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Abstract. This article compares two approaches for solving second-order ordinary differential equations
(ODEs) with regular singularities: the Frobenius method and a method of Lie symmetry analysis of
successive reduction of order. We provide a theoretical overview of each method, emphasizing their
mathematical foundations and computational frameworks. The comparison is illustrated through four
example ODEs with regular singularities, allowing a direct evaluation of their performance. The Frobenius
method provides series expansions that can often be expressed compactly in terms of special functions, such
as Bessel or hypergeometric families. In contrast, Lie symmetry analysis offers a unified and algorithmic
framework that is applicable across all cases, provided the ODE admits the necessary symmetries. This
difference highlights the Frobenius method’s case-specific flexibility and the generality of the Lie symmetry
approach.
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1. Introduction

Ordinary differential equations (ODEs) arise in numerous scientific and engineering disciplines-
including physics, biology, and economics—where they model a wide spectrum of dynamic processes.
A thorough understanding of ODEs is thus crucial for predicting, analyzing, and controlling real-
world systems. In particular, second-order ODEs often appear in the study of mechanical vibrations,
wave phenomena, and heat conduction [1–3]. Classical methods for solving these equations include
characteristic equations, variation of parameters, and reduction of order, among others.
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When second-order ODEs involve variable coefficients, especially near singular points, solution
techniques become more specialized. A central and time-honored approach for such equations is
the Frobenius method. By considering power series expansions around a regular singular point, the
method systematically derives analytic solutions, making it indispensable for equations like the Euler–
Cauchy equation and a wide class of Bessel-type equations [4]. Recent work continues to extend and
deepen the reach of this technique [5–7].

Alongside these developments in series-based methods, Lie symmetry analysis has emerged as a
powerful, unifying framework for studying ODEs [8–13]. Themethod hinges on identifying continuous
groups of transformations that leave a differential equation invariant-and using them to simplify the
equation, often reducing its order or transforming it into a more tractable form. This strategy has
proven especially effective for nonlinear and variable-coefficient ODEs.

These two methodologies—Frobenius expansions and Lie symmetry reductions—are both effective
for solving second-order ODEs with variable coefficients. The Frobenius method provides series
expansions that can often be expressed compactly in terms of special functions, such as Bessel or
hypergeometric families [4]. While the Frobenius method requires tailoring its approach to specific
cases depending on the nature of theODE, Lie symmetry analysis offers a unified algorithmic framework
that is applicable across all cases, provided the ODE admits the necessary symmetries.

In this article, we conduct a comparative study of the Frobenius method and Lie symmetry analysis
for solving second-order ODEs with regular singularities. Using four representative examples from
well-established texts [16, 19, 20], we demonstrate the applicability and effectiveness of each method.

The paper is structured as follows: Section 2 introduces the Frobenius method, detailing its appli-
cation to second-order ODEs with regular singular points. In Section 3, we explore the fundamental
concepts of Lie symmetry analysis, highlighting how admitted symmetries facilitate the systematic
reduction of an ODE’s order. Section 4 provides illustrative examples to demonstrate the practical
implementation of both methods. Finally, Section 5 offers concluding remarks.

2. The Frobenius Method

The Frobenius method is a powerful technique for solving linear second-order ordinary differential
equations (ODEs) with regular singular points. It adapts the standard power series solution method to
handle equations that may appear to diverge at a particular point, enabling us to find solutions that are
analytic in a neighborhood of that point.

Consider a second-order linear differential equation of the form:

y′′ + p(x)y′ + q(x)y = 0, (1)
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where p(x) and q(x) are functions of x. According to Frobenius’ theorem, if the terms (x− x0)p(x) and
(x− x0)2q(x) both have convergent power series expansions around the point x0, then a power series
solution to the differential equation can also be found around x0.

Let us focus on finding a solution in the neighborhood of x0 = 0. First, we examine the behavior of
xp(x) and x2q(x) at x0 = 0. It is straightforward to show that both xp(x) and x2q(x) are well-behaved
(i.e., analytic) around x0 = 0, which ensures that they can be expressed as convergent power series in
this region.

If the conditions outlined above are satisfied, we can assume a solution to the differential equation
in the form of a power series:

y = xr
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r, (2)

where r is a constant to be determined, and an are the unknown coefficients of the series. While
n is an integer, r is not restricted to integer values, and it must be determined through the process
described below.

The steps to find the solution proceed as follows:

(1) Indicial Equation: We first derive the indicial equation by setting the coefficient of the lowest
power of x (i.e., xr) to zero. This condition provides the possible values of r, which are critical
for determining the form of the solution. The value of a0 is arbitrary, and it is determined based
on the choice of r.

(2) Recursive Relations for an: Once r is found, we substitute it back into the equation and obtain
recursive relations for the coefficients an, allowing us to compute each coefficient sequentially.

(3) Solution Construction: After determining the coefficients an for each r, the power series repre-
sentation of the solution is given by:

y = xr
∞∑
n=0

anx
n.

(4) General Solution: The general solution to the differential equation is obtained by combining the
solutions corresponding to each value of r.

In the context of the Frobenius method for solving ODEs with regular singular points, three distinct
cases can arise, depending on the nature of the roots of the indicial equation:

(1) Regular Singular Point: This case arises when the limits p0 and q0 both exist and are finite as
x→ x0. The indicial equation will have two roots, which can be categorized into three types:
• r1 − r2 /∈ N (the roots are distinct and non-integer spaced),
• r1 − r2 = 0 (the roots are equal),
• r1 − r2 ∈ N (the roots are integer spaced).

where, by convention, r1 is the larger root.
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(2) Irregular Singular Point: This case occurs when at least one of the limits referred to above fails to
exist. After a suitable change of variables, a regular singularity may exist for large x, or a point
at infinity. Then the same Frobenius approach can be used to solve the transformed differential
equation.

The Frobenius method is extensively discussed in standard textbooks on ordinary differential equa-
tions, such as [1–3,15, 17, 18].

3. The Method of Successful Reduction of Order

Lie symmetry analysis offers various algorithms for solving ODEs, with comprehensive accounts
available in numerous references, including [8–13,26].

Consider an nth-order ODE
F
(
x, y, y′, . . . , y(n)

)
= 0, (3)

where
y(k) =

dky

dxk
, k = 1, 2, . . . , n.

Central to methods of Lie symmetry analysis for studying ODEs is the determination of admitted
symmetries.

A one-parameter Lie group of point transformations is represented by

x̃ = f(x, y; ε) = x+ εξ(x, y) +O
(
ε2
)
,

t̃ = g(x, y; ε) = y + εη(x, y) +O
(
ε2
)
,

(4)

where ε is the group parameter, and the corresponding infinitesimal generator is defined by

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
, (5)

for some functions ξ and η.
The Lie group (4) is admitted by the ODE (3) if and only if the nth order prolongation of (5) acting

on F in (3) is zero along the solutions of (3), i.e.,

X(n)F |F=0 = 0, (6)

where the n order prolongation X(n) is given by

X(k) = X + η(1)
(
x, y, y′

) ∂

∂y′
+ · · ·+ η(k)

(
x, y, y′, . . . , y(k)

) ∂

∂y(k)
, (7)

where
η(k)

(
x, y, y′, . . . , y(k)

)
= Dxη

(k−1) − y(k)Dxξ, k = 1, 2, . . . , n

with
η(0) = η(x, y),
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and Dx is the total differential operator defined by

Dx =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · · . (8)

A straightforward algorithm, Lie’s algorithm, is employed to find symmetries of the ODE (3). The
infinitesimal criterion (6) provides an overdetermined set of linear partial differential equations which
are solved for the infinitesimals ξ and η. The infinitesimal generators span a Lie algebra of symmetries
of (3).

Many computer algebra packages (e.g., Mulie, Dimsym, MathLie, Spde, Symgrp, Relie, etc.) exist
that enable users to efficiently perform the cumbersome calculations involved in the application of Lie’s
algorithm (see, for example, [21–25]). With such packages the computation of symmetries is rendered
almost automatic. These packages also significantly simplify the process of using the symmetries of
differential equations.

The Lie symmetries of a given ODE can be used for various tasks, including integration of the ODE,
which is the focus of the article. A particularly useful integration routine of Lie symmetry analysis is
the integration via a method of successive reduction of order [8–11].

If a second order ODE

y′′ = f
(
x, y, y′

) (9)

admits a two-parameter Lie group of transformations, then one can construct the general solution of
(9) through a reduction to two quadratures in two successive steps.

Let X1, X2 be infinitesimal generators of point symmetries of (9) such that

[X1, X2] = λX1 for some constant λ, (10)

which means that the vector space spanned by X1 and X2 is a two-dimensional Lie algebra.
If

p = P (x, y) and q = Q
(
x, y, y′

)
, (11)

with ∂q
∂y′ 6= 0, are invariants of X(1)

1 , i.e.,

X1p = 0, X
(1)
1 q = 0,

then in the (p, q)-variables Eq. (9) reduces to
dq

dp
= H(p, q), (12)

for some function H(p, q). Remarkably, (12) admits the symmetry X2 written in the variables p and q.
i.e.,

X
(1)
2 = α(p)

∂

∂p
+ β(p, q)

∂

∂q
, (13)
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where the coefficients α and β are determined as follows:

α(p) = X2p, β(p, q) = X
(1)
2 q. (14)

Therefore (12) can be integrated, using the symmetry (13) if necessary, to obtain a solution

φ(p, q,K) = 0. (15)

In terms of x and y, equation (15) is a first order ODE that admits the symmetry X1.

This means that integration of any second-order ODE that admits two symmetryX1 andX2, and for
which the Lie bracket satisfies the condition (10), reduces to the integration of two first-order ODEs,
each of which has an admitted symmetry.

4. Illustrative Examples

In the comparative analysis between the Frobenius method the method of successive reduction of
Lie symmetries, we consider the following ordinary differential equations (ODEs):

2x2y′′ − xy′ + (1 + x)y = 0, (16)

x2y′′ + 3xy′ + (1− 2x)y = 0, (17)

x4y′′ + y = 0, (18)

xy′′ + 3y′ − xy = 0. (19)

These ODEs are taken, respectively, from [19, p. 281], [16, p. 374], [16, p. 388], and [20, p. 473].
Solutions of such equations often involve both exponential-type and special functions. In particular,
the following Bessel functions frequently appear in the solution process [4]:

• Jν(x): Bessel function of the first kind,
• Yν(x): Bessel function of the second kind,
• Iν(x): modified Bessel function of the first kind,
• Kν(x): modified Bessel function of the second kind.

It is noteworthy that many of the classical Bessel functions can be represented as special cases or
particular values of the generalized hypergeometric function iFj . In particular, the Bessel functions of
the first kind, Jν(x), and the modified Bessel functions of the first kind, Iν(x), can each be written as a
series expansion that matches the 0F1 or 0F2 form (depending on the parameters). Similarly, the Bessel
functions of the second kind, Yν(x), and the modified Bessel functions of the second kind,Kν(x), can be
related to linear combinations of these hypergeometric expansions, along with additional logarithmic
terms in some representations.
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4.1. Solution of (16) Using the Frobenius Method. For the ODE (16), it is easy to show that x = 0

is a regular singular point of Eq. (16). Further, xp(x) = −1/2 and x2q(x) = (1 + x)/2. Thus p0 =

−1/2, q0 = 1/2.
To solve Eq. (16) we assume that there is a solution of the form

y = xr (a0 + a1x+ · · ·+ anx
n + · · · ) = xr

∞∑
n=0

anx
n =

∞∑
n=0

anx
r+n. (20)

Then y′ and y′′ are given by

y′ =
∞∑
n=0

an(r + n)xr+n−1 (21)

and
y′′ =

∞∑
n=0

an(r + n)(r + n− 1)xr+n−2. (22)

By substituting the expressions for y, y′, and y′′ in Eq. (16), we obtain

2x2y′′ − xy′ + (1 + x)y =
∞∑
n=0

2an(r + n)(r + n− 1)xr+n

−
∞∑
n=0

an(r + n)xr+n +
∞∑
n=0

anx
r+n +

∞∑
n=0

anx
r+n+1.

(23)

The last term in Eq. (23) can be rewritten as∑∞n=1 an−1x
r+n, so by combining the terms in Eq. (23),

we obtain
2x2y′′ − xy′ + (1 + x)y = a0[2r(r − 1)− r + 1]xr

+
∞∑
n=1

{[2(r + n)(r + n− 1)− (r + n) + 1]an + an−1}xr+n = 0.
(24)

If Eq. (24) is to be satisfied for all x, the coefficient of each power of x in Eq. (24) must be zero. From
the coefficient of xr we obtain, since a0 6= 0,

2r(r − 1)− r + 1 = 2r2 − 3r + 1 = (r − 1)(2r − 1) = 0. (25)

Equation (25) is called the indicial equation for Eq. (16). The roots of the indicial equation are

r1 = 1, r2 = 1/2. (26)

These values of r are called the exponents at the singularity for the regular singular point x = 0.
They determine the qualitative behavior of the solution (20) in the neighborhood of the singular point.

Now we return to Eq. (24) and set the coefficient of xr+n equal to zero. This gives the relation

[2(r + n)(r + n− 1)− (r + n) + 1]an + an−1 = 0 (27)

or
an = − an−1

2(r + n)2 − 3(r + n) + 1

= − an−1
[(r + n)− 1][2(r + n)− 1]

, n ≥ 1.
(28)
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For each root r1 and r2 of the indicial equation, we use the recurrence relation (28) to determine a
set of coefficients a1, a2, . . .. For r = r1 = 1, Eq. (28) becomes

an = − an−1
(2n+ 1)n

, n ≥ 1.

Thus

a0 =
−1

(2n+ 1)n
· −1
(2n− 1)(n− 1)

· −1
(2n− 3)(n− 2)

· · · −a0
(3)1

.

In general, we have
an =

(−1)n

[3 · 5 · 7 · ·(2n+ 1)]n!
a0, n ≥ 4. (29)

Multiplying the numerator and denominator of the right side of Eq. (29) by 2 · 4 · 6 · · · 2n = 2nn!, we
can rewrite an as

an =
(−1)n2n

(2n+ 1)!
a0, n ≥ 1.

Hence, if we omit the constant multiplier a0, one solution of Eq. (16) is

y1(x) = x

[
1 +

∞∑
n=1

(−1)n2n

(2n+ 1)!
xn

]
,

=
x√
2x

∞∑
n=0

(−1)n
{√

2x
}2n+1

(2n+ 1)!
=

√
x

2
sin
√
2x = x

3
4J 1

2

(√
2x
)
, x > 0. (30)

To determine the radius of convergence of the series in Eq. (30) we use the ratio test:

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = lim
n→∞

2|x|
(2n+ 2)(2n+ 3)

= 0

for all x. Thus the series converges for all x. Corresponding to the second root r = r2 = 1
2 , we

proceed similarly. From Eq. (28) we have

an = − an−1

2n
(
n− 1

2

) = − an−1
n(2n− 1)

, n ≥ 1.

Hence

an =
−1

n(2n− 1)
· −1
(n− 1)(2n− 3)

· −1
(n− 2)(2n− 5)

· · · −a0
(1)(1)

and, in general,
an =

(−1)n

n![1 · 3 · 5 · · · (2n− 1)]
a0, n ≥ 4. (31)

Just as in the case of the first root r1, we multiply the numerator and denominator by 2 · 4 · 6 · · · 2n =

2nn!. Then we have
an =

(−1)n2n

(2n)!
a0, n ≥ 1.
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Again omitting the constant multiplier a0, we obtain the second solution

y2(x) = x1/2

[
1 +

∞∑
n=1

(−1)n2n

(2n)!
xn

]
,

=
√
x
∞∑
n=0

(−1)n
{√

2x
}2n

(2n)!
=
√
x cos

√
2x = x

3
4Y 1

2

(√
2x
)
, x > 0. (32)

As before, we can show that the series in Eq. (32) converges for all x. Since the leading terms
in the series solutions y1 and y2 are x and x1/2, respectively, it follows that the solutions are linearly
independent. Hence the general solution of Eq. (16) is

y = c1y1(x) + c2y2(x), x > 0. (33)

4.2. Solution of (16) Using Lie Symmetry Analysis. The nonlinear equation (16) admits eight Lie
point symmetries, two of which have the infinitesimal generators given by:

X1 = ei
√
2
√
x√x ∂

∂y
, X2 = y

∂

∂y
, (34)

with the commutation relation:
[X1, X2] = X1. (35)

The first prolongation of X1 is:

X
(1)
1 = ei

√
2
√
x

[√
x
∂

∂y
+

(
1

2
√
x
+

i√
2

)]
∂

∂y′
. (36)

We solve the corresponding characteristic equations
dx

0
=
dy

η
=
dy′

η(1)
, (37)

where
η = ei

√
2
√
x√x, η(1) = ei

√
2
√
x

(
1

2
√
x
+

i√
2

)
,

and obtain invariants
p = x, q = 2y′ − y

x
− i
√
2 y√
x
. (38)

Therefore,
dq

dp
=
Dxq

Dxp
= 2y′′ + y

(
1

x2
+

i√
2x3/2

)
− y′

(
1

x
+
i
√
2√
x

)
. (39)

Substituting y′′ from equation (16) into equation (39) and expressing the resulting equation in terms
of p and q using (38), we obtain the following first-order ODE:

dq

dp
+

iq√
2
√
p
= 0. (40)

From the first prolongation of X2, given by

X
(1)
2 = y

∂

∂y
+ y′

∂

∂y′
, (41)
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and using the expression for p and q from (38), we obtain the following results:

X
(1)
2 p

∣∣∣
(38)

= 0, X
(1)
2 q

∣∣∣
(38)

= q, (42)

which shows that X(1)
2 projects onto the (p, q)-plane as:

Y = q∂q. (43)

Equation (40) admits this symmetry, and while the symmetry (43) can be used for further integration
if needed, equation (40) is a variables-seperable ODE. Solving it, we find the solution:

q = Ke−i
√
2
√
p, (44)

whereK is an arbitrary constant.
By expressing (44) in terms of x and y through (38), we obtain the first-order linear ODE:

y′ − y
(

1

2x
+

i√
2
√
x

)
= K

2 e
−i
√
2
√
x, (45)

which is solved to give:
y = e−i

√
2x√x

(
C1 + C2e

2i
√
2x
)
, (46)

where C1 and C2 are arbitrary constants. This solution is the desired solution to the second-order ODE
(16).

4.3. Solution of (17) Using the Frobenius Method. Consider the problem of solving the equation
(17), repeated here:

x2y′′ + 3xy′ + (1− 2x)y = 0, x > 0. (47)

For this ODE, we have
p(x) =

3

x
, q(x) =

1− 2x

x2
,

so that p0 = 3 and q0 = 1. Therefore, the indicial equation is

r2 + 2r + 1 = 0 (48)

with roots r1 = r2 = −1.
Substituting

y =

∞∑
n=0

anx
n+r (49)

into equation (47) leads to the recursive relation

an =
2an−1
n2

, n ≥ 1

which leads to
an =

2na0
(n!)2

.
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The solution y1(x) becomes

y1(x) =
a0
x

{ ∞∑
n=0

2nxn

(n!)2

}
=
a0
x
I0

(
2
√
2x
)
=
a0
x

0F1(; 1; 2x).

By Frobenius approach, the second solution in a repeated root case takes the form

y2(x) = y1 lnx+
∞∑
n=1

bnx
n−1

which leads to
y2(x) = y1 lnx+−4− 3x− 22

27
x2 − 25

516
x3 + · · ·

which can be repackaged as a modified second Bessel function of order zero
1

x
K0

(
2
√
2x
)
=

π

2x
I0

(
2
√
2x
)(

1− 1

π
ln(2x)

)
to relate it with the Lie symmetry method output below.

4.4. Solution of (47) Using Lie Symmetry Analysis. The nonlinear equation (47) admits two Lie
point symmetries with the infinitesimal generators:

X1 =
K0

(
2
√
2
√
x
)

x

∂

∂y
, X2 = y

∂

∂y
, (50)

that have the commutation relation:
[X1, X2] = X1. (51)

The first prolongation of X1 is given by:

X
(1)
1 =

K0

(
2
√
2
√
x
)

x

∂

∂y
−

(
K0(2

√
2
√
x)

x2
+

√
2K1(2

√
2
√
x)

x3/2

)
∂

∂y′
. (52)

From the invariants obtained by solving the corresponding characteristic equations:

p = x, q = y′ + y

(
1

x
+

√
2K1(2

√
2
√
x)

√
xK0(2

√
2
√
x)

)
, (53)

we derive the following:

dq

dp
= y′′ + y′

(
1

x
+

√
2K1(2

√
2
√
x)

√
xK0(2

√
2
√
x)

)

+
y

x2

(
2xK2

1 (2
√
2
√
x)

K2
0 (2
√
2
√
x)
−
√
2
√
xK1(2

√
2
√
x)

K0(2
√
2
√
x)

− (1 + 2x)

)
(54)

By substituting for y′′ from equation (47) and simplifying using (53), we obtain a first-order ODE:

dq

dp
=
q

p

(
√
2
√
p
K1(2

√
2
√
p)

K0(2
√
2
√
p)
− 2

)
. (55)

Projecting X(1)
2 onto the (p, q)-plane, we find the symmetry:

X
(1)
2 = q

∂

∂q
, (56)
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which is a symmetry of (55). Integrating (55) leads to the solution:

q =
C1

p2K0(2
√
2
√
p)
, (57)

where C1 is an arbitrary constant.
By transforming this solution through (53), we obtain the first-order linear ODE in x and y:

y′ +

(
1

x
+

√
2K1(2

√
2
√
x)

√
xK0(2

√
2
√
x)

)
y =

C1

x2K0(2
√
2
√
x)
. (58)

This linear equation is solved to yield the solution:

y =
κ1I0(2

√
2
√
x) + κ2K0(2

√
2
√
x)

x
, (59)

where κ1 and κ2 are arbitrary constants. This solution satisfies the original second-order ODE (47).

4.5. Solution of (18) Using the Frobenius Method. Let us consider equation (18), which we restate
below:

x4y′′ + y = 0. (60)

Next, we solve equation (60) using the Frobenius method. First, we introduce the substitution
ω = 1/x, which implies:

dy

dx
=
dy

dω

dω

dx
= −ω2 dy

dω
,

d

dx

(
dy

dx

)
=
dω

dx

d

dω

(
−ω2 dy

dω

)
= ω2

[
2ω

dy

dω
+ ω2 d

2y

dω2

]
.

Substituting this into the original equation (60), we obtain:

y′′ +
2

ω
y′ + y = 0. (61)

At ω = 0, we find:
p0 = lim

ω→0
ω · 2

ω
= 2, q0 = lim

ω→0
ω2 · 1 = 0.

Thus, the indicial equation is:

r(r − 1) + 2r = r(r + 1) = 0. (62)

Next, we proceed with the series solution. Expanding the equation:
∞∑
n=0

n(n− 1)anω
n−1 +

∞∑
n=0

2nanω
n−1 +

∞∑
n=0

anω
n+1 = 0. (63)

We combine the terms:
∞∑
n=0

{n(n− 1) + 2n}anωn−1 +
∞∑
n=2

an−2ω
n−1 = 0. (64)
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This leads to:
0 · a0/ω + 2a1 +

∞∑
n=2

[n(n+ 1)an + an−2]ω
n−1 = 0. (65)

From here, we deduce that a0 is an arbitrary constant and a1 = 0, implying that all odd-index terms
vanish: a2n+1 = 0. Thus, the even-index terms are given by:

a2n =
−a2n−2

(2n+ 1)2n
=

(−1)na0
(2n+ 1)!

. (66)

The solution is then:

y1(ω) = a0

∞∑
n=0

(−1)nω2n

(2n+ 1)!
= a0

(
1− ω2

6
+

ω4

120
− ω6

5040
+ · · ·

)
. (67)

Alternatively, this can be expressed as:

y1(ω) =
a0
ω

∞∑
n=0

(−1)nω2n+1

(2n+ 1)!
= a0x sin

(
1

x

)
. (68)

Next, we find the second solution y2(ω):

y2(ω) = Cy1(ω) lnω +
∞∑
n=0

bnω
n−1. (69)

To compute the derivatives:

y′2(ω) = Cy′1 lnω +
Cy1
ω

+

∞∑
n=0

(n− 1)bnω
n−2, (70)

y′′2(ω) = Cy′′1 lnω +
2Cy′1
ω
− Cy1

ω2
+

∞∑
n=0

(n− 1)(n− 2)bnω
n−3. (71)

Substituting into the equation:

2Cy′1 + C
y1
ω

+
∞∑
n=0

[(n− 1)(n− 2) + 2(n− 1)] bnω
n−2 +

∞∑
n=0

bnω
n = 0. (72)

This simplifies to:

2Cy′1 +
Cy1
ω

+

∞∑
n=2

[n(n− 1)bn + bn−2]ω
n−2 = 0. (73)

From here, we deduce that both b0 and b1 are arbitrary. Comparing coefficients:

ω−1 : C = 0 and bn =
−bn−2
n(n− 1)

, n ≥ 2.

The solution for the bn’s is:

b2n =
(−1)nb0
(2n)!

, b2n+1 =
(−1)nb1
(2n+ 1)!

. (74)
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Thus, the second solution is:

y2(ω) =
b0
ω

[
1 +

∞∑
n=1

(−1)nω2n

(2n)!

]
+
b1
ω

[
ω +

∞∑
n=1

(−1)nω2n+1

(2n+ 1)!

]
. (75)

Finally, we arrive at the general solution:

y(x) = x

[
b0 cos

1

x
+ b1 sin

1

x

]
. (76)

4.6. Solution of (60) Using Lie Symmetry Analysis. Equation (60) admits a two-dimensional sym-
metry Lie algebra spanned by the infinitesimal generators:

X1 = ei/xx
∂

∂y
, X2 = y

∂

∂y
, (77)

with the commutation relation:
[X1, X2] = X1. (78)

The first prolongation of X1 is:

X
(1)
1 = ei/xx

∂

∂y
+ ei/x

(x− i)
x

∂

∂y′
. (79)

From this, we obtain the invariants:

p = x, q =
xy′ − y
x

+
iy

x2
. (80)

Using these invariants, we write the following expression for dq
dp :

dq

dp
=
Dxq

Dxp
= y

(
1

x2
− 2i

x3

)
+ y′

(
i

x2
− 1

x

)
+ y′′. (81)

Substituting for y′′ from equation (60) into the above and using (80), we arrive at the first-order ODE:
dq

dp
=
q(i− p)
p2

. (82)

This equation admits the symmetry given by the projection of X2 onto the (p, q)-plane:

X
(1)
2 = q

∂

∂q
. (83)

Integrating equation (82), which is separable, we obtain:

q =
C1e

−i/p

p
, (84)

where C1 is an arbitrary constant. Substituting for p and q using (80), we obtain the first-order ODE in
terms of x and y:

y′ =
C1e

−i/x

x
+
u(x− i)
x2

. (85)

This is a separable equation, and its solution is:

y = x
(
κ1e

i/x + κ2e
−i/x

)
, (86)
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where κ1 and κ2 are arbitrary constants. This solution is the desired solution to the second-order ODE
(60).

4.7. Solution of (19) Using the Frobenius Method. We seek a series solution about the regular
singular point x = 0 for the differential equation:

xy′′ + 3y′ − xy = 0. (87)

The given equation has p(x) = 3/x and q(x) = −1, which indicates that x = 0 is a regular singular
point. To confirm, we compute the limits:

p0 = lim
x→0

xp(x) = 3, q0 = lim
x→0

x2q(x) = 0.

The indicial equation is derived from the general form of the equation, and it takes the form:

r(r − 1) + 3r = r2 + 2r = r(r + 2) = 0,

which has roots r1 = 0 and r2 = −2.
Using the root r1 = 0, we obtain the first solution in the form of a power series:

y1(x) = a0

∞∑
n=0

(
x
2

)2n
(n+ 1)!n!

= a0

∞∑
n=0

(
x2

4

)n
(n+ 1)!n!

. (88)

This can be rewritten as:

y1(x) =
a0
x
I1(x) = a0

{
0F1

(
; 2;

x2

4

)}
.

Since r1 − r2 = 2 is a positive integer, the second solution y2(x) is of the form:

y2(x) = Cy1(x) lnx+
∞∑
n=0

bnx
n−2. (89)

Substitute the expansion for y2(x) into equation (87) and simplify:

{
xy′′1 + 3y′1 − xy1

}
C lnx+ 2Cx−1y1 + 2Cy′1 +

∞∑
n=0

(n− 2)(n− 3)bnx
n−3

+
∞∑
n=0

3(n− 2)bnx
n−3 −

∞∑
n=0

bnx
n−1 = 0. (90)

Since the factor in braces is zero (because y1(x) is a solution to equation (87)), we combine the
summations and simplify:

2Cx−1y1(x) + 2Cy′1(x)− b1x−2 +
∞∑
n=2

[n(n− 2)bn − bn−2]xn−3 = 0. (91)
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Substituting the series expansions for y1(x) and y′1(x) and writing out the first few terms of the
summation in (91) leads to

− b1x−2 + (2C − b0)x−1 + (3b3 − b1) +
(
3

4
C + 8b4 − b2

)
x

+ (15b5 − b3)x2 +
(

5

96
C + 24b6 − b4

)
x3 + · · · = 0. (92)

Setting the coefficients of the powers of x equal to zero gives the following recurrence relations:

−b1 = 0 =⇒ b1 = 0,

2C − b0 = 0 =⇒ b0 = 2C (where C is arbitrary),

3b3 − b1 = 0 =⇒ b3 =
1

3
b1 = 0,

8b4 − b2 +
3

4
C = 0 =⇒ b4 =

b2 − 3
4C

8
=

1

8
b2 −

3

32
C (where b2 is arbitrary),

15b5 − b3 = 0 =⇒ b5 =
1

15
b3 = 0,

24b6 − b4 +
5

96
C = 0 =⇒ b6 =

b4 − 5
96C

24
=

1

192
b2 −

7

1152
C.

Substituting these values for bn into equation (89) yields the second solution:

y2(x) = C

{
y1(x) lnx+ 2x−2 − 3

32
x2 − 7

1152
x4 + · · ·

}
+b2

{
1 +

1

8
x2 +

1

192
x4 + · · ·

}
. (93)

Since the factor multiplying b2 is the first solution y1(x), we obtain a second linearly independent
solution by choosing C = 1 and b2 = 0:

y2(x) = y1(x) lnx+ 2x−2 − 3

32
x2 − 7

1152
x4 + · · · . (94)

Thus, the general solution to the differential equation (87) is given by the linear combination of the
two independent solutions y1(x) and y2(x):

y(x) = C1y1(x) + C2y2(x),

where C1 and C2 are arbitrary constants.

4.8. Solution of (87) Using Lie Symmetry Analysis. Equation (87) admits a two-dimensional Lie
algebra of symmetries spanned by the infinitesimal generators

X1 =
J1(ix)

x

∂

∂y
, X2 = y

∂

∂y
, (95)

which satisfy the commutation relation

[X1, X2] = X1. (96)
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From the first prolongation of X1,

X
(1)
1 =

J1(ix)

x

∂

∂y
+

[
i(J0(ix)− J2(ix))

2x
− J1(ix)

x2

]
∂

∂y′
, (97)

we find invariants
p = x, q =

y′I1(x)− yI2(x)
I1(x)

. (98)

Therefore,
dq

dp
=
Dxq

Dxp
= y′′ − y′I2(x)

I1(x)
−
u
(
I21 (x) + I3(x)I1(x)− I2(x)(I0(x) + I2(x))

)
2I21 (x)

. (99)

Rewriting equation (99) in terms of the new variables p and q, after substituting the original ODE
(87), and using the invariants (98), we obtain the first-order ODE

dq

dp
+ q

(
1

p
+

I0(p)

I1(p)

)
= 0. (100)

Equation (100) admits
X

(1)
2 = q

∂

∂q
, (101)

which is the projetion of X2 onto the (p, q)-plane. The solution of Equation (100)

q =
C1

p2I1(p)
, (102)

where C1 is an arbitrary constant, is transformed through (98) into the first-order ODE

y′ =
C1

x2I1(x)
+
yI2(x)

I1(x)
. (103)

Integrating (103), we obtain
y =

1

x
(C1K1(x) + C2I1(x)) , (104)

where C2 is another arbitrary constant. The solution (104) is the desired solution of the second-order
ODE (87).

5. Concluding Remarks

The Frobenius method is a robust and systematic approach for solving linear second-order ordinary
differential equations (ODEs) with variable coefficients, particularly around regular singular points. It
provides a structured framework for constructing solutions, making it a valuable tool in mathematical
physics for addressing many important differential equations. The Frobenius method treats equations
differently depending on the nature of the singular points, specifically distinguishing between regular
and irregular singular points.

In contrast, the method of successive reduction based on Lie symmetry analysis eliminates the
need for such distinctions. The primary requirement for this approach is that the ODE admits two
symmetries Xi and Xj such that their commutator satisfies [Xi, Xj ] = λXj , where λ is a constant. This
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method is entirely algorithmic, systematically reducing a second-order ODE to two first-order ODEs,
each of which admits a Lie point symmetry.

In this article, we applied the Frobenius method and the Lie symmetry analysis method of successive
reduction of order to typical second-order ODEs with regular singularities. Through the analysis of
four representative examples, we demonstrated that while the Frobenius method is a reliable and
well-established technique, the Lie symmetry analysis method offers a more versatile and efficient
alternative. Its ability to provide closed-form solutions through a unified and algorithmic approach
simplifies the solving process and enhances its applicability across a broader range of ODEs.
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