — y| < 72,
then

—xB

e —e P, < <.

Therefore, z + e *By — ¢ is uniformly continuous on ]—o0,0]. To see that, let ¢ > 0 be given,

choosing 7 = inf (11, 72) such that |z — y| < 7, one obtains a uniform estimate for He*xB

p—e ol
valid for all z,y € |—o00,0], for example, in the case where z < —1 < y < 0, we have |z —y| =

|(z — (1)) — (y — (—1))|, therefore
= (-1 <|z—y|<n<mand |y— (~1)| < |z —y| <n <,

then

le==P0 — e p|| g < [P0 — e Po| g + [l B — By < S+ 2 =

However, it is clear that |5 — || , < (Mo + 1) ||¢||;; for every = € |—o0,0] . This shows that the
function z — e~*Bp — ¢ is uniformly continuous and bounded on |00, 0] if ¢ € D (A).
2) By the reiteration theorem, we identify D4 («a, +00) = Dp(2c, +00), This implies that for every

¢ € Dy (a,00), we have ||t!72*BePly|| < |¢ll,, forall t > 0.
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Moreover, for every = € |—o0, 0], we have

T xT
1 d
[ —0) = (PP o) | < [ o st Be Pl ds < ol [ <
Teh x—h

hence, we find
e e 1
|28 =) = (e @By - )| < 1> Il

This implies that z — e By —pc BUC? (|—00,0]; E).
For points 3) and 4), we assume that ¢ € D(A). Since —4 = B?>so e "Bp — p € D (B?), and

B2 (ef{L'BSO_ S0) — efwBBQQO_BZSO — AQO_Aef"L‘BgO

It follows from point 1) that, if Ap € D(A) then z — —Ae By + Ap € BUC (]—o0,0]; E) . Moreover,
by point 2), if Ap € Da(«, +00), it follows that

x— —Ae " Byo+ Ap e BUC? (]—,0]; E) .

Lemma 4. Let A verify (H). For each g5, € C?*([0,0]; E) with 0 < 2a < 1, we have
lL.z— B e(z—5)B (gi(s) — gi(O)) ds € C?**([0,6]; E),
0

2.2 Bfe(s_x)B (9%.(s) — g%.(x)) ds € C**([0,0]; E).

Proof. The Holder continuity of the first application is ensured by Sinestrari’s result (see [15] for further
details). For the second application, the continuity can be established by applying a similar argument

to that presented in Sinestrari’s proof. O

Lemma 5. Let A verify (H). For g- € BUC?* (]—00,0]; E) with 0 < 2a < 1, we have
Lz B [ @ 9By (s)ds € BUC? (]—00,0]; F),

2.z — Bfoe(s_“”)B (9_(s) — g_(x))ds € BUC?** (]|—00,0]; E) .

Proof. 1. The integral defined in the first point is well-defined. Indeed, for = € |—o0, 0], we have

=

o0

x

M,
< M. _a(m_s)d . <70 _ .
<Mo [ s max o (6] < 2L Lo o

E — 00
Since g_ is uniformly continuous on |—o0, 0], then for every € > 0, there exists 7 > 0 such that for all

7,y €] — 00,0, if |y — 2| < n, then

19— (y) —g- (2)|lg <e.
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For z €] — o0, 0], we write

T

r—1
B / @By (s)ds = / B8 (g_(s) — g_()) ds + / Be™=*)8 (g_(s) — g_()) ds

T

—00 z—1

+ / Be@3)Bg_ () ds.

—0Q0

For the first one, since s < x — 1, we have (z — 5)20‘*1 <1, and thus we get

z—1 z—1

r—Ss —alr—s M
[ Bl (g9 =g as| < [ et s, < 2 gl
00 E —00

For the second one, we have

/ T—s f a— M
[ BB g () = g ds| < [ (0= 9 ds gy < 5 o
-1 E z—1

For the last one, it is clear that

T

/ Be9)Bg_(z)ds = lim B/e(m_S)Bg (r)ds = lim (e(ww)Bgf (z) — g- (55)) )

r—-+00 r—-+00
—r

However ||+ Bg_ (z)||,, < Moe=*@*") ||g_]|,,, , as r tends to infinity, this latter tends to 0, so

T

/ Bel™ =By (2)ds = —g_ (z).

— 00

Then — |~9- @)l < 9l - In summary,

E

[ Belw=9Bg_(x)ds

xT

M M
B [ ™8y (s)ds| < (= +==+1)[lg—
[P (syds| < (S 5 1) gl

—00

T
this shows that = + B [ e(@=*)Bg_ (s) ds is bounded. It remains to prove that it is uniformly Holder
—00

continuous. Let z, y €] — 00, 0] with < y, and denote ( = y — = > 0. Then, we can write

Y

z 5
B [ 9By (ds—B [ Py (5)ds =Y L)
% i=1

—0o0
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z—(
where I) (z,y) = B [ (W98 —e@=9)B) (¢_ (s) — g_ (z)) ds,
T Y
Bley) = B [ (097 - ceB) (g (5) — g @) ds, Talaony) = B [ P (g (5) ~ g (),
z—C T

T Y
Iy(z,y) = B / (e(y_s)B - e(x_s)B) g— (x)dsand I5 (z,y) = B/e(y_S)Bg_ (y) ds.

For the first one, we have
z—(
15 @wllp < [ B9 = B9 oo (s) - g- @],

—00

and
o a M
HBe@*S)B—Be(H)BH — /BQetht < M, / bt Mply—z)
25—

—Ss r—S

sincey —s > 0and x — s > 0 for all s < x — (, it follows that

z—(
y—x
I @)l < Mol | s (= 9 s
z—C M
a— 2 a
<M (=) gy [ (o= 9% 2 ds < 2l (- )

For the second term, we have

xT

My My M,y
I elle < [ (G2 22 ) s sl < ot ol by = 2

y—s x—3S
z—(

As for the third one, we obtain
y
I o)l < M [ (5= 927 dsllg-lg < 5. g (v — ).
x
Now, we examine the sum of the fourth and fifth terms. First, we can see that

x

Iy (z,y) = rEI-PooB (e(yfs)B - 6(9378)3) g— () ds

_ (I _ e(y—ff»‘)B> g- (z) + lim (e(y”)B - €(I+T)B) g9- (),

r—-+00

moreover

[ (etrtmB — eetnB) g (@) < My (7o) — e gy,

E
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this latter tends to 0, as r tends to infinity, so I (z,y) = (I — ely—2)B ) g— (z). While the fifth term can

be explicitly computed and yields I (z,y) = (W8 —I) g_ (y), this implies that

12 ,y) + 15 (@) < [ (727 1) |[llg- () = 9- @) < (Mo + 1) gl (y = ).

In summary, we obtain

xT

y
B [ 9% (s)ds =B [ Py () ds| < Clg- o (v - 2,
M
where C' = T M22 + % + My + 1, this shows the desired result.
— 2« e

0
2. Wenow prove thatz — B [ (=28 (g_(s) — g_(z)) ds is uniformly Holder continuous on | —o0, 0] .
x

Indeed, for z < y < 0, we can write

0 0 3
B [ -8 (g_(s)— g_(@))ds — B [ 9P (g_(s)— g_(y))ds = 3 L (w,),
! g g y/ g 9-(y ; y
where
Yy 0
B (o) = B [ 708 (g (9) = g (&) ds, Talay) = B [ (78 = 0P (g_(y) — g () ds,

0
and I3 (z,y) = B [e*=®)B (g_(s) — g_(y)) ds. For the first one, we observe that
y

Yy

1 2 M, 2

15 Gl <3 [ (5= 2 ds g oo < 5 0= 0% o
€T

For the second one, we obtain

0 s—x 0

dr . s—y 2a—1
12 (z,y)| < M. H9—||2a// =2 (s —y)**ds < My (y — ) ||9—”2a/((3_)w)d8
Y s—y Y
0
(s—y)*"
R =" ai
2 (y — ) [lg-l5 G-y+y—2a)
v

using this change s — y =t (y — ), it follows that

[e. o]

I )| < Mo (g = 0% -, |
0

t2a71

L
t+1

this improper integral converges. For the third integral, we have

0
s (2 9)]| < M / (s — 2)%ds
Yy

M,
19-l20 < %(y — 2)** (|9l -
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0
Thus, the function z — B [ e(*)B (g_(s) — g_(=)) ds is H6lder continuous on | —co, 0] with a Holder

1 <mt2a—1
tant My (1 + — M. dt. [l
constan 1< +2a>+ Qbft_i_l

Lemma 6. Let A verify (H).
Ifg_ € BUC?* (]—00,0]; E), then x +— e~*B (g_ (z) — g_ (0)) € BUC?*(]—00,0]; E)..

Proof. It is clear that, for every z € |—o0, 0], we have

e (9= (x) = 9- (0))|| p < 2Mo [lg—Il5q -

then the function x — ™" (¢g_ (z) — ¢g— (0)) is bounded. Moreover, for i > 0, we write

e P (g () = g (0)) — e (g_ (x — h) — g (0))

= (7B = @) (g_ (@) = g (0)) + e~ (g (2) — g (@~ B)

x—h
where
f —sB f ds 2a
B[Pl ) —g 0)ds| < M [ L,
z—h x—h
i ds o
< M / O 19l < M (gl
(—s)
r—h

and

e @2 (g (@) = gf (@ = 1) || < Mo M g g,

Since the Holder constant is independent of the points = and z + h, the function

e ™ (g () — g- (0))

is uniformly Holder continuous and bounded on |—o0, 0]. O

Lemma 7. Let A verify (H). For each g5 € C**([0,6]; E) with 0 < 2a < 1, we have

4 é
B / e (g(s) — g2.(0)) ds, B / 08 (gl (5) - g1(9)) ds € D (20, +0).
0 0

Proof. To establish these results, we set

1 1)
x=B 0/ e (g(s) ~ g.(0)) dsor y = B 0/ 78 (g () — g(0) ) ds,
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and recall that [|x[|p, 20,1 00) = [Xll2a = [IXI| + [X]2o Where [x],, = sup [t 72 BeBx|| < oo. Indeed,
>
for the first case, we have

)

/ 1-2a 2 (t+s)B (0 s tlm2eg2e b
/t CV_B e s (g+(8)—g+(0)> ds SMQ /st “g+‘)2a
0 0
Using the change of variable s = ¢7, we obtain
0 00 20
/tl_QO‘B2e(t+S)B (gi(s) - gi(O)) ds|| < Mo HgiH /TQdT < 0.
J 2c J (1 + 7')

Similarly, for the second case, we obtain

5 5
. . =20 (5 _ )2
/tl 22 BFE (g () — g1.(6) ) ds| < M /(H((;_S))zds o]
0
+oo
2c
< s T
< My g‘*‘Hm/ (1+T)2dT
0

+o00o 7,204
Since the integral [
0

B
T)Qd’f converges, thus Bge(‘S*S)B (9%.(s) — g%.(8)) ds € Dp (2, +00). O

Lemma 8. Let A verify (H). For g € BUC?* (]—00,0]; E) with 0 < 2a < 1, we have
0
B / e B (g_(s) —g_(0))ds € Dp (2a, 00)

Proof. To begin, we split

0 0
B/e‘SB (9-(s) = g-(0)) ds = B/e‘SB (9-(s) = g-(s)) ds + B/e_SB (9-(5) = g-(0)) ds.

A 21

For the first, we have

B / =B (g_(s) — g_ (0))ds € D(BF) C Dy (20, o0)

for k € N\ {0}, since
-1 -1 ( )2&
B [P — g )as| < M [ oyrdelo- e
<

ds
Mo [ it 19—l < o0
1
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For the second integral, we have

0
Vt”"‘B%(”)B (9-(s) —9-(0)) ds

012
ta—
V ds

1

-1

0
b / % (g-(5) — g-(0)) ds} -
2a

IN

19120 »

Letting —s = t, it follows that

1
0 0 H
=20 20 120 (4 20 2a
/(SQ)dSZ—/(T)Qth:/ T 2d7’<oo.
. (t—s) / (t+tr) ) (1+7)

T

Then B fo e *B (g_(s) — g_(0))ds € Dp (2a, 0). O

—Oo
3. ExpricIT SOLUTION REPRESENTATION

3.1. Auxiliary Problems. Our approach consists of solving the following auxiliary problems by intro-

ducing two auxiliary elements 1) and ¢, which belong to E. The first problem is posed on (0, )

Wl (2) + Auy (@) = gb (@),
{ , 5 (Py)
uy (0) = f1, us (0) =9,
and the second problem is posed on the negative half-line
o (2) + Au_(x) = g_ (),
{ (P-)
W (0) = ¢, u_(~o0) = f-.
Using Krein’s method [16], we obtain for « € ]0, 6|
1 [ 1 ;
us(e) = B+ DB + B! / eIl (s)ds + S B / DG ()ds, (1)
0 T

where (y and (; are arbitrary constants in £. By using the boundary condition and the fact that the

operator (I + ¢*B) is invertible (see Lunardi [12, Proposition 2.3.6, p. 60]), we obtain

CO — (I+ 6263)—1 5

]
b+ BB g 1/ I+e 20798 5840 (s )ds,] (2)
0

and

o"\%

(1= (I+€263)71 |:JB¢ B~ 1f+ B 1 2SB 5 s)B 95( )d ] (3)
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For the second auxiliary problem, the solution is obtained using the following representation found

in [10], under the condition that u_(—o0) = g_(—o00) = 0, which is defined by

x 0
1 1
u(z) =BG+ 5B / eIy (s)ds + B~ / =By (5)ds,

0

where (, = —B7lp + %B_l [ e7*Bg_(s)ds. To address the situation where u_(—oc) = f_ # 0, we
define the function v_(z) = u_(z) — f-. Consequently, the new function v_ fulfills the following
problem for f_ € D(A) :

o (@) + Av_(2) = —Af- + g_(x), _

"0 li 0 &)

vL(0) = ¢, lim v_(z)=0.

Consequently, we adapt the representation to the new function v_ and obtain

x x

0
1 1 1
u_ () = f- + §B / e B dr 4+ e B + 5371 /e(sw)Bg_(s)ds + 5371 / @By (s)ds

where
0

0
1 1
e B¢y = —B e By 4 3 / e CTIBBf ds + 5B /e‘(”s)Bg—(S)dS-

On the other hand, using the following relations

z 0
B / e*Bf ds=—e"Bf_and B/e‘SBf—ds =—f-if f- € D(B),

simplifies the expressions of u_ and &5, leading to

0 x
1 1
u_(z)=f —eBf e "B+ 2B_1/e(5_x)Bg(s)d8 + 53_1 /e(I_S)Bg(s)ds, (4)

and
0

=B o+ 3B [Py (s 5)

— 00

Remark 2. The condition at infinity is satisfied because

T

B_l/e(x_s)Bg_(s)ds

—00

(@)~ f < B Ol + 5

0
B_l/e(s_x)Bg_(s) ds|| .

x

1
2

However, there exists a > 0 and My > 0 such that

[e7F (G = N < Moe™ |2 = f-II,
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and
Bt [ e (sas| < |B ( [ e as | sup - (s)]
s<x
Mo | -
< 0B sup o)1,
s<zx

therefore, as x tends to —oo, it follows that lim He‘xB (G2 — f)H = 0and Em sup |lg—(s)|| = 0 (This

T——00 T——00 g<p

follows because the function g_ is uniformly Hélder continuous and bounded on |—oo, 0], and its limit goes to

zero as x tends to —oo) therefore

T

lim B_l/e(x_S)Bg(s)ds = 0.

T—r—00
—0o0
For the third term, we decompose it as follows

1 1
-B~! /e(s_‘U)Bg(s)ds—l— §B_1

2 e(s_x)Bg,(S)dS = Il (.ZL‘) + 12 (1:)

w\&\o

T

where

M, M, P
|6 @) < 2 [B7H | [femeds | sup llg-(s) < 52 [B7 (e 1) sup llg-(s)I.

8 \M\H

s€|r,5 s€|z, 5
and
1 ) M, )
2@ < |37 / By (s)ds|) < 2[B! 9-l12a / e ds
3 3
< Cllg-llog [ — 3]
Since g— (—o0) = 0, the limit of sup |g—(s)| tends to zero when x — —oo. This implies that
s€|zr,5
lim ||I; (z)|| =0, and the term (e” — ea%> tends to 0 as © — —oo, so lim |13 (z)|| = 0. As a re-
T——00 T——00
sult  lim |u_(x)— f_|| =0.
Tr——00

3.2. Solution Formula. Using the expressions of u_ and u., givenin (4 — 5) and (1 — 2 — 3) along

with the following transmission conditions

u_ (0) = ¢ and ¢ = pu/, (0) where 1 = ,u7+7
e

we deduce the following system

0 0
Blo+y=f+ [ e*BBf ds+ B~ [ eBg_(s)ds
= = (s)
¢ —uB(I +e*P) I =Py = by
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where

d
by =2u(I + eQ(SB)_le‘SBj’"jSr (I + e2B) 1/ e(20-5)B )gi(s) ds.
0

The determinant of this system is of the form
25B\~1 20B 20BYY ._ 25B\~1
(I + ¢B) <I+e ol —e )) = (I +e¥B)~1p,

which is invertible according to [ 10, Lemma 7. ]. After solving system (S), we find
0
¥ =—2uD, BB {2 + DI+ e®B)f_ + D NI + e*P) / e *BBf_ds

—0o0

)
—I—/J,DulBl/ (esB _’_e(2§fs)B> gi(s)ds—l—D;l <I+€2SB> Bfl / eiSBg_(s)dS.

—0o0

and
0

o =2uD; ' e’P {2+ uD B(I — e*8)f_ + uD, ' B(I — e*P) / e *BBf_ds

—00

0

_MDul/ <€sB Jr6(254)3) ¢b (s)ds + uDy;! <I _ 6253) /eng_(S)dS_

—0o0
Substituting these expressions into ¢y, (1 and &2, and simplifying, we obtain
5
1 L= g
G = (= D BB - S DB [ Byl (s)ds
0
8 0

1 —
MD g~ /6(2‘5S)Bgi(s)ds—i-DﬂlB1 / e *Bg_(s)ds,

0 —00

d
e 1—p R s
G =By - B emp st [ong sas
0

2
é 0
1
+%D B_l/ (0=s)B 5( )ds+e5BD Ip~t /e_SBg(s)ds,
0 —o00

and
5

62 — —2[,LB71D;1€(sti + MBlDul/ (683 + 6(2578)3) gi(S)dS

0
1
+ §D;1 I+e®P8 (1 - 6253)] B! /eSBg_(s)ds.

—00
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4. Proor oF THEOREMS
To establish our theorems through the technical lemmas, we represent the solution as follows

us (@)= (I—e*P) f — LB 2 (a) + B (g_(x) —g_(0))

T

0
1 1
+e®Bex 4 §B_1 / e™=)Bg_ (s)ds + §B_1 / B (g_(s) — g_(x)) ds,

—00

for x € |]—o0,0] and

* —x * 1 —x —
ur (@) = e G + 0BG 4 ZB2e078 (g (2) - g1(9)) — 5B (91 (0) — 90))
T 1)
Loy [ @-sB( 5, .6 Lo v [ —ao)B( 5, _ .6
+ 2B /e <g+(s) g+(0)) ds + 2B e (g+(8) g+(:v)> ds,
0

for x € [0, 0], where

G =G+ 3B20), G =G+ 3B L0)and G =& + 3B (0)

Hence, after simplification, we find:

* — — 1— [ —
G = (=) D BB gt~ ED B (07 — 1) P (g(6) — 6(0))

0
+D,'B7? (gi(o)—g—<0)>+D,IlB_l/e_SB (9-(s) — g-(0)) ds

—0o0

G == () B L DB [P (g ()~ g (0)ds

—00

and

* — — 1 _ — —s
& = ~2uB D P+ D (1 P (T = ) B [ B (g (9) — g (0) ds

—00

6 6
-l—uD;lB 1/626 S)B )—gi(d)) ds—i—uD;lB 1/653( 2 i(O)) ds
0 0

+uB~ 2D L(e2B — I) <gi 0) — g,(O)) + uD;le‘SBB 2 (I 53) (gi(é) - gi(O)) .
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By applying Lemmas 2, 4, 6 and 8, we conclude that:

o 2o e B (g () — g (0)) + BB (g_(s) —g_(2))ds + B | e=IBg_(s)ds
belongs to BUC?® (]—o0, 0] ;xE). -
o ors B[ @B (g () — g1 (0)) ds + B [ B (g s) — g1 (@) ds
anda?: = (028 — 1) (g% (z) — gi(é)gs belong to C2* ([0, 4] ; E) .
Moreover, by applying Lemmas 6, 7 and 8, the applications

0 é
o x> e ®BB[esB (g% (s) — ¢5.(0)) ds, x — e BB [el0—5)B (9%.(s) — g%.(9)) ds,
0 0

0
e x> e BB [ e*B(g_(s) —g-(0))ds

—0o0

are bounded and uniformly Hélder continuous with exponent 2a on |—o0, 0] .

Similarly, we can deduce from Lemma 2 that the following functions

1 é
2 e*BB / e (gl(s) ~ g10)) ds, > "B / 0B (g (5) — g1.(6) ) ds,
0 0

0 )
ps B [P g (s) = g (0)ds. @ OB [ (g9) - .0 d,
0

—0o0

6 0
s cO-DBR / 08 (gl (5) = g1(0) ) ds, @ e0=IP B / =P (g_(s) — g_(0)) ds
0

belong to C?* ([0, 4]; E) .
Moreover, for § > 0, we know that e’By, Be’By € D (Bk) C Dp (2a,0) for all x € E, hence the

following functions
T exBBe‘Sijsr, z > 0B OB (gi(()) — g_(0)> , x> e"BedB (gi(é) — gi(O))

and z — e®=BeB (g9 (6) — ¢%.(0)) belong to C?([0,4]; E).

Similarly, the following functions
x> B <I — e‘sB) (gi(d) — gi(O)) , T Be_“"jBe‘Sijsr

and z — e~ *Be®B (¢4 (0) — g—(0)) belong to BUC?* (]—o0,0]; E) .

Consequently, and by using this notation g ~, h if and only if g — h € C?“, we obtain
Au_ () 90 A(f- — e "B f_) + uD, e P (¢%.(0) — g-(0)),
Aug(x) ~o (14 p) D;lBe(‘S*x)Bfi - e;”BD;1 (9%.(0) — g-(0)) .

On the other hand, for f_ € D (A), according to Lemma 3, it follows that the functions

x> A(f- - e_xBf,) , x> e B (gi(O) - g,(O))
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are uniformly bounded and continuous on ]—o0,0] if Af—, ¢5(0) — ¢g_(0) € (A), hence

Au_ € BUC (]—00,0]; E) ,and from the equation Au_ + u” = g_, we deduce that
u_ € BUC?(]—00,0]; E) N BUC (]—00,0]; D(A)),
while
r A(fo—eBf) zs e (gi(O) — g_(O)) € BUC**(]—o0,0]; E)

if Af—, g%.(0) — g—(0) € Da (@, 00). Thus Au_,u” belong to BUC?** (]—c0,0]; E).
Similarly, by applying Lemma 1 for f$ € D (B), we obtain uy € C2([0,6]; E) N C ([0,5]; D(A)) if
Bf! € D(A),and Auy, v/ € C?*([0,6]; E) if BfS € Da (a, 00).

5. APPLICATIONS
Example 1. Let E = C ([0, 1]). We define the operator A on this space by
D(A) = {v e C*([0,1]) : ¢:(0) = ¥ (1) = 0} := C5 ([0, 1) N C*([0,1])

Ay =",

This operator satisfies Hypothesis (H) through a direct computation of its resolvent. Furthermore, we have

D(A) ={y € C([0,1]) : ¥ (0) = ¢ (1) = 0} == Co ([0, 1])

which indicates that the domain D (A) is not dense in E = C ([0, 1]), and the interpolation space D 4 (a, +00)

is characterized by
Da(a,+00) = {p € C**([0,1]) : ¥ (0) = (1) = 0} == C3* ([0,1]).

In the continuous framework E = C' ([0, 1)), it is difficult to determine the square root of — A precisely. Therefore,
we consider f$ = 0.

In the following proposition, we present the main regqularity result concerning this problem

(e.q) Auy (z,y) = ¢ (x,0) in ]0,5[ x]0,1]
Au_ (z,y) = g— (z,0) in |—o0,0[ x ]0,1]

() {0 = s O, -G (0.9) = e G (0 fory € o1 ©
Ou

(b.c){ LG =L for yelo]
u(z,0) =u(z,1) =0 for x €]—o00,d].

as immediate consequences of Theorems 1 and 2.
Proposition 1. Let g € C2*([0,1],C ([0, 1])) and

g— € BUC?**(]—00,0];C ([0,1])) with g_ (—o0,y) = 0.
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For f— € C} ([0,1]) N C? ([0, 1]) , we have

1) The problem (6) has a unique strict solution i.e.,
u_ € BUC? (J=00,0]:C ([0, 1))) N BUC (J—00,0]; C3 (10,1)) 1 € (0,1]))

uy € C?(0,6;C ([0,1])) N C (0,0;Cj ([0,1]) N C?([0,1])) ,

2
g3l (0,0 = 90,0 € Co (0.1).

2) The strict solution satisfies this property of maximal reqularity

Puy  *uy Pu_ O*u_

2a . -
G € € (0.0):C (0.1]) and S, Sl

€ BUCZQ (]_0070] ) C ([07 1]))

. 02
if g f— 98 0.) —9-(0,) € G ([0, 1)),
Example 2. Let us set for some 0 < 2 < 1 that

E=C§*(0,1) = {¢ € C**(0,1) : 1(0) = 0}

and
D (B) = {¢,¢/ € C**2%(0,1) : ¢ (0) = ¢ (0) = 0} := C"** (0,1)
By = .
Since A = — B2, then
Ay =~y

D(A) = {¢ € C?*22(0,1) : ¢ (0) = ¢’ (0) = ¢ (0) = 0} := C3T*(0,1)

Furthermore, we have D (A) = D (B) = h3* (0,1) # E, where

B2 (0,1) =4 £:(0,1] - C: lim sup L =S WI _fziy)‘ 0%,
“eye] |z —yl
Ty
with || fllpze 1) = ILfIl} Flozan The Hypothesis (H) holds through a direct computation of its resolvent
(see [4, Example 14.2, p. 318]). Using [11, Example 1.25, p. 37 and Example 5.15, p. 142] or [12, Corollary

1.2.19, p. 32], we can characterize the real interpolation spaces Dp (2c., +00) as

(034-204 (0’ 1) ’ Cga (O, 1)) <C’ga (O, 1) ’Cé’%‘ (0’ 1)) — 6104 (0, 1) ,

1—2a,00 20,00

As immediate consequences of Theorems 1 and 2, the main regularity result is given in the following proposition
Proposition 2. Let g5 € C2* ([0,w]; C3*(0,1)),
g- € BUC* (]—00,0];C3* (0,1)) with g_ (—o0,y) = 0.

For f— € C372*(0,1) and f$ € C;2*(0,1), we have
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1) The problem

82U:|: a2u:|:

T2 (Y - 7 (z,y) = g% (z,y) in (]—o0,0[U]0,8[) x ]0,1]

0

S0y = f1 () and lim o (w,y) = £ () y€)0,1]
2

e (0,0) = 5 (0,0) = T2E (0,0) =0 w €],

has a unique strict solution i.e.,
u_ € BUC? (—00,0;C2%(0,1)) N BUC (—00,0; C3T2* (0,1)),
uy € C%(0,6;C3*(0,1)) N C (0,6;,C3>*(0,1)),

: 9 é 62 1) oY%

lfaiyf{»a ainf—a g1 (O) ) - g—(ou ) € h(2) (07 1) .

2) The strict solution satisfies this property of maximal regularity

0? 0?

Wu.,., @U_k € CQO{ ([0, (ﬂ ,Cga (0, 1))

0? 0?

@Uf, %Uf S BUCQa (]*OO, 0] ,Cga (07 1))

-0 s 0?2 5 4
— —f_ O —qg_(0,. o 1).
lfayf—&-a 8y2f ag+ (07 ) g (07 ) € C10 (Oa )
CONCLUSION

In conclusion, this study focuses on the analysis of a transmission problem in Holder spaces. Here,
the solution does not necessarily vanish at infinity, unlike the classical results obtained in L? spaces,
where the condition u(—o00) = 0 is imposed. This difference led us to examine some terms related to

the nonhomogeneous Dirichlet boundary condition, which play a central role in this context.
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